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Cyclic orders of graphs and their equivalence have been promoted by Bessy and Thomassé’s
recent proof of Gallai’s conjecture. We explore this notion further: we prove that two cyclic
orders are equivalent if and only if the winding number of every circuit is the same in the
two. The proof is short and provides a good characterization and a polynomial algorithm
for deciding whether two orders are equivalent.

We then derive short proofs of Gallai’s conjecture and a theorem “polar to” the main
result of Bessy and Thomassé, using the duality theorem of linear programming, total
unimodularity, and the new result on the equivalence of cyclic orders.

1. Introduction

In this paper we characterize – with a simple good-characterization and
polynomial algorithm – the “equivalence” of (linear or cyclic) orders given
on the vertices of a directed graph. This notion has been introduced by
Bessy and Thomassé [1] in order to prove a forty years old conjecture of
Gallai, and seems to be a basic concept that can be expected to have further
applications.

Furthermore, we show the linear programming background of Bessy’s
and Thomassé’s results. They prove two minmax theorems that are in ‘an-
tiblocking relation’, and the related polyhedra have advantageous integrality
properties that can be handled algorithmically with network flows [5]. We
provide here proofs that are the simplest to our knowledge: these are based
on total unimodularity and linear programming duality without any concern
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of how the solutions of these are found. The proof of the second theorem
uses the characterization of equivalent orders.

If D is a digraph then the underlying graph is the undirected graph
G = G(D) whose edges are the arcs of D without orientation. We will say
that D is connected or 2-edge-connected, if the underlying graph has these
properties. (Note the difference with strongly connected digraphs, which is
a property of the digraph. For the standard definitions of graph theory or
polyhedral combinatorics we refer to [4].) Strongly connected digraphs will
shortly be said to be strong.

A cycle is a closed walk with distinct arcs (edges) and it is a circuit if
all vertices are distinct, both in directed and undirected graphs. We will
use the term undirected circuits of a digraph to design the circuits of the
underlying graph. (The orientation of the arcs of such a circuit can be ar-
bitrary.) A multiset is a set where each element has a nonnegative integer
multiplicity. A linear order of a (di)graph is an order O := (v1,v2, . . . ,vn)
of its vertices. If in addition vn is followed by v1, we call it a cyclic order.
A cyclic order of n elements, has n openings (vi,vi+1) (i=1, . . . ,n), that is,
linear orders (starting with vi+1 and ending with vi) which are cyclically
equal to it. For a notation, a cyclic order can be represented by any of its
openings. A cyclic shift of a linear order is another opening of the same
cyclic order.

All digraphs considered here are without loops or parallel arcs, but may
have directed 2-circuits, where a k-circuit (k ∈ N) is a circuit of size k.
A digraph is a pair D=(V,A), where V =V (D) is the vertex-set of D, and
A = A(D) is its arc-set. An arc a = uv ∈A has a head h(a) := v and a tail
t(a) := u. Sets X ⊆ S will also denote their 0−1 incidence (characteristic)
vectors in {0,1}S .

Given a digraph D = (V,A), a circulation is a function f : A −→ R

such that f(δin(x)) = f(δout(x)) for all x ∈ V , where δin(x) and δout(x)
is the set of arcs entering, respectively leaving x. We do not require f to
have nonnegative values. Clearly, any of the two ±1 vectors associated to
any undirected circuit of D (putting 1 on arcs in one direction, and −1 on
those in the opposite direction) and any of their linear combinations are
circulations; it is well-known and easy to see that conversely, any circulation
is the linear combination of circuits signed in this way.

Given a cyclic order (v1,v2, . . . ,vn), the length of an arc (vi,vj) is j− i if
j > i and n+ j− i if i > j. If C is a cycle of D, the sum of the lengths of
its arcs is a multiple ind(C)n of n. This integer ind(C) is called the index
(winding number) of C. The index ind(C) of a family C of cycles is the sum
of the indices of its constituent cycles. If every arc lies in a circuit of index 1,



CYCLIC ORDERS: EQUIVALENCE AND DUALITY 133

the cyclic order is said to be coherent. Bessy and Thomassé [1] showed that
every strong digraph has a coherent cyclic order.

