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We prove three theorems. First, Lovasz’s theorem about minimal imperfect clutters, in-
cluding also Padberg’s corollaries. Second, Lehman’s result on minimal nonideal clutters.
Third, a common generalization of these two. The endeavor of working out a ‘common de-
nominator’ for Lovédsz’s and Lehman’s theorems leads, besides the common generalization,
to a better understanding and simple polyhedral proofs of both.

Introduction

A first goal of this paper is to provide similar and simple proofs of two fun-
damental theorems in the theory of blocking and antiblocking polyhedra:
Lovész’s result on minimal imperfect clutters [8] (Section 1), and Lehman’s
result [6] on minimal nonideal clutters (Section 2). The two results them-
selves have already many similarities, pointed out by Shepherd [12]; deeper
connections between the two results have been exhibited in [13]. The present
approach arose from an effort of unifying both the statement and the proof:
we provide one single proof to a common generalization. Moreover, for
Lehman’s theorem our proof is simpler than the previous ones; the proof of
Lovéasz’s theorem is also short once the prerequisites of Lehman’s theorem
are proved, but altogether it is longer and less elementary than Gasparyan’s
proof [4] concerning clique-clutters of graphs. However, the present approach
also proves the polyhedral facts on the way, without any additional effort.
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The found ‘common denominator’ of the two classical theorems leads to
simple proofs, and to a common generalization, — the second goal of this
work (Section 3).

Our proof is probably closer to proofs of Lehman’s theorem — with some
exaggeration one could say that we provide a Lehman-type proof for minimal
imperfect graphs as well. At the same time we warn the reader from decid-
ing too early that the proof goes like some previous proof she knows. The
solution we present seems to be an essentially uniquely determined mixture
of new and existing ideas (with some modules from [10], [15], [4], and [14])
enabling a common treatment of minimal imperfect and minimal nonideal
matrices.

The third (but not least) goal is to get rid of superfluous ingredients of
the two proofs, to get to the bare essence of their common skeleton, and to
communicate this in the cleanest and simplest way we can.

It is not among the purposes of this paper to reach the most general
structure we can. The article [5] goes further in analysing the general matriz-
properties that characterize minimal imperfect or minimal nonideal struc-
tures, and [14] studies the problem when systems of linear inequalities with
both blocking and antiblocking types of constraints are integer.

0.1. Notation and terminology

Given a finite set V, a family A of subsets of V is called a hypergraph on
V', A is the set of hyperedges. It is a clutter, if A; C Ay (A1, As €. A) implies
A= As.

Let us fix the notation V:={1,...,n}.

A subset S CV and its 0— 1 incidence vector s € {0,1}V will not be
distinguished, in particular, we will mostly write S instead of xyg. We will
not distinguish between n-dimensional vectors, 1 x n and n x 1 matrices —
in matrix multiplications the right shape is usually uniquely determined by
another matrix. The only ambiguous case is the product of z,y € R™: zTy
will denote the scalar product.

Some more notation: N is the set of natural numbers (1,2,...); 1 is the all
1 vector of appropriate dimension (usually in R™), I and J are the identity
matrix and the all 1 matrix of appropriate dimension (usually nxn); e;(€ R™)
denotes the incidence vector of {i} (1€V).

If veV, then A—wv is the hypergraph on V' \v defined by {Ac A:v¢ A}.
If A is a clutter, then A — v is also a clutter. The degree of v in A is
d(v):=da(v):={AcA:ve A}|.
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A matrix is called uniform if its column- and row-sums are all equal
and nonzero. A uniform matrix is always a square matrix. If we want to
emphasize that the row and column sums of M are all r €N, that is, 1M =
M1=rl, we will write that M is r-uniform. Accordingly, a hypergraph will
be called r-uniform if all cardinalities and also all degrees are equal to 7.

A polyhedron is the set of all solutions of a system of linear inequalities.
A polytope is a bounded polyhedron. For basic definitions and statements
about polyhedra we refer to Schrijver [11], and we only repeat now shortly
the definition of the terms we are using directly. A face of a polyhedron is
a set we get if we replace certain defining inequalities with the equality so
that the resulting polyhedron is nonempty. The minimal face containing w
is the face defined by the equalities satisfied by w. A point v € R" is called
integer if v €Z", otherwise it is called fractional. A polyhedron is integer if
each of its faces contains an integer point, otherwise it is noninteger.

If X CR", we will denote by r(X) the (linear) rank of X, and by dim(X)
the dimension of X, meaning the rank of the differences of pairs of vectors
in X, that is, dim(X):=r({z—y:z,ye X}).

If P is a polyhedron, then its faces of dimension dim(P)—1 are called
facets and its faces of dimension 0 are called wertices. All (inclusionwise)
minimal faces of P have the same dimension. We say that P has vertices,
if this dimension is 0. Neighboring vertices share n— 1 linearly independent
facets. A vertex of a full dimensional polyhedron is simplicial, if it is con-
tained in exactly n facets. A simplicial vertex is contained in n faces of
dimension one of the polyhedron. If such a face is unbounded we will call it
a ray, if it is bounded we will say it is an edge.

Given a clutter A on V, P<(A):={xeR":2(A)<1 for all Ac A ,z>0}
is called the antiblocking polyhedron (of A), and Ps(A):={zxeR":2(A)>
1 for all A€ A , x>0} is called its blocking polyhedron. The integer (that is,
0—1) vertices of maximal, respectively minimal, support of these, constitute
the antiblocker, respectively blocker, of A. If P<(.A) has only integer vertices,
then we say that A is perfect, if P>(.A) has only integer vertices, then A is
said to be ideal.

