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2 Guyslain Naves, András Seb®1.1 IntrodutionFinding a set of (vertex- or edge-) disjoint paths in (direted or undireted) graphs between givenpairs of terminals is one of the most anestral and most studied themes of graph theory, withimportant appliations suh as routing problems of VLSI design [10℄. The sope of the methodsand objetives is large and spread in time: Menger's theorems or more generally network �owsare among the �rst onsistent results of ombinatorial optimization [32℄, whereas �nding edge- orvertex-disjoint paths between a given (�xed) number of terminal pairs in polynomial time is a deeppure graph theory result [26℄. A multi�ow is the paking of one of the simplest objets in graphs:paths. At the same time it is an integer point in a naturally de�ned polyhedral one. The �eldhas been developed in parallel with the tools of optimization, polyhedral ombinatoris and graphtheory. Some branhes were and are still the subjet of extensive studies both by the inner stimulusof the theory and the request of the appliations.Nevertheless, while the variety of the possibilities is endless, some interesting questions maynot even have been realized. It is even more frustrating that at the borderlines of existing theoriesthere are forgotten problems that have no reason to be missing. The idea of making this tableauarose when the authors got onfused in varying the de�ning parameters of problems: whih are theombinations of the parameters that lead to polynomial solvable, NP-hard or unsolved problems. Aareful fous on these showed that some of the interesting ombinations have not yet been studiedat all.For some kind of disjoint paths problems there exist lassi�ations, for instane in Shrijver'sbook [32℄ or that of Korte and Vygen [11℄, or in survey papers of the olletion [10℄, like [7℄.A (integer) multi�ow � �rst informally - is just a multiset of paths satisfying request andapaity onstraints. The di�erene is not essential omparing to disjoint paths problems as far asassertions about them are onerned, however, there may be a di�erene in the algorithmi pointof view: in multi�ow problems there are numbers assoiated to edges or verties, and in a solution� alled a multi�ow � a multipliity is given with every path, and we want the algorithms to dealwith the multipliities in a lever way. From this viewpoint multi�ows are points of a one.In this note we wish to fous merely on the existene of multi�ows with partiular attention todi�erent natural speial ases involving planarity, the number of demands, the way the apaitiesare given, and Euleriity. We restrit ourselves to feasibility, that is the existene of disjoint pathsbetween all pairs of given terminal pairs. Another important diretion is multi�ow maximization(or maximum number of disjoint paths) that we do not treat here, sine we would then have toover yet other vast theories handled by quite di�erent methods, and where approximation algo-rithms and APX-ompleteness should also be aounted. Exat methods onerning this subjet,
1 Even, Itai and Shamir [3℄, 1976
2 Fortune, Hoproft et Wyllie, [4℄, 1980. Moreover G ayli and |E(H)| �xed implies polynomiality.
3 Polynomial for 3 demand edges (Ibaraki, Poljak [8℄, 1991).
4 Karp [9℄, 1975
5 Kramer and van Leeuwen, [12℄, 1984, see Subsetion 1.4.1.
6 Luhesi-Younger, [15℄, 1978
7 Lynh [16℄, 1975
8 Middendorf and Pfei�er[19℄, 1993, even if maximum degree is 3.
9 Müller [20℄, 2005

10 Frank [5℄, 1989, see also Nash-Williams' proof of Hu's theorem [21℄, 1969.
11 Naves, [22℄, 2008
12 Robertson, Seymour, [26℄, 1990
13 Rothshild-Whinston [27℄, 1966. Polynomiality and the su�ieny of the ut ondition extends to Hbeing two stars, K4 or C5 (Lomonosov [13℄, 1985).
14 Shrijver, [33℄, 1992
15 Shrijver [30℄, 1990, the ondition is: the number of faes of demand is �xed.
16 Shwärzler, [34℄, 2007, see Theorem 6 in Subsetion 1.4.1.
17 Seb® [35℄, 1993
18 Seymour [36℄, 1981. Also polynomial in graphs with no K5 minor.
19 Vygen [37℄, 1995
19 See Theorem 9 in Subsetion 1.4.2.
20 Marx [18℄, 2004