In the linear order (v1,v2, . . . ,vn) an arc vivj is called a forward arc if
i < j, and backward arc if i > j. It is an important observation in [1] that
the index of a circuit is equal to the number of its backward arcs in any
opening; in particular, the number of backward arcs of a circuit does not
change through cyclic shifts.

If G is an undirected graph with a cyclic order, we can also define the
index for its undirected circuits: the vertices of every undirected circuit can
be ordered in two ways (so that consecutive vertices correspond to edges
of C). For each circuit we fix one of these two as reference orientation.
In undirected graphs we allow parallel edges, but we suppose throughout
the paper that there are no loops. The index ind(C) of C is the index of
the corresponding directed circuit; equivalently it is equal to the number
of backward arcs in any opening of the cycle endowed with the reference
orientation. Note that the sum of the indices of the two orientations of C
(with respect to the fixed cyclic order of G) is |C|, and therefore one of
these determines the other; in particular, it does not matter which of them
we choose for reference orientation, either of them is good, or we can also
keep both in mind.

2. Equivalence of Cyclic Orders

We first introduce the fundamental equivalence classes of cyclic orders pro-
moted by Bessy and Thomassé’s proofs [1]. Then we establish a basic in-
variance property of these equivalence classes, that will be used later on.

Suppose G= (V,E) is an undirected graph. We will also use the follow-
ing notions for directed graphs, but ignoring the orientation of the arcs.
Two cyclic orders are equivalent if one can be obtained from the other by a
sequence of elementary operations. An elementary operation is a permuta-
tion (interchange) of nonadjacent consecutive vertices, that is (v1,v2, . . . ,vn)
maps to (v2,v1, . . . ,vn), where v1 and v2 are nonadjacent.

The motivation for this definition is that it preserves the index of every
circuit of G. We show in this paper that two cyclic orders of a strongly
connected digraph are equivalent if and only if all circuits have the same
index in the two.

This does not hold for arbitrary digraphs: an acyclic orientation of a tri-
angle has two non-equivalent cyclic orders, even though it does not even have
directed cycles. We first prove a stronger condition involving all undirected
circuits to be necessary and sufficient for arbitrary digraphs.
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Theorem 2.1. Let G = (V,E) be an undirected graph. Let O1 and O2 be
two cyclic orders of V . The following statements are equivalent:

(i) O1∼O2.
(ii) The index of every circuit is the same with respect to O1 and O2.

It follows for instance that for forests any two cyclic orders are equiv-
alent (which is easy to check directly). Note that this theorem provides a
good characterization (a linear NP ∩coNP certificate) for two orders to be
equivalent. It is not surprising that this certificate depends only on the un-
derlying undirected graph: the elementary operations depend only on this
graph.

Note that this theorem has no condition on G. For strongly connected
graphs the condition on directed cycles will turn out to imply the condition
for undirected cycles.

Proof. Since an elementary operation does clearly not change the index of
a circuit or of a closed walk, (i) implies (ii).

Let us prove now the essential statement “(ii) implies (i)”, by induction
on the number of edges. Let e=xy∈E (x,y∈V ) be an arbitrary edge.

By the induction hypothesis the statement is true for G−e, that is, there
exists a sequence π1, . . . ,πk of elementary operations that brings the order
O1 to the order O2 in G− e. Every elementary operation on G− e is also
an elementary operation of G, except the permutation of x and y. If this
operation does not occur, we are done: we have a sequence of elementary
operations that brings O1 to O2.

Claim. If the permutation of x and y does occur among π1, . . . ,πk, then
there exist cyclic orders C1,C2, C1∼O1, C2∼O2 such that x is followed by
y in both C1 and C2, or y is followed by x in both.

This Claim finishes the proof of the theorem: since e joins neighboring
vertices in both C1 and C2, and in the same order, these orders obviously
define orders C ′

1, C ′
2 of G/e (the graph obtained after contraction of e, where

the edges parallel to e are deleted before identifying the endpoints of e, in
order to avoid loops); furthermore, since (i) implies (ii) (and this is already
proven), the condition (ii) is still satisfied for C1 and C2, and therefore for C ′

1

and C ′
2 as well. Since G/e has less edges than G, by the induction hypothesis

C ′
1∼C ′

2, and the elementary operations of G/e correspond obviously to one
or two elementary operations of G.