If x €R"™, the projection of x parallel to the i-th coordinate is the vector
$Z:($1,...,$i,1,$i+1,...,$n).

If X CR", the projection parallel to the i-th coordinate of the set X is
Xi={at:xe X};if ICV, X I'is the result of successive projections parallel
to i€ (the order does not matter).

If P is a polyhedron and v € V| we define the deletion of v in P as
P\v:={x € P:x,=0}", and the contraction as P/v:=P". A minor of P
is the polyhedron P\I1/J, (I,J CV, INJ=10) one gets after successively
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deleting the elements of I and contracting the elements of .J (to get P\I/J =
(PN{z:x;=0if ieI})!V).

We call a polyhedron P CRY critical if it is not an integer polyhedron,
but P\i and P/i are integer polyhedra for all i€ V.

Minors of antiblocking (blocking) polyhedra are also antiblocking (block-
ing), and the minors of perfect (ideal) polyhedra are perfect (ideal). (It is
easy to see that P<(A)\I/J=P<(AL), and P>(A)\I/J=Ps(AL), where

", AL arise from A in a simple way: delete the columns indexed by I,
and then delete those rows that are no more maximal, resp. minimal; for P<
do the same with J as well; for P~ the columns indexed by J have to be
deleted together with all the rows having a 1 in at least one of these columns.
The clutters A, AL are called minors of .A.) This fact is not necessary for
understanding the results of this paper, we therefore omit the (easy) details.

Critical antiblocking polyhedra are called minimal imperfect, and critical
blocking polyhedra minimal nonideal, and so is called the clutter A as well;
by the previous remark, all proper minors of minimal imperfect and minimal
nonideal polyhedra are perfect or ideal respectively, and therefore a certifi-
cate for the minor of a clutter to be imperfect (nonideal) certifies also that
the clutter is imperfect (nonideal). We will usually speak about the minors
of polyhedra instead of minors of the corresponding clutters, because the
latter is different in the antiblocking and blocking case, and also because
the way of using the critical property will be polyhedral. Note however for
the sake of clarity, that according to the previous paragraph a clutter is
minimal imperfect if and only if it is imperfect and the clutter consisting
of the maximal members of {A\ {v}: A€ A} is perfect for all v e V; it is
minimal nonideal if and only if it is nonideal and A—wv, as well as the clutter
consisting of the minimal members of {A\{v}: A€ A} are ideal.

For P = P<(A<)NP>(A>), with clutters A<, A> in general it is not
true that the minors of P are also intersections of antiblocking and blocking
polyhedra:

Example 1. Let V := {1,2,3,4,5}, A< := {{1,2},{3,4},{4,5}}, A> :=
{{2,3},{5,1}}. The vector 1 € R® is a vertex of P<(A<)N P>(A>). The
following facts are straightforward: %le]R‘l is still a vertex of (for instance)
P?; the inequality x; —x3 <0 is valid and facet inducing for P?. This is a
noninteger polyhedron, that does mot have a critical minor with only 0—1
constraints. (A refined definition of minors pulls this kind of polyhedron
among minimal noninteger ones [14].)

We learnt: a projection of the intersection of an antiblocking and a block-
ing polyhedron may easily contain non-0 — 1-constraints. We do not care,
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since our goal here is not to apply the results to minors, but to capture the
common essence of two theorems.

Let A:=A<UA> and w € RY. Define core(A,w) :={A € A:w(A)=1}.
The sets in the core maximize w(A) among sets in A<, and minimize it in

As.

Graphs G=(V, E) are always simple, undirected, V=V (G) is the vertex-
set, E=E(G) the edge-set.

We define the set of neighbors of v € V as N(v) = {z € V : vz € E},
d(v) :=dg(v) := |N(v)|. A graph is called reqular if all degrees are equal,
r-regular, if all are equal to 7.

We finish this subsection by introducing some particular structures, most
of them are uniform hypergraphs.

The notation H? ! will stay for the set of n—1-tuples of an n-set (n>3).
It is easy to see that H? ! is minimal imperfect, and it is also an easy and
well-known exercise to show that 0—1-matrices not containing such a minor
(or equivalently having the ‘dual Helly property’) can be represented as the
(inclusionwise) maximal cliques of a graph.

The degenerate projective plane clutters

Fo={{1,....,n =1} {1,n},{2,n},....{n—1,n}}, (n=3,4,...)

are minimal nonideal.

It is easy to show that the blocker of the blocker is always the original
clutter. The antiblocker of the antiblocker of H?~! is not itself but {V'}, and
this is the only exception: it is another well-known exercise to show that the
antiblocker of the antiblocker of a clutter that has no H" ! minor (dual
Helly property), is itself.

The following definition of partitionability coincides with Bridges and
Ryser’s definition of ‘binary (r,s,1) systems’ [1], and is close to Shepherd’s
definition [12]:

A pair (X,Y) of n xn matrices is called partitionable, if the following
conditions are satisfied:

— XY =Y X, and the diagonal elements of this product are all equal, and
not to 1, whereas the non-diagonal elements are equal to 1.
— X and Y are uniform.