1 Multi�ow Feasibility: an Annotated Tableau 3suh as Mader's theorem are treated in the above mentioned books, and some other aspets likeapproximability are surveyed in the work of C. Bentz, M.-C. Costa, L. Létoart and F. Roupin [2℄and in the thesis work of C. Bentz [1℄.There are also many derivates of the problem. We had to be seletive for keeping enoughattention for the problems that our in the most basi irle in the fous of our magnifying lens.The main �produt� of our work is the tableau on the �rst page. In the tableau we tried toonentrate on a small number of natural row (olumn) heads that an be nontrivially mathedby most olumns (rows) so as to over most of the relevant problems. More problems (like theOkamura-Seymour irle of questions) will be disussed in the text without harging the tableau.In Setion 1.2, we provide the �rst explanations onerning the tableau, and the most importantnotations. Setion 1.3 is a short introdution to the basi methods onerning multi�ows.The traes of the unsolved problems of the tableau lead to the partiular graphs treated indetails in Setion 1.4: planar (di)graphs. The undireted planar ase (Subsetion 1.4.1) seems tobe almost the same as the ayli planar ase (Subsetion 1.4.2), the arguments for one an berepeated for the other, but we do not see any formal redution between the two sets of instanes.When we started our work, more than one third of these problems were open. While we wereworking, two fundamental problems have been solved, one of them stimulated by this tableau.Shwärzler's result [34℄ started the row, solving Problem 56 in [32℄: disjoint paths in planar graphswhen all terminal pairs are on the boundary of the in�nite fae. This proof opened new hopes ofreahing longstanding open problems and simpli�ying ompliated proofs:In Shwärzler's proof there are three natural lasses of pairs of terminals, so it is not di�ultto prove NP-hardness if the number of terminals is restrited to 3, and we will show the redutionbelow. With essential new ideas the �rst author has then shown [22℄ that 3 an be dereased to
2, thus �lling in new squares of the tableau, and solving a problem of Müller [20℄ about planargraphs in general, and replaing Müller's quite involved proof for the direted version. We hopethe tableau will provide similar stimulation for the 21 still un�lled squares.To make this guided tour more pleasant, we oasionnally provide some new viewpoints orvariants of results, simple proofs or remarks on the way.1.2 Basi Notation and AnnotationWe hope the tableau is making lear the limits of di�erent omplexity behaviors (polynomiality andNP-ompleteness) and of the open ases. This also requires the realization of some onnetions. Weintrodue now the most important de�nitions, notations and onventions for a orret interpretationof the tableau.Let G = (V, E) be a graph, for the moment we allow G to be undireted or direted, and
n := |V |. Let us all a funtion c : E → N be a apaity funtion, and H = (T, D), T ⊆ V ademand graph with a request funtion r : D → N. Then the multi�ow problem is to �nd a multiset
C of yles in G + H verifying the following ondition:� for eah yle C ∈ C, |C ∩ D| = 1,� for eah d ∈ D, there are exatly r(d) yles in C that ontain d,� for eah e ∈ E, there are at most c(d) yles in C that ontain e.The integrality of the multipliities of yles is supposed. In the rare ases when it is not, wewill speak about frational multi�ows.If r and c are both 1 everywhere we speak about edge-disjoint (or in digraphs ar-disjoint )paths problems.By analogy, we ould de�ne, both in direted and undireted graphs, vertex-apaitated multi-�ow problems , vertex-disjoint paths problems by putting apaities and demands on verties, andby repeating the three onditions above by replaing iruits C by their verties, H simply by avertex-set D ⊆ V , and E by V \ D.If we still want to keep a demand graph H , we an, by putting a new vertex de in the middleof eah edge (ar) e = tu of H , and letting r(de) := c(t) = c(u).