In order to prove the Claim let i,j, 1≤ i≤ j≤k be the first and the last
index where the permutation of x and y occurs. Let O′

1 be the cyclic order
we get from O1 if we stop before executing πi, and O′

2 the order we get by



CYCLIC ORDERS: EQUIVALENCE AND DUALITY 135

executing the permutations in reverse order from O2 and stopping before
executing πj. Clearly, O′

1∼O1, O′
2∼O2, and therefore O′

1, O′
2 satisfy (ii).

In both O′
1 and O′

2 x and y are consecutive by definition. If they follow
one another in the same order in O′

1 and O′
2, then we are done. If not,

suppose without loss of generality (by possibly interchanging the notation
x, y) that x precedes y in O′

1, and y precedes x in O′
2.

Take a shift in O′
2 so that x is the first, and y the last element. There is

no forward path now from x to y in G−e, because if there was such a path
P =(x=x0,x1, . . . ,xp = y), then p≥ 2, and with the edge yx, P is in fact a
cycle of index 1. On the other hand taking an opening of O′

1 different from
(x,y) we see that yx is a backward arc in P , and there must be another
backward arc since otherwise p=1. Therefore the index of the cycle P in O′

1

is at least 2, while it is 1 in O′
2, contradicting (ii).

It follows that the set X of vertices that can be reached from x with a
forward path (in O′

2) have no forward neighbour outside X, and therefore X
can be placed after y through a sequence of elementary changes. The vertices
in Y :=V \(X∪{x,y}) have no backward neighbour in X, so similarly, they
can be placed before x. Therefore O′′

2 :=Y,x,y,X is an equivalent order, and
y follows x as in O1. So C1 :=O′

1 and C2 :=O′′
2 are as claimed.

We promised that for strongly connected digraphs condition (ii) is suf-
ficient to hold for directed circuits in order to deduce (i). This sharpening
follows by simple linear properties of circuits – roughly, the circuits of a
strongly connected digraph “generate” all the undirected circuits of the un-
derlying graph:

If D=(V,A) is a directed graph, then each cycle of the underlying graph
can be represented as a vector in {−1,0,1}A in the following usual way (see
for instance network matrices in [4]):

Let C be an undirected circuit (with one of the two orientations fixed for
reference), and define the vector

−→
C ∈{−1,0,1}A as follows:

−→
C (a)=1 if a∈C

is oriented in the sense of the orientation of C,
−→
C (a) =−1 if it is oriented

in the opposite sense, and
−→
C (a)=0 if a /∈C.

C(D) := lin{−→C : C is a circuit of G(D)}.
Note that the definition of C(D) does not depend on which of the two ori-
entations of the circuits we chose, since the vector defined by the opposite
orientation is just −−→

C . C(D) is the set of circulations.

Lemma 2.1. A 2-edge-connected digraph D=(V,A) is strongly connected
if and only if C(D) is spanned (linearly) by the (directed) circuits of D (as
vectors in {0,1}A).
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Proof. Indeed, if D is not strongly connected, let e be an edge not contained
in a directed circuit. Then since the underlying undirected graph is 2-edge
connected, there exists an undirected circuit C in G(D), e∈E(C); since e
is not contained in any directed circuit, C is not generated by circuits of D.

Conversely suppose that D is strongly connected. Then any circulation f
is generated by directed circuits: indeed, for each of the negative coordinates
e1, . . . ,ep of f choose a circuit Ci containing ei (i=1, . . . ,p); f−∑p

i=1 f(ei)Ci

is a nonnegative circulation, which is obviously a (nonnegative) combination
of directed circuits, and then so is f .

Theorem 2.2. Let D = (V,A) be a strongly connected digraph. Let O1

and O2 be two cyclic orders of V . Suppose that the index of each circuit is
the same with respect to O1 and O2. Then O1∼O2.