Then X is r-uniform, Y is s-uniform, and the diagonal elements are p
(for some integers r,s > 0, u > 0). We will speak about the r, s and pu
of the partitionable matrices or clutters. There is a relation between these
parameters: n=rs—p+1. (Indeed, (u4+n—1)1=1(XY)=(1X)Y=(r1)Y =
r(lY)=rsl.)
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We call a clutter A on an n-element set <-partitionable, if there exists
an n X n matrix X with rows from A and an n xn matrix ¢ with columns
from the antiblocker B of A, so that (X,Y") is partitionable with p=0.

A clutter A on an n-element set is >-partitionable, if there exists an nxn
matrix X with rows from A4 and an n x n matrix Y with columns from the
blocker B of A so that (X,Y) is partitionable with p>2.

Note as a curiosity that H?~! is <-partitionable for n > 3, but its an-
tiblocker is not! If A4 is <-partitionable, and the antiblocker of the antiblocker
Bof Ais A, then B is also <-partitionable. (Indeed, X":=Y7 and Y’":= X7
provide the definition for B.) Similarly, the blocker of a >-partitionable clut-
ter is also >-partitionable.

This definition of the partitionability of a pair of matrices is highly re-
dundant (this can be seen from Bridges and Ryser’s theorem [1] see also
the Commutativity Lemma of Subsection 0.2). These properties can (will)
be easily seen to provide good certificates for a matrix to be imperfect (if
w=0), or not ideal (if u > 2), (see the final remarks of the paper). The
reader may find it useful to discover the combinatorial statements reflected
in a compact way in this definition. They all rely on the following interpreta-
tion: Denote the rows of X by X;, and the columns of Y by Y; (i=1,...,n).
Then the entry in the intersection of the i-th row and j-th column of XY is
| X;NY;|, and that of Y X is d;; =|{ke{1,...,n}:i€ X}, j €Y} }|. In particular
we get from this ‘combinatorial meaning’ of the elements of the matrix Y X
that the following statements are equivalent:

— The non-diagonal elements of Y X are equal to 1.
—For all veV, {X;\{v}:ie{l,...,n},veY;} is a partition of V'\ {v}.
—For all ueV, {V;\{u}:ie{l,...,n},ue X;} is a partition of V'\ {u}.

We will not use these statements but they may help the reading of some
proofs. (In alternate variants of proofs it can play a more important role:
with its help one can avoid using the inverse of X in the proof of Lemma 0.3.)

The ultimate goal of each of sections 1, 2, 3 is to prove that minimal
noninteger systems of inequalities are partitionable. The lemmas proved in
the following subsection will be the technical tools that allow to finish these
proofs when all the essential combinatorial properties have been collected.
The reader can postpone the reading of Section 0.2 until it is used.

0.2. Prerequisites

The main parts of the proofs of the following sections consist in converting
polyhedral constraints into combinatorial structure. For then deducing the
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main structural results we are going to use some simple facts about matrices.
We state and prove these in the introduction, because all the three following
sections will use them directly, in the same way.

The next (or some trivially equivalent) statements occur in all previous
work proving Lehman’s theorem on minimal nonideal matrices; on the other
hand the properties of minimal imperfect matrices are usually treated in
other terms. The first in the series appeared more than fifty years ago as
the key-lemma of Erdés and de Bruijn’s theorem [2] (see Conways’s proof in
[7]). It can be considered as a refinement of the following trivial fact: if G is
bipartite with bipartition {X,Y}, |X|>|Y| and any degree in X is greater
than or equal to any degree in Y, then G is regular.

Lemma 0.1 (Erd&s-de-Bruijn-Lemma). Let G=(X,Y;E) be a bipar-
tite graph, |X|>|Y|, and d(z) > d(y) for all zy € E, (x € X, y€Y). Then
the equalities hold, that is, | X|=|Y| and each connected component of G is
regular.

Proof. |X‘ - Z:BEX (ZyEN(IE) ﬁ) - ZmyéE,meX %

<> eyeByey ﬁ = ey (erN(y) ﬁ) =1Y|, and now the constraint | X |>

|Y'| implies the equality throughout, that is, | X| =Y, and d(z) =d(y) for
every edge xy of G. ]

Lemma 0.2 (Unicity Lemma). Let G = (X,Y,FE) and G' = (X', Y, E')
be bipartite graphs whose connected components are regular, with vertices
ve X, v e X' such that G—v=G'—v" (so X'\{v'}=X\{v}). If G and G’
have no isolated vertex then Ng(v)=Ng/ (V).

Proof. Assume N¢(v)# N (v'), say u€ Ng(v)\ Nev (V).

If Ng(u)={v}, then because G—v=G'—v', u is an isolated vertex in G,
a contradiction to our hypothesis. Otherwise there exists x € Ng(u)\ {v},
which is impossible since dg/ (2) =dg(x), and dg/ (u) =dg(u) —1=dg(x)—1,
contradicting uz € E(G’) and the regularity of the connected components of
G ]

These two lemmas will be applied to graphs G := Gy, where H is a
hypergraph on V with |H|=|V|: Gy =(X,Y;E) where X:=H and YV :=V,
ryeFE (x=H€eH,yeV) if and only if y¢ H. Note that Gy is regular if and
only if H is uniform (using | X|=1Y]).
Necessary remarks. Since frequent switching between H and of Gy can
be tiring, it is good to notice once for ever how some properties of Gy
have to be read in terms of the hypergraph H. We assume that H does
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not have two equal hyperedges, that V is not a hyperedge of H and that
all connected components of G4 are regular — these will be satisfied in the
applications. Notice that from these assumptions it is easy to deduce that
G has no isolated vertex: if it has one then it has one on each side of
the bipartition (by the regularity of the connected components and the fact
that | X|=1Y]) and then V" would be a hyperedge of H, a contradiction. A
connected component of Gy will be called big, if the (equal) degrees of its
vertices are at least 2, that is, if and only if it contains at least two vertices
of V and at least two hyperedges from H.