4 Guyslain Naves, András Seb®The hoies for the rows and olumns of the tableau are of ourse partly a matter of taste. How-ever we tried to distinguish the di�erent problems along some basi parameters that the ommunityares about:The �rst three olumns of the tableau onern� restritions of G and H : general, G planar or G + H planar� restritions on the ardinality of E(H): arbitrary, �x or 2� restritions on the size of r and the way it is given: �bin� means binary enoding, �un� unaryenoding, that is, the size of the input is measured by the sum of the given numbers instead ofthe sum of their logarithms; ��x� means that ∑
e∈E(H) r(e) is bounded.Even though the restritions never onern c diretly, it is naturally a�eted: if r is unary, wean suppose without loss of generality that c is also. (The sum of c on all edges an be supposedto be at most n times the sum of r.)The distintion between �bin� and �un� is the same as the usual distintion between pseu-dopolynomiality and strong NP-omplete: for instane when H has two edges, unary enoding isequivalent to putting as many parallel opies of the edges in H as the demand, and similarly forthe apaities; so the unary problem with |E(H)| = 2 is the same as the edge-disjoint paths prob-lem with two parallel lasses of demand edges, and is NP-omplete. However, the ��x� version ispolynomially solvable by Robertson and Seymour [26℄.The same holds for all edge-disjoint paths problems: multi�ows with �unary� enoding arenothing more than edge-disjoint paths problems with maybe restrited H (like in the example)and several parallel demand edges.The �bin� ase ould be essentially more di�ult than the unary. Indeed, in a binary enodingwe are not allowed to replae the apaities by parallel edges, sine a polynomial algorithm mustthen work in time whih is polynomial in the input size. In this ase the input size is the sum ofthe logarithms of the apaities. Surprisingly, this does not drastially hange the omplexity ofthe problems: in our tableau the �bin� ases have exatly the same omplexity as the �un� ones. Anexplanation of this lies probably in the lassial Ford Fulkerson theory of network �ows: the pathsthrough eah demand edge obey the same rules as ordinary network �ows, the di�ult problem isto split the problem between the di�erent terminal pairs.Another kind of relation ours between ��x� and �un� or �bin� if G + H is planar and H hasa bounded number of edges, that is, |E(H)| is ��x�: then r ��x� may again be settled by [26℄,but this does not solve the �un� or �bin� ase, and turns out not to be the best solution for ��x�either. Indeed, �bin� an also be solved in polynomial time, by applying Lenstra's �heaper� integerprogramming algorithm [35℄.Thus in the edge-disjoint ase �bin� and �un� an be thought of as being the same, and allowingan arbitrary number of parallel lasses of demand edges; ��x� |E(H)| restrits the number of parallellasses of demand edges, and ��x� in the r olumn the total number of demand edges. The latterof ourse implies the former.The situation is somewhat more ompliated in the vertex-disjoint ase. For vertex-apaitatedmulti�ows the unary ase has to be distinguished from vertex-disjoint paths if G is restrited forinstane to planar graphs. The repliation of verties (replaing the parallel edges of the redutionof multi�ows to edge-disjoint paths), does not keep for instane the planarity of G.Besides edge- or ar- and vertex-disjoint paths problems we also distinguish the same problemsunder the Eulerian ondition:We distinguish between G + H (r+) Eulerian or not (gen): if G, H are undireted, (G, H, r, c)is alled Eulerian if for eah v ∈ V ,

∑

e∈δG(v)

c(e) +
∑

d∈δH(v)