Proof. We have to prove only that the condition is implied for every undi-
rected circuit of the underlying graph, because then Theorem 2.1 implies the
assertion. Denote by indi(C) the index of circuit C according to Oi (i=1,2).

Open both O1 and O2 to get the linear orders L1 and L2. Define the
vectors w1,w2∈{1,−1}A to be −1 on backward arcs and 1 on forward arcs.

Note first that wi(C)=(|E(C)|−indi(C))−indi(C)= |E(C)|−2indi(C) for
every cycle (i=1,2). So the assumption on the equality of indices according
to the two orders is equivalent to w1(C)=w2(C) for every circuit C.

The equation
wT

i

−→
C = |E(C)| − 2 indi(C)

holds for all the circuits of G(D). Indeed, in the inner product wT
i

−→
C we

have four kinds of terms: 1 ·1, 1 · (−1), (−1) ·1, (−1) · (−1), and it is clear
that the result is 1 if the corresponding edge goes forward in

−→
C , and −1 if

it goes backward, and the difference of the forward and backward edges is
|E(C)|−2indi(C).

So for checking that the condition (ii) of Theorem 2.1 holds, it is suffi-
cient to prove wT

1

−→
C =wT

2

−→
C for every circuit C of G(D). However, since we

know that this holds for directed circuits, and by Lemma 2.1 the directed
circuits generate C(D), it follows for every undirected circuit C of G(D), as
expected.

3. Coherent Orders and Gallai’s conjecture

3.1. Coherent cyclic orders

In this section we will investigate the notion of coherent cyclic orders of
digraphs defined in [1]. Recall that the coherence of a cyclic order means



CYCLIC ORDERS: EQUIVALENCE AND DUALITY 137

that each arc lies in a circuit of index 1. We will prove, in fact, that as long
as each arc lies in a circuit, the digraph admits such a cyclic order. That is
why we only need to focus on strong digraphs.

We define the following reflexive and transitive relation on cyclic orders:

O1 ≤ O2 if for each circuit C of D, indO1(C) ≤ indO2(C).

Since indices of circuits are the same with respect to two equivalent
cyclic orders, this relation extends to a reflexive and transitive relation on
equivalence classes of cyclic orders. Theorem 2.2 states that in the case
of a strong digraph, this relation is antisymmetric. Thus we can state the
following result.

Theorem 3.1. If D is a strong digraph, the relation “≤” defines a partial
order on equivalence classes of cyclic orders.

The following statement is equivalent to Bessy and Thomassé’s key-
lemma about the existence of a coherent cyclic order in strongly connected
graphs [1]. The following simple proof is an adaptation of the variant in [5],
nevertheless the framework of any proof can be adapted.

Proposition 3.1. Let D be a strong digraph. Any order in a class that is
minimal (with respect to ≤) is coherent.

Proof. Indeed, let O be an order and e∈A an arc that is not contained in
a circuit of index 1 of O. By replacing O with an equivalent order we can
suppose that e∈B, where B is the set of backward arcs. The set E(G)\(B\e)
does not contain a cycle – since every cycle has a backward arc and not
only e –, so it has an order where every arc in E(G)\ (B \ e) is a forward
arc. In this cyclic order O′ the set of backward arcs B′ satisfies B′⊆B \e.
Clearly, for every circuit C:

ind ′(C) = |C ∩ B′| ≤ |C ∩ B| = ind(C),

where ind′ denotes the indices according to O′. Since G is strongly connected,
e is contained in a circuit C, and for this circuit strong inequality holds,
proving that O is not minimal with respect to ≤, and finishing the proof.

3.2. Index-Bounded Weightings and a Min-Max theorem

The main result of Bessy and Thomassé in [1] is a Conjecture of Gallai, that
we will refer to as Gallai’s conjecture.
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Theorem 3.2 (Bessy and Thomassé [1]). Let D be a strong digraph
and denote by α the stability of the graph, that is the maximum cardinality
of a stable set. Then the vertices of D can be covered by at most than α
circuits.