Let ue V. We first observe:

(0.1) If H € H and u are not in the same connected component of Gy,
then uwe€ H. If u belongs to a big connected component of G, then in this
component there also exists H' € H so that ue H'.

Indeed, the first part is just repeating the definition of G5 . The second
part follows from the fact that a big component cannot be a complete bi-
partite graph, because then H would contain the same set more than once,
contradicting one of the assumptions above.

From this observation we get another property that will be very useful:

(0.2) Suppose H is not uniform. Then for every u,v €V there exists H €H,
H D {u,v}. If furthermore H has no element of cardinality n—1 then there
exist two different sets Hy,Ho € H, Hy, Ho 2 {u,v}.

Indeed, if H is not uniform then G, contains connected components of
different degrees and so, since there is no isolated vertex, it contains at least
one big component. Any H € H in a component not containing u nor v
would have the required property, so we can suppose: there are exactly two
components, and u, v lie in different ones. Say the component of w is big.
Then take in the component of u: H € H, u € H (see the second part of
(0.1)). Since v is in a different component, v€ H also holds.

Now the additional statement follows in the same way: if H has no ele-
ment of cardinality n—1 then all its connected components are big.

We show now another statement used in all three sections, stating con-
nections between different combinatorial properties of 0— 1-matrices. These
have a similar flavor to (and some implications have a big correlation with)
Bridges and Ryser’s theorem [1]. However, the following result is not a
straightforward corollary of Bridges and Ryser’s result:

Lemma 0.3 (Commutativity Lemma). Let X and Y benxn 0—1
matrices such that the non-diagonal elements of XY are equal to 1, and
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the diagonal elements are either all smaller or all bigger than 1. Then the
following statements are equivalent:

(i) X is uniform.

(ii)) XY=YX=J+(pu—1)I, (ne(N\{1})u{0}).

(iii) Y is uniform.

(iv) (X,Y) is partitionable.

Proof. Suppose (i) holds, that is, 1X = X1=r1 (r €N). Denote by p1,...,
the diagonal elements of XY. Clearly,

(mi+n—1... . pp+n—1)=1XY)=(1X)Y =rlY.

We show now p; = ... = py,. If u; =0 for some i € {1,...,n}, then by
the condition, p:=p; =... = u, =0, and we are done. Similarly, if u; > 2
(t=1,...,n), since there is at most one p, 2<p<r, such that u+n—11s a
multiple of 7, all the p; (i=1,...,n) must be equal to u, as claimed. (The
inequality p; <r (i=1,...,n) is true, since p; is the scalar product of two
0 — 1-vectors, that is the cardinality of the intersection of two sets, one of
which is of cardinality r.)

Since X is uniform it commutes with both I and J and so it also com-
mutes with XY =J+(u—1)I, that is X XY =XY X. On the other hand, as
J+(u—1)I is nonsingular (because p#1), and is equal to XY it follows that
X is nonsingular as well. Hence X 1 X XY =X"1XY X and (ii) is proved.

Now suppose (ii): YJ=Y (XY —(p— 1))=Y X —(p—1)I)Y =JY. But
Y J is a matrix all of whose columns are equal, and JY is a matrix all of
whose rows are equal: any two elements m;; of the matrix M =Y J=JY
are equal, since for all 7,7, k,le{1,...,n}, mjj=my;=my. So Y is uniform,

that is, (iii) holds.

Suppose now that (iii) holds. By symmetry (applying to Y7 X7 that (i)
implies both (ii) and (iii)) we get that (ii) holds and X is also uniform, so
(X,Y) is partitionable.

Last, (iv) implies (i) by definition. 1

Note that it is not sufficient to write XY =Y X instead of (ii), as the
(unique) example of F,, shows.

Example 2. We show that the condition of the lemma is essential: if some
of the diagonal elements of X are smaller than 1 and some others bigger
than 1, (i) can hold without any of the others to hold.

Let the rows of X be 11000,01100,00110,00011,10001, and the columns
of Y be 00101, 01101, 01001, 10100, 10101. We see that the non-diagonal
elements of XY are 1, X is uniform, but Y is not uniform! (Note that X is the
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constraint matrix of Example 1, and the columns of Y satisfy the constraints.
In general, 'mixed odd circuits’ (see Example 1) provide counterexamples,
and the only relevant counterexamples [14]. Conversely and more sharply, if
X is uniform, Y is not uniform, the non-diagonal elements of XY are equal
to 1, and the diagonal elements not equal to 1, then it follows that X is the
incidence matrix of an odd hole [5].)

0.3. The common part of the proofs

This section contains starting observations for the proof of the general case
that cannot be simplified in the minimal imperfect case nor in the minimal
non ideal case.

Let A< and A> be clutters on V. Recall that a polyhedron P is critical, if
P has a noninteger vertex, but P\v and P/v=P" have only integer vertices
for all ve V.

Let P:= P<(A<)NP>(A>) CR" be critical, and w = (wq,ws,...,w,) a
noninteger vertex of P. We define A:= A< UA>. Remark that in case A>
is empty then P is minimal imperfect, and in case A< is empty then P is
menimal nonideal.