r(d) is even (1.1)and if G, H are digraphs, then the Eulerian property means for eah v ∈ V ,
∑
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∑
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1 Multi�ow Feasibility: an Annotated Tableau 5The four-tuple (G, H, r, c) will not neessarily be always expliitly mentioned � most of theseparameters are �xed by the ontext.In this paper the main fous is the edge-disjoint paths problem and multi�ows. The olumnsonerning vertex-disjoint paths are present for omparison and all suppose that the request andapaity funtions are both 1 everywhere, that is, we are looking only at vertex-disjoint pathsproblems, and none of the new problems that are raised:Problem 1 Fill in additional olumns of the tableau for vertex-apaitated problems, where thevertex requests and apaities are not supposed to be 1, but are enoded with a unary or binaryenoding.Note that the unary ase annot always be redued to the vertex-disjoint paths problem in thesame lass of graphs.Paths and yles will always be simple, and the terms are used both in direted and undiretedgraphs. Our notations will be usual; δ(X) (X ⊆ V ) denotes the set of edges with exatly oneendpoint if X , and X , V \ X are the shores of this ut.In several ases we will also have partiular notes for the ase when H has three edges. Anotherpartiular ase of H is when it is a star: then the problem an be redued to a �ow problem, andthus the problems are polynomially solvable for any G.1.3 Basi fats1.3.1 Well-known redutionsWe reall some well-known redutions between the di�erent ases that are fully exploited in thetableau.
<Fig. 1.1. The undireted ase is reduible to the direted ase, using this gadget. Only one pathan use these �ve ars, either from left to right or from right to left.The undireted ase an be redued to the direted one by replaing eah edge by the gadgetdepited in �gure 1.1. Note that this redution preserves the planarity of G and G + H , but doesnot preserve the Euler property, and the resulting graph is not ayli.The edge-disjoint ase is reduible to the vertex-disjoint one by taking the line-graph. Thisoperation does not keep the planarity of G. It works in the direted ase as well with the appropriatede�nition of the line graph (stars of verties beome omplete bipartite graphs by joining all theverties orresponding to inoming edges to all those orresponding to outgoing edges).In theedge-disjoint ase, it is possible to redue every graph with max-degree greater than 4to a graph with degrees at most 4, by using the gadget of piture 1.2, whih also keeps planarity.(The apaities must be 1.) In the partiular ase when G + H is planar, it was remarked in [19℄that in the unapaitated ase the maximum degree an be restrited to 3, thus the edge-disjointpaths problem is reduible to the vertex-disjoint paths problem. This allows to on�rm the negativeomplexity of some vertex-disjoint paths problems but one has to proeed arefully, sine |E(H)|inreases.
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<Fig. 1.2. In the edge-disjoint ase, this gadget redues the degrees of verties to 4.The following lemma was proposed by Vygen [37℄. It proves the equivalene between the ayliar-disjoint paths problem in Eulerian digraphs and the edge-disjoint paths problem (in Euleriangraphs).Vygen's lemma: Let (G, H) be an instane of the ar-disjoint paths problem, assume G + His Eulerian and that G is ayli. Let (G′, H ′) be the instane of the edge-disjoint paths problemobtained by negleting the orientation of G and H. Then there exists a solution for the ar-disjointpaths problem in (G, H) if and only if there exists a solution for the edge-disjoint paths problem

(G′, H ′).More exatly, it is proved that the solutions of these two problems an be transformed toone another by negleting the orientation or onversely by orienting the edges depending on theorientation of G.1.3.2 ConditionsA solution of the (frational or integer) multi�ow problem an be seen as the problem of deidingthe existene of an (integer) point in a given partiular polytope. Using an idea of Lomonosov [13℄we provide a ompat formulation of a `lifting' of this polytope, that is, we provide a polytope witha polynomial number of onstraints in the input size whose projetion is the multi�ow polytope.The onditions for multi�ow feasibility an be seen as valid inequalities for this polytope.Let G = (V, E), c, H = (T, D), r be an instane of the multi�ow problem. Paths and yles,direted or undireted will always supposed to be simple, that is, ontain eah edge at most one.Let C be the set of the yles of G + H that ontain exatly one edge from H . Then the solutionsof the disjoint paths problem are in bijetion with the integer solutions of the following linearprogram:
∑

d∈C,C∈C

xC = r(d) (d ∈ D) (1.3)
∑

e∈C,C∈C

xC ≤ c(e) (e ∈ E) (1.4)
xC ≥ 0 (C ∈ C) (1.5)Equations 1.3 and 1.4 de�ne the (frational) multi�ow polytope. A multi�ow is an integer pointof this polytope.The nonemptyness of this polytope an be haraterized by Farkas's lemma:Theorem 1 (Japanese theorem) [24℄,[32℄ The existene of a multi�ow is equivalent to the dis-tane riterion For all w : E −→ R+,