This is a consequence of a minmax theorem proved by Bessy and
Thomassé. In this section we provide a simple direct proof – differently
from [1] and [5] – of a linear programming type corollary of Bessy and
Thomassé’s result which in turn easily implies Gallai’s conjecture. We will
use linear programming duality and total unimodularity in the proof, with-
out any algorithmic aim.

A weighting of a digraph D is a function w : V → N. The weight of a
vertex v of D is the value w(v). By extension, the weight of a subgraph of
D is the sum of the weights of its vertices. If D is endowed with a cyclic
ordering O, and if w(C) ≤ ind(C) for every circuit C of D, we say that
the weighting w is index-bounded (with respect to O). We could also say
“index-bounded multiset” of vertices. We prove the following:

Theorem 3.3. Let D be a digraph and suppose each of its vertices lie in a
circuit, and O is a cyclic order of D. Then

min{ind(C) : C is a circuit covering of D}
= max{w(D) : w is an index-bounded weighting}.

Gallai’s conjecture can be easily deduced by applying this theorem to a
coherent cyclic order:

– for every family C of circuits of D, |C|≤ ind(C);
– since each vertex is the endpoint of an arc, it is also contained in a circuit

of index 1, and therefore an index-bounded weighting of D is necessarily
(0,1)-valued;

– there is no arc a=vivj ∈A such that w(i)=w(j)=1, because the circuit C
of index 1 containing a satisfies w(C)≤1. So the support of w is a stable
set, and w(D)≤α(D) follows.

Our goal here is to gain in simplicity comparing to previous proofs by
sacrificing the algorithm. We aim at the simplest possible proof of the same
spirit as the other proofs of this paper.

Conversely, the theorem implies [1], Theorem 1 with the help of a sim-
ple combinatorial characterization of index-bounded weightings for coherent
orders as “cyclic stable sets” [5].

Let us prepare the proof of Theorem 3.3 by recalling some basic well-
known notations and facts:
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– For a directed graph D=(V,A), M =M(D) denotes the n×m incidence
matrix of D with entries mv,a (v∈V, a∈A) equal to −1 if v is the tail of
arc a, 1 if it is the head, and 0 otherwise; if the arcs or (and) the vertices
of D are indexed we will replace a or v by its index.

– The solutions x∈R
A of the equation Mx=0 are circulations.

– Given a function d : A−→R the solutions of πM ≤ d, π ∈R
V are called

potentials (for d).
– Given d, there exists no negative cycle according to d if and only if

d�x ≥ 0 for every nonnegative circulation, and this holds if and only if
(by Farkas’s Lemma) there exists a potential for d. (Here we need only
these facts, and can ignore the well-known combinatorial procedures that
compute circulations or potentials [4].)

These are conform to notations and terminology in [4] which is a reference
for more details or proofs, if necessary. Denote M+ = M+(D) the n×m
matrix with entries m+

v,a =max{mv,a,0} (v∈V, a∈A).

It is easy to see that the 2n×m matrix M̃ whose first n rows constitute
a matrix identical to M and the second n rows a matrix identical to M+ is
totally unimodular: indeed, in any square submatrix M ′, subtract the i-th
row of M+ from the i-th row of M for all i for which both rows are present
in M ′. We get a matrix with at most two nonzeros per column, and if there
are two nonzeros, then one of them is 1, the other −1; such a matrix is the
submatrix of the incidence matrix of a graph, and as such, has determinant
0 or ±1, and the determinant of M ′ is the same.

3.3. Proof of Theorem 3.3

Let D be a digraph, with vertex set V and an opening (v1, . . . , vn) of the
cyclic order O. We note its arc set A={a1, . . . , am}, and define the objective
function c∈R

m with ci :=1 if ai is a backward arc and 0 otherwise. Consider
the linear program x∈R

m,

(P ) minimize c�x subject to Mx ≥ 0, M+x ≥ 1, x ≥ 0.

Since M̃ is totally unimodular, the linear program (P ) has integer primal
and dual optima and by the duality theorem of linear programming [4] the
two optima are equal.