Note that P has vertices. It is not necessarily bounded, but the ‘char-
acteristic’ cone (that can be added to any of its element so that the result
is still contained in P) is very simple: it is the set of nonnegative combina-
tions of some unit vectors. (More exactly of those unit vectors whose index
is not contained in UA<.) Since PV is integer, every x € PV is the convex
combination of integer points of PY.

(0.3) w;>0 for all ie{1,2,...,n}, and n>3.

Indeed, if w; =0, then w’ is a noninteger vertex of P\i.
If n<2 then P is integer. |

Since w is a vertex, and by (0.3) there is no tight nonnegativity constraint:
(0.4) r(core(A,w))=n. 1

Denote C, :={C CV :|CNA|=1, for all A€ core(A,w)—v}. (Recall
core(A,w)—v={A€core(A,w):v¢ A}). The following property of core(A,w)
will be crucial. Since w is a vertex and (0.3) holds, we have:

(0.5) For any a#veV there exists C €C, such that a€C, that is,
CNA={a} ifac A€ core(A,w)—wv.

Proof. Since w’ € PY, where PV is integer, there exist integer points of
PY, p1,pa,...,pr on the minimal face of PV containing w", such that w" =
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Zle Aip;i, where \; >0, Zle Ai=1. Let C;:=supp(p;) (i=1,...,k) (some
coordinates of p; may be bigger than 1).

Now for arbitrary A € core(A,w), v ¢ A: since A corresponds to a con-
straint of PV for which w"(A)=1 and p; is a point of P¥ on the minimal face
of PV containing w", we have p;(A)=1 and so |C;NA|=1; that is, C; €C,,

(1=1,...,n).
By (0.3) w? >0, and we have w’ = Y% | A\;p; so at least one of the Cj-s
contains a. 1

Note: for C CV, ve C we have C €C, if and only if C\{v} €C, (immediate
from the definition); it is therefore sufficient to study C, —v.
(0.6) Let veV and let A € core(A,w)—wv. Then n —r(core(A,w) —v) >
r(Cy—v)>|A|.
Proof. First, we prove r(C, —v) > |A|: for every a € A consider C, €C, —v,
C,NA={a} (it exists according to (0.5)); since all of the sets {Cy:a€ A} C
Cy—v have a different unique common element with A, r(C,—v) >|A| follows.
To prove n—r(core(A,w)—v)>r(C,—v) note that the set {C'eC,:veC}
(of rank at least 7(C, —v)) is orthogonal to {x —e,: A€ core(A,w)—v} (of
rank as least r(core(A,w)—v)). Consequently, r(C,—v)+r(core(A, w)—v) <n.l

Lemma 0.4. The family core(A,w) is linearly independent, |core(A,w)|=
n, and for v €V and A € core(A,w) —v, the degree d(v) of v in core(A,w)
satisfies d(v)=r(C, —v)=|A]|.

Proof. We apply the Erdos-de-Bruijn-Lemma 0.1 to the graph G := Gy
where H C core(A,w) is an arbitrary maximum linearly independent subset
of core(A,w). The conditions of the Erdés-de-Bruijn-Lemma are satisfied:
we have | X|=|Y| by (0.4); if zy € E, that is, t=A€H and y€ V' \ 4, then
by (0.6),

n—da(y) = n—|H-y| = n—r(core(A,w)—y) = r(Cy—y) = [A| = n—da(x).
Hence the equality holds here, that is,
n—|H—vl=rC,—v)=|A|forallveV.
All that remains to be proved is H = core(A,w): then H is a basis of R",
and |[H —v|=n—d(v), so the just proven equality reads

d(v) =r(C, —v) = |A]| for all A € core(A,w), and v eV \ A.

So let us prove H = core(A,w). If not, let AeH, A’ € core(A,w)\'H be
such that H":=(H\{A})U{A’} is also linearly independent. By the Erdés-
de-Bruijn-Lemma, every component of the corresponding graph G’ =Gy is
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regular, as well as the components of GG. Furthermore we notice that there
is no isolated vertex in G. Indeed an isolated vertex in G would mean that
V is in core(A,w), but then since w; >0 for i=1,2,...,n there is no other
element in core(A,w) an so n=1, a contradiction to (0.3). By the Unicity
Lemma we get that A= A’ which is impossible since by definition core(A,w)
is a set of distinct elements. |

The following corollary was explicitly stated in the above proof:

Corollary 0.1. Every component of the graph Gegre(aw) IS regular and
contains at least two vertices. No two elements of core(A,w) have the same
neighborhood in G ore(4,uw)- |

We would also like to emphasize the reformulation of the fact that
core(A,w) is a basis of R" (see Lemma 0.4) in terms of polyhedral structure.
Indeed, recall that w is a vertex of P, and note that the facets containing w
are exactly those defined by core(A,w).

Corollary 0.2. If the polyhedron P is full dimensional, any fractional ver-
tex of P is simplicial and has n neighbors that are integer.

Proof. Let w be a fractional vertex of P. By Lemma 0.4 the facets con-
taining w are linearly independent, so, since P is full dimensional, w is a
simplicial vertex of P. To show that w has n neighbors it remains to check
that every one dimensional face that contains w is an edge. Notice first that
no element of V' belongs to exactly one element of core(A,w), since then
w" would be a non integer vertex of P (w has at least two fractional com-
ponents, since if w, was the only one, that would contradict w,(A)=1 for
a€ Aeccore(A,w)). Any ray containing w should satisfy x(A)=0 for all but
one element of core(A,w), say Aj,As,...,A,—1. This is not possible since
AiUAsU...UA, 1=V and P is contained in the nonnegative orthant.