∑

(u,v)∈D

r(u, v) × dG,w(u, v) ≤
∑

e∈E

w(e) (1.6)We an obtain an easy onsequene by taking, for eah ut C, the weight funtion w : E → {0, 1}de�ned by w(e) = 1 i� e ∈ δH(C). This gives the following ondition alled the ut ondition:for all C ⊂ V, |δG(C)| ≥ |δH(C)| (1.7)



1 Multi�ow Feasibility: an Annotated Tableau 7A ut is alled tight if equality holds in (1.7) for this ut. Another interesting neessary onditionfor the existene of integer multi�ows when G+H is not Eulerian is that the union of any numberof tight uts (as edge-sets) must not ontain an odd ut. (The reason is that eah edge of suhan odd ut is used by a multi�ow, that is, the disjoint iruits of a multi�ow partition the ut.However, eah lass of this partition is even. Interseting the shore of (any number of) uts, if Xis the intersetion, δ(X) will be ontained in the union of the uts.)Therefore if the interseted shores de�ne all tight uts, the intersetion must de�ne an even ut(if an integer multi�ow exists). We do not know many papers where this is exploited; the niestexample is probably Frank [6℄, whih uses this ondition for two tight uts.We show now that the ondition 1.7 of the Japanese theorem an be handled as a linear programof polynomial size, and at the same time we show the polarity between metris and multi�ows.A funtion µ : V × V −→ Z+ is alled a metri on V , if it satis�es the triangle inequality
µ(x, y) + µ(y, z) − µ(x, z) ≥ 0, for all x, y, z ∈ V .The integrality requirement is super�uous, we only suppose it for onfort. Let us denote

t(x, y, z) ∈ {0, 1,−1}V×V whih takes the value 1 on (x, y) and (y, z), −1 on (x, z), and 0 on allthe other ordered pairs. Denote T the matrix whose olumns are the vetors of the form t(x, y, z)for all ordered triples (x, y, z), (x, y, z ∈ V ). The metris are then the solutions of the systems ofinequalities yT ≥ 0. The following nie observation is due to Lomonosov [13℄:Let P := (v1, . . . , vk) be a path, and vP ∈ {0, 1,−1}V×V , vP (x, y) = 1 if x = vi, y = vi+1 forall i = 1, . . . , k − 1, and vP (vkv1) = −1. Then
vP =

k−1∑

i=2

t(v1, vi, vi+1),and therefore for c ∈ RV ×V , the solutions of the system of linear inequalities Tx ≤ c, x ≥ 0 arein one-to-one orrespondane with the (frational) multi�ows in the graph G = (V, {e ∈ V × V :
c(e) > 0}, with apaity c, and demand graph H , uv ∈ E(H) if and only if c(uv) < 0, andthen r(uv) := −c(uv). (For undireted multi�ow problems we use only one of uv and vu). Integersolutions of this system orrespond to (integer) multi�ows. Note that T has a polynomial numberof entries, immediately implying polynomial solvability of frational multi�ow problems and theinterested reader may �nd it useful to rewrite the Farkas' Lemma for this somewhat di�erent systemof inequalities.1.4 Planar GraphsIn this setion we state and sometimes improve or reprove results about the omplexity of multi�owsin planar graphs. The results onerning undireted graphs an often be translated to aylidigraphs.1.4.1 Undireted GraphsThis subsetion updates the omplexity of the planar edge-disjoint paths problem.Two of the �rst important results of the subjet are that of Lynh [16℄ stating that the vertex-disjoint paths problem is NP-omplete in planar graphs, and the sharpening of Kramer and vanLeeuwen [12℄ to grid graphs. The latter result has the advantage of being easy to manipulate toprove NP-ompleteness of variants of the problem suh as edge-disjoint paths problems: the authorsthemselves note that the problem remains NP-omplete if ommon edges are still not allowed, butommon verties may our provided the two paths �ross� in those. Raghavan [25℄[Lemma 2.1℄notes that the edge-disjoint problem is also NP-omplete with �their redution�. This is right notingthat the last part of Kramer and van Leeuwen's proof has to be � slightly and in a straightforwardway � modi�ed in order to get NP-ompleteness of the general planar edge-disjoint paths problem.In planar routing problems the terminals are often on the boundary of the in�nite fae. Wewant to explore the omplexity of problems satisfying this ondition.We start with a new proof of the lassial Okamura-Seymour theorem providing a polynomialalgorithm for planar Eulerian graphs with all terminals on the outer fae. We ontinue by skething