Claim 1. The primal optimum of (P ) is equal to the left hand side of the
minmax equality.
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Let x be an integer primal solution (with objective value c�x). We first
show that x is an integer circulation: indeed, the sum of the rows of M is 0
and therefore

0 = 0�x = (1�M)x = 1�(Mx),

where 1�Mx is the sum of the coordinates of Mx, all nonnegative by the
condition, and therefore there is equality throughout. Thus Mx = 0,x ≥ 0,
that is, x is a circulation and it is an integer vector: there exists a multiset C
of circuits with x=

∑
C∈C C. Moreover, because of M+x≥1, every element

is covered by at least one of the circuits.
Conversely, for any multiset C of circuits that cover the vertex-set x :=∑

C∈C C is an integer vector that satisfies (P ). Moreover,

c�x =
∑
C∈C

c(C) =
∑
C∈C

ind(C),

establishing the claim.

Claim 2. The dual optimum of (P ) is equal to the right hand side of the
minmax equality of the theorem.

An integer dual solution is of the form (π,y), π∈Z
n, y∈Z

n, where π is
a potential for c(a)−yh(a) (see the definition of potentials). Such an integer
potential exists for an integer y if and only if there is no negative circuit for
the edge-weights c(a)−yh(a) (a∈A), that is, if and only if for every circuit C,∑

v∈V (C)

yv =
∑
a∈C

yh(a) ≤
∑
a∈C

c(a) = ind(C),

that is, if and only if y is an index-bounded weighting. The dual objective
value is

∑
v∈V yv.

4. Cyclic Colourings

The authors of [1] prove a theorem that can be considered to be the “an-
tiblocker” of Theorem 3.3, and actually a sharpening of such a theorem.
We provide a simple proof of this theorem as well, in the spirit of the proof
of Theorem 3.3, and using Theorem 2.2. (Our definitions and terminology
are slightly different from [1]: the definitions do not depend on orientation,
so they concern only undirected graphs; the terminology and notation are
simplified and unified.)

Let G = (V,E) be an undirected graph. According to Zhu [6] a circular
r-coloration of G is a function f :V −→ [0,r)={x∈R : 0≤x<r}, such that
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for all (x,y)∈A: dist(x,y)≥1, where dist(x,y) :=distf,r(x,y) :=min{|f(x)−
f(y)|,r−|f(x)−f(y)|} – the distance of (x,y) on the circle of perimeter r.

If a cyclic order O is given, then a circular r-coloration is called a cyclic
r-coloration (with respect to the cyclic order O) if in addition the order
(v1,v2, . . . ,vn), 0≤f(v1)≤f(v2)≤ . . .≤f(vn)<r is equivalent to O. We will
use these terms for directed graphs as well, whenever the properties hold for
the underlying undirected graph.

The infimum (which is clearly a minimum) of all reals r>0 such that O
has a circular r-colouring is the circular chromatic number, denoted by χcirc.
The minimum of r>0 for which there exists a cyclic r-coloring (with respect
to O) will be denoted by ξO. (It is easy to check that χcirc≤χ=
χcirc� and
χcirc≤ξO, where χ=χ(D) is the (usual) chromatic number.)

We define for any circuit C, the cyclic length of C as lO(C) := |C|/ ind(C)
(with respect to the fixed cyclic order O).

Theorem 4.1. Let D be a nontrivial strongly connected digraph and O a
coherent cyclic order on its vertices. Then

ξO(D) = max{lO(C) : C a circuit of D}.
Proof. Let D=(V,A) be a digraph, with vertex set V , and let (v1, . . . , vn)
be a linear order of V , which is an opening of the coherent cyclic order O.
We denote the arc set of D by A={a1, . . . , am}.

Consider the linear program x∈R
m,

(P∗) maximize
m∑

i=1

xi subject to Mx ≤ 0, x(B) ≤ 1, x ≥ 0,

where B ⊆ A is the set of backward arcs. Clearly, this linear program is
feasible and bounded.

Claim 1. The primal optimum of (P∗) is equal to the right hand side of
the theorem.

Indeed, again, Mx ≤ 0 implies Mx = 0, so primal solutions are circula-
tions x with x(B) ≤ 1. Since D contains at least one circuit, and for any
circuit C, C/ ind(C) is a primal solution (vertex) of (P∗) with objective
value |C|/ ind(C)= lO(C), the primal optimum is positive, and greater than
or equal to the right hand side of the theorem.