Suppose now that w has a noninteger neighbor w'.

We can replace now w by w’ in every proved statement, in particular
every component of G’ = Geore(A,uw) 18 Tegular; w’ is a simplicial vertex; since
w’ and w are neighbors on P, they share all but one of the incident facets
of P, that is, core(A,w’) = (core(A,w)\ {A}) U{A'}, (4 € core(A,w), A’ €
core(A,w'),A#A").

Therefore, the conditions of the Unicity Lemma 0.2 hold to G :=
Geore(Aw) a0d G = Gegre(awr), v = A, v' = A’, but then A = A’, a con-
tradiction. |



IMPERFECT AND NONIDEAL CLUTTERS: A COMMON APPROACH 295

1. Imperfect Clutters

Here we consider the case where A> is empty and so P is minimal imperfect.
To use Corollary 0.2 we need first:

Lemma 1.1. The polyhedron P is full dimensional.

Proof. Since e, € P (ve P) we have r(P)=n. 1

By Lemma 0.4, core(A,w) is a basis of R™, let us list its elements: Aj,
Ag,..., Ap; by Corollary 0.2 and the preceding lemma, w has n integer
neighbors, let B; be the (unique) neighbor of w which is not on the facet
{reP:x(A;)=1} (i=1,...,n).

Lemma 1.2. |A;NB;|=0, |[A;NB;|=1 (i#je{l,...,n}).

Proof. Since B; € P<(A), we have |A;NB;|<114,j€{1,2,...,n}; |[A;NB;j|=1
if and only if B; is on the face A;, that is, if and only if i# j, as claimed. I

We have arrived now at the ‘finish’:

Theorem 1. If A is a minimal imperfect clutter, then it is <-partitionable,
and the unique fractional vertex of P<(A) is 11, with r =max{|A|: A€ A}.

Proof. Let w be a fractional vertex of P<(A), and let the rows of the
matrix X be the (characteristic) vectors of the members of core(A,w). By
Lemma 0.4 X is an n xn matrix. By Corollary 0.2 w is a simplicial vertex,
and clearly, its neighbors on P<(A) are in the antiblocker of A. Let Y be the
n X n matrix whose columns are these neighbors, such that the i-th column
of Y is the associate of the i-th row of X, that is, these rows and columns
are the A;’s and B;’s of Lemma 1.2.
According to Lemma 1.2, XY =J—1.

Case 1: X is uniform.

The condition of Lemma 0.3 is true, and (i) is satisfied, so (iv) is also
satisfied, that is, (X,Y") is partitionable.

By definition, the rows of X are in .4 and the columns of Y are in the
antiblocker of A; 1 =0; so A is <-partitionable, as claimed. Now we conclude
by noting that w is the unique solution of the equation Xx =1; since X is
r-uniform (r € N), w = 11 follows; because of w(A) < 1 for all A € A,
r=max{|A|: A€ A}).

Case 2: X is not uniform.
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By Corollary 0.1 the connected components of the bipartite graph
Geore(Aw) are regular but our assumption implies that the whole graph is
not regular. Hence by (0.2): for every u,v €V there exists i€ {1,...,n} such
that A; D {u,v}. But then |Bg|=1 (k=1,...,n) follows from Lemma 1.2, and
therefore (iii) of Lemma 0.3 is satisfied. So (i) is also satisfied, contradicting
our assumption. ]

A graph G=(V,E) is said to be partitionable, if it has n=caw-+1 vertices
(a,w€eN), and for all v€ V(G), G—v can be partitioned both into « cliques
and into w stable-sets. Lovdsz [8] proved that minimal imperfect graphs
are partitionable and Padberg [9] deduced further properties of minimal
imperfect polyhedra. All of these properties have already been stated above,
or obviously follow from the results we have proved (using lemmas and
remarks of Section 0). The following theorem states the most important
property, Lovasz’s coNP characterization of perfectness:

Corollary 1.1. If A is a minimal imperfect clutter, then it is either a H? "
(n = 3,4,...) clutter, or the clutter of maximal cliques of a partitionable
graph.

Indeed, by Theorem 1 A is <-partitionable. If r = n —1, then clearly,
A=H""1 If r <n—2, then since A is minimal imperfect, it does not contain
H,]z_l for any k€N as a minor, so it is the set of maximal cliques of a graph
G. From the fact that A is <-partitionable it is easy to see that G is a
partitionable graph. ]

2. Nonideal Clutters

Here we consider the case where A< is empty and so P is minimal non ideal.
To use Corollary 0.2 we need first:

Lemma 2.1. The polyhedron P is full dimensional.

Proof. Since 1+e¢,€P (veV), we have r(P)=n. 1
By Lemma 0.4, core(A,w) is a basis of R™, let us list its elements: A,

Ag,..., Ay; by Corollary 0.2 and the preceding lemma, w has n integer

neighbors, let B; be the (unique) neighbor of w which is not on the facet
{reP:x(A;)=1} (i=1,...,n).

Lemma 2.2. |A4;NB;|>2, |[A;NBj|=1 (i#je{l,...,n}).
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Proof. Since B; € P>(A), we have |A;NB;|>114,j€{1,2,...,n}; |[AiNB;|=1
if and only if B; is on the face A;, that is, if and only if i# 7, as claimed. 1

The ‘finish’ is now a few lines longer, because of the exception of the
degenerate projective planes.