8 Guyslain Naves, András Seb®Shwärzler's proof of the NP-ompleteness of the non-Eulerian ase, and show a slight extensionwhere in addition the number of demand edges an be restrited to three. Finally, we sketh themore involved new ideas that allowed the �rst author to ahieve the last possible step and provethat the same holds for two demand edges.Theorem 2 (Okamura, Seymour [23℄) Let G = (V, E) be a planar graph and H = (T, D), T ⊆
V where the verties of T are on the outer boundary of the embedding of G. Let r : D → N and
c : E → N be weight funtions, and suppose that r + c is Eulerian. Then the ut ondition issu�ient for the existene of a multi�ow for (G, H).We �rst reformulate this theorem as a statement on metri pakings, and provide a proofombining a tehnique of Shrijver for proving distane paking theorems [32℄ with ideas in [14℄ fordeomposing distane funtions, and new ideas apturing the essene of Lins' theorem: in a ritialsituation saturated by a tehnique of [32℄, guided by the role of the �oppositeness relation� in [14℄ �but without using the related polyhedral statements � we deompose our graph into uts. Shrijverapplies the dual of this oppositeness relation to prove Lins' theorem in the ontext of an indutiveproof. Despite these similarities, the use of the previous results remains impliit in the proof below,and our present proof is self-ontained, fully ombinatorial, and hopefully generalizable. Sine itseems to provide some insight, we want to ommuniate it for possible future use.The theorem is equivalent to a theorem on metri pakings, see Corollary 74.2a in [32℄, provedthere using the Okamura-Seymour theorem. Here we will prove this form diretly. The advantageof this method may be to provide some insight of how the metris guide the diretion the (dual)paths take.Let us all a iruit C ⊆ E(G) rigid , if for any two, a and b of its verties, one of the (a, b)-pathson the iruit is a geodesi in G. (The faial struture of the one of metris implies that the onlyway to write the distane funtion of a graph as the sum of metris is using uts interseting rigidyles with 0 or two opposite edges [14℄. This statement did guide our proof without using it.)We prove the following reformulation of the Okamura-Seymour theorem:Theorem 3 Let G = (V, E) be a planar graph with only rigid faes, with all faes being 4-ylesexept the in�nite fae, and where in addition any set of two suessive edges of a fae are togetherontained in a geodesi with both endpoints in the boundary C of the in�nite fae. Then the graph
(E, Ω) on the edges of G, where Ω := {ef : e, f ∈ E, e is opposite to f on some fae} is a graphthat has |C|/2 omponents, where eah omponent is a path joining two opposite edges of C.The onditions imply, of ourse, that G is bipartite. Before the proof let us sketh the redutionof the Okamura-Seymour theorem (Theorem 2) to this, whih onsists of simple and standard steps.

s′t′

s′′

t s

t′′

p

Fig. 1.3. In Okamura-Seymour's theorem, we an assume that terminals of eah demand pairare diametrally opposed: add verties p, s′′ and t′′ and the edges joining them asindiated on the �gure, whenever s, t, t′, s′ our in this �wrong� order along theboundary of the outer fae. Replae the demand edges ss′, tt′ by s′s′′ and t′t′′.