Conversely, any primal solution x is a nonnegative circulation, that is, a
nonnegative linear combination of circuits. We write x=

∑
C∈C λCC, (λC ≥

0), for some set C of circuits.
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The constraint x(B)≤ 1 is equivalent to
∑

C∈C λC ind(C)≤ 1 and there-
fore:

1�x =
∑
C∈C

λ(C)|C| =
∑
C∈C

λ(C) ind(C)lO(C)

≤ max{lO(C) : C a circuit of D}
finishing the proof of the claim.

Note that Claim 1 does not use that the given order is coherent. This
will be exploited for Claim 2.

Fix (π1, . . . ,πn,r) to be the dual optimum. Starting with this vector we
construct a cyclic colouring.

According to Claim 1, r=max{lO(C) : C a circuit of D }>1.

Claim 2. For every forward arc uv, 1≤πv−πu≤r−1. For every backward
arc uv, 1≤πu−πv≤r−1.

First, (π1, . . . ,πn,r) satisfies the dual constraints for each a=uv∈A, that
is:

(1) πv − πu ≥
{

1 if uv is a foward arc
1 − r if uv is a backward arc.

Furthermore, if uv is a backward arc, by coherence, there exists a forward
path P between v and u, and adding up the inequalities concerning the arcs
of this path: πu−πv≥|P |−1≥1.

Likewise, if uv is a forward arc, uv lies in a circuit C of index 1. Let u′v′
be the unique backward arc of C. Then πv′ ≤ πu ≤ πv ≤ πu′ , and therefore
|πv−πu|≤|πv′ −πu′ |≤r−1. This finishes the proof of Claim 2.

For any dual solution (π1, . . . ,πn,r) of (P∗) define q : V (D) −→ [0,r)
with πi =:p(vi)r+q(vi), that is, q(vi) is the remainder of πi modulo r. It is
straightforward to check that Claim 2 implies that q is a circular r-coloration.
Moreover, the linear order Oπ of the vertices defined by the increasing order
of πv, (v∈V ) has the same set of backward arcs as O, so these two orders
are equivalent.

Claim 3. The function q is a cyclic r-coloration with respect to O.

In addition to Claim 2 we have to check that q defines a cyclic order
equivalent to O. According to Theorem 2.1, it is sufficient to check that in
the linear order Oq where the vertices are in increasing order of q, every
circuit has exactly the same number of backward arcs as in O, that is, as
in Oπ, since the latter two have been proved to be equivalent. Let C be an
arbitrary circuit. Thanks to Claim 2, we know that for an arc uv, p(u)−p(v)
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equals either −1, 0, or 1. Clearly, arcs uv with p(u)=p(v) are forward arcs
or backward arcs in both Oπ and Oq; we also see from Claim 2 that in case
p(u)−p(v) = 1, uv is a backward arc in Oπ, and it is a forward arc in Oq;
similarly, if p(u)−p(v)=−1, then uv is a forward arc in Oπ, and a backward
arc in Oq; since

∑
uv∈C p(u)−p(v)=0, we have:

|{uv ∈ C : p(u) − p(v) = 1}| = |{uv ∈ C : p(u) − p(v) = −1}|,
that is, the number of backward arcs remains the same in Oq and Oπ in
every circuit.

Claims 1 and 3 assert that max{lO(C) : C a circuit of D}=r≥ξO(D). To
finish the proof of the theorem note first that for any cyclic ξO(D)-coloration,
and any circuit C, with the distances defined by the cyclic coloration, |C|≤∑

xy∈A(C) dist(x,y)=ξO(D) ind(C).

With the starting idea of defining a coloring from a potential, the proof
can be finished in two ways, see [2] and [5]. We have chosen here a third,
simpler way.

Acknowledgment. The authors wish to thank Adrian Bondy for suggest-
ing a purely linear programming approach to Theorem 3.3 – a suggestion
that was independent from the network flow approach in [5], led to a differ-
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