Theorem 2. If A is a minimal nonideal clutter on n vertices, then it is
>-partitionable, or A=F,.
In the former case the unique fractional vertex of P>(A) is

r=min{|A|: A € A}; in the latter case, A> =F,, w=(
(after possible permutation of the coordinates).

==

1, with
1 1 72)
n—1"""n—-1"n—1

3

Proof. Let w be a fractional vertex of P>(A), and let X be the matrix
whose rows are the (characteristic) vectors of the members of core(A,w).
By Lemma 0.4 X is an n X n matrix. By Corollary 0.2, w is a simplicial
vertex, and clearly, its neighbors on P> (A) are in the blocker of A. Let Y
be the n x n matrix whose columns are these neighbors, such that the i-th
column of Y is the associate of the i-th row of X, that is, these rows and
columns are the A;’s and Y;’s of Lemma 1.2.

Case 1: X is uniform.

The condition of Lemma 0.3 is true, and (i) is satisfied, so (iv) is also
satisfied, that is, (X,Y) is partitionable.

By definition, the rows of X are in A and the columns of Y are in the
blocker of A; by Lemma 1.2 u>2; so A is >-partitionable, as claimed. Now
we conclude by noting that w is the unique solution of the equation Xx=1;
since X is r-uniform (r € N), w = 11 follows; because of w(A) > 1 for all

Ae A, r=min{|A|: Ac A}.

Case 2: X is not uniform.

Then the bipartite graph Geore(,w) i not regular but by Corollary 0.1
its connected components are regular. Hence:

If no element of core(A,w) has cardinality n—1 then, by (0.2), for every
u,v € V there exists i,j € {1,...,n} such that A;,4; O {u,v}. Each B
(k=1,...,n) meets at least one of these in at most one element, so |B;|=1
follows, contradicting Lemma 2.2 (|A; N B;|>2).

Otherwise we can suppose A, := {1,2,...,n — 1}. Since for each i €
{1,...,n—1}, |B;NA,| =1, and |B;NA4;| >2, we have that n € B;, n€ A;.
Since the B; are all distinct, one can set B;={n,i} (i=1,...,n—1), and now
{Ay,...,A,}=F, follows by Lemma 2.2.

Since A is a clutter, A=F, follows. ]
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Note that the proofs of Theorem 1 and 2 can be shortcut by using the
symmetry between vertices and facets (X and Y'). However, we avoided
using this in view of Section 3 where this symmetry is lost.

3. The mixed case

We are now in the case where both A< and A> are non empty.
In this case the fact that P is full dimensional requires a different proof; we
also add a property that does not occur in the two previous cases:

Lemma 3.1. The polyhedron P is full dimensional. If w is a fractional
vertex, then core(A,w)C A< or core(A,w)CAs.

Proof. Let w be a fractional vertex of P. Since P is critical, w' is a nontrivial
convex combination of points of P* (i=1,...,n), that is, w' =3, g \(s)s’,
where S = S(w,i) C P is a finite subset of P, A(s) € RT (s € S), and
> sesA(s) = 1. Define wli] := > g A(s)s. Clearly, w[i] —w = te;, for some
t=t(i)eR.

If w[i] = w, then w is a nontrivial convex combination of points of P,
contradicting the fact that it is a vertex. So t#0. Therefore e; = (w[i] —w)/t
is in the linear space generated by P for all i =1,...,n, proving that P is
full dimensional.

It also follows now that core(A,w) C A< or core(A,w) C A, that is,
w(A;1) =1 = w(Az) cannot hold for A; € A< and Az € A>. Indeed, the
existence of € A1NAs would contradict w—+te; =w(i] € P; so AjNAs=0. But
then V' can be partitioned into nonempty sets I and J so that the members
of core(A<,w) are subsets of I, and the members of core(A>,w) are subsets
of J. In particular among the n inequalities that w satisfies with equality
there are at most |I| in core(A<,w), and at most |J| in core(A>,w) and the
equality follows throughout.

It follows that w! is a vertex of P!, w”’ is a vertex of P/, and at least
one of them is fractional, contradicting the critical property of P. ]

J

By Lemma 0.4 core(A,w) is a basis of R", let us list its elements: Aj,
Ag,..., Ap; by Corollary 0.2 and the preceding lemma, w has n integer
neighbors, let B; be the (unique) neighbor of w which is not on the facet
{reP:x(A;)=1} (i=1,...,n).

Lemma 3.2. Either |A;NB;|=0 for all (i€{l,...,n}), or |A;NB;|>2 for
all (ie{l,...,n}); |A;NB;|=1 (i#je{l,...,n}).
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Proof. By Lemma 3.1, {4;,...,4,} C A<, or {4;,...,4,} C A, and the
assertion follows, since |A; N B;|=1 if and only if B; is on the face A;, that
is, if and only if 1#£7. ]

Denote r<:=max{|A|:Ac A<}, r>:=min{|A[: Ac A>}.

Theorem 3. Let P:=P<(A<)NP>(A>)CR" be a critical polyhedron.
Then either A< =0, A> = F, and w = (ﬁ,,ﬁ,g—:%) is a vertex
of P (after possible permutation of the coordinates), or one or both of the

following two statements hold:

— Ac is <-partitionable, r< <r>, and w= il is a vertex of P.
— A> is >-partitionable, r< <r>, and w= il is a vertex of P.

These are the only possible fractional vertices of P.

Proof. Let w be a fractional vertex of P, and let the rows of the matrix X
be the (characteristic) vectors of the members of core(A,w). By Lemma 0.4
X is an n xn matrix. By Corollary 0.2, w is a simplicial vertex, and clearly,
its neighbors on P are 0—1 vectors. Let Y be the nxn matrix whose columns
are these neighbors, such that the i-th column of Y is the associate of the
i-th row of X, that is, these rows and columns are the A;’s and B;’s of
Lemma 3.2.

According to the first statement of Lemma 3.2 the diagonal elements of
XY are either all O or all bigger than 1.

Case 1: X is uniform.

Then the conditions and (i) of the Commutativity Lemma 0.3 hold, so
(iv) is also satisfied.

Clearly, in case ;1=0, the rows of X are in A<, the columns of Y are in the
antiblocker of A<, so A< is <-partitionable; in case p1>2, the rows of X are
in A>, the columns of Y are in the blocker of A>, so A> is >-partitionable.

Now we conclude by noting that w is the unique solution of the equation
Xz =1; since X is r-uniform (r €N), w= 11 follows; because of w(A4)<1 for
all Ac A<, and w(A)>1 for all Ac A>, we have r< <r<r>. Since Xw=1,
if the rows of X are in A<, then r<=r, if they are in A>, then r=r>.

Case 2: X is not uniform.

Then Case 2 of the proofs of Theorem 1 or Theorem 2 can also be ap-
plied without change (with the trivial exception that A has to be replaced
by A<, respectively by A>, and the references to Lemma 1.2, respectively
Lemma 2.2 have to be changed to Lemma 3.2 respectively). ]
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In particular, a critical polyhedron of the form P<(A<)NPs(A>) has at
most two fractional vertices, a vertex of P<(A<), a vertex of P> (A>), and
both can occur:

Example 3. Let V:={1,2,3,4,5}, A<:={{1,2},{2,3},{3,4},{4,5},{5,1}},
As:=1{{1,2,3},{2,3,4}{3,4,5}{4,5,1}{5,1,2}}. The polyhedron P<(A<)N
P> (A>) has two fractional vertices, (3,...,3) and (3,..., ).

This polyhedron, like Example 1, also has projections that are not 0—1-
constrained. But unlike Example 1, this is a critical polyhedron.

Theorem 3 may appear a bit disappointing since it leads to fractional
vertices similar to those of the two previous sections. Nevertheless Example 3
shows that it can happen that the members of the ‘< —core’ can intersect
those of the ‘> —core’, and integer vertices can be contained in both types
of facets. In fact a similar approach [14] with a refined definition of minors
allows to include ‘mixed odd circuits’ as well (see Example 1): in such ‘mixed
odd circuit polyhedra’ a fractional vertex can be contained at the same
time in blocking- and antiblocking-types of facets, and ‘mixed odd circuits’
turn out to be the only ‘minimal noninteger’ polyhedra having such ‘mixed’
vertices.

A noninteger polyhedron all of whose minors have only 0—1 constraints
has a critical minor, whence Theorem 3 can be applied. Therefore we get a
characterization of the nonintegrality of such polyhedra. (This class includes
both blocking and antiblocking. It is straightforward to see that a polyhedron
P-(A<)NP>(A>) together with all its minors is 0—1-constrained if A; € A<
and Ay € A> are either disjoint, or A; C Aj.)

The definition of partitionable clutters contains all properties of mini-
mally imperfect or minimally nonideal clutters that are usually stated, in
particular, it is easy to see that partitionability certifies nonintegrality. Prop-
erties proved in statements of ‘Padberg’s theorem’ or ‘Lehman’s theorem’
are straightforward consequences of Theorem 1, Lemma 1.2 or Theorem 2,
Lemma 2.2. We mention here only one more property that could be relevant
from the viewpoint of clarity:

The definition of a partitionable clutter A with parameters r, s, u does not
include, and it is not necessary for it to include that r and s are the maxima
(if ©=0), or minima (if ;1>2) of the cardinalities of the sets in A.

Indeed, this statement immediately follows from the definition! This im-
plication is important for certifying imperfectness or nonidealness. It is easy
to prove, let us for instance check it for p > 2, |[A] > r for all A € A:
A|=13, |AN B> [2]=r.

We finally wish to point at the relation of our proofs to previous work:
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The main frame of the proofs is similar to the proof of Lehman’s theorem
in Seymour’s ‘reading’ [15]. The key idea of our proofs that led to the com-
mon generalization is the following: instead of basing on the antiblocking or
blocking relation, we work with the hypergraph C, — v, whose hyperedges
do not necessarily correspond to vertices of P (and might not be in P at
all). We hope that this is not too confusing: in order to apply it the role of
vertices and facets had to be interchanged comparing to the usual treatment
of the perfect and ideal special cases. The role of facets and vertices is no
more symmetric. The subfamily of C,, —v that occurs in the proofs is in fact
a set of points on the minimal face containing w? in PV, and an important
fact simplifying the proof of Lehman’s theorem and opening the way to the
generalization is that these points do not necessarily have to be vertices in P.
We mention another small problem occurring only in the general case: the
full dimensionality of P, crucial for the solution. In the special cases it is just
trivial, whereas in the general case it is somewhat subtle (see Corollary 3.2).

Note that there are several variants of presenting a common proof of
Theorem 1, Theorem 2 and Theorem 3. Among the possible proofs our goal
was to include the ‘most common to all the three’ simple one.
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