1 Multi�ow Feasibility: an Annotated Tableau 91. Redue the Okamura-Seymour theorem to the ase when the terminal pairsD := {s1t1, . . . , sktk}follow one another in the order s1, . . . , sk, t1, . . . , tk on C, see Figure 1.3. Redue then to the
2-vertex-onneted ase without hanging the order of the terminals.2. Add a new vertex x0, plae it to the in�nite fae and join it with all the terminal verties.Delete eah vertex of degree 2, by merging its two edges.3. Take the planar dual of the obtained graph.4. Add the gadget of Figure 1.4 to all faes that are not 4-yles, until all faes are 4-yles.5. Identify the opposite verties of 4-yles if they are not ontained on a geodesi with bothendpoints in C.

 Fig. 1.4. Reduing the boundaries of faes to 4, without hanging the distanes, in poly-time.It is easy to see that the ut ondition implies that after applying these proedures the onditionsof Theorem 3 are satis�ed. The theorem then implies by dualization a set of edge-disjoint pathsfor the original problem, and the proof is algorithmi, straightforwardly providing a polynomialalgorithm.If P is a path and x, y are two of its verties, P (x, y) denotes the subpath of P from x to y.Proof.Claim 1: The graph (E, Ω) is the disjoint union of yles and of |C|/2 paths with both endpointson C.Indeed, in the graph (E, Ω) every edge of C is of degree 1, and any other e ∈ E has degree 2.Claim 2: For any yle D ⊆ E in G and a, b ∈ V (D) suh that both paths A and B between aand b on D are shortest paths in G, eah omponent of (E, Ω) is a path that has one end in A,and another in B.
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Fig. 1.5. Depending on the position of q, on the same (a, b)-path as p or not, we apply theindution hypothesis to D1, p, q and D2, a, b on the two �rst drawings (ase 1), or
D1, p, b and D2, a, q on the third one (ase 2), for whih the ondition on the distanesstill holds.Indeed, if every edge of D inident to a is followed by a boundary edge of D, then D is a faeof G, and the statement is evident. Otherwise there exist two edges e, f (Figure 1.5) suh that(i) e and f are inident edges of a fae �let their ommon point be p.



10 Guyslain Naves, András Seb®(ii) e is inident to a.(iii) The interior of f is ontained inside D, that is, in the open disk bounded by D.By the ondition there exists a geodesi path S ontaining e and f and with extremities on C.Then starting on S from a on e and then f and ontinuing, let q be the next vertex of D (by (iii)and Jordan's theorem q exists) on S. The subpath S(p, q) divides D into two yles D1 and D2that interset in S(p, q) (see the Figure). Sine the subpath of a geodesi is also a geodesi, both
S(a, q) and S(p, q) are a geodesis.Denote H ,H1,H2 the subgraph of (E, Ω) indued byD, D1,D2 and the edges inside. Informally,these are the subgraphs desribing oppositeness within D, D1 or D2. (In H the edges of S(p, q) forma vertex-ut-set whih, together with the two omponents of H − S(p, q) indues the subgraphs
H1 and H2.) Clearly, like in Claim 1, the omponents of H , H1 and H2 are paths, and there arerespetively |D|/2, |D1|/2, |D2|/2 suh paths.Case 1: One of the two (a, b)-paths of D is disjoint from S(p, q).Then applying the indution hypothesis to D1 and D2 (see left drawings of Figure 1.5) andmerging the omponents of H1 and H2, we get the statement for D. (Eah edge of S(p, q) is theendpoint of a omponent in both of the graphs H1 and H2, and these pairs of omponents an bemerged.)Case 2: Both (a, b)-paths of D meet S(p, q).Then ap is the �rst edge of one of the two (a, b)-paths P of D, and q is on the other (a, b)-path
Q. (Figure 1.5 right.)Both S(a, q) and Q(a, q) are geodesis, and the indution hypothesis an be applied to D2 withthese geodesis. By indution we get paths of (E, Ω) one of whih, S2,e onnets the edge e = apto an edge of Q(a, q), and the others, S2,h (h ∈ S(p, q) eah onnet edges of S(p, q) to edges of
Q(a, q) (exept the end of S2,e di�erent from e). These are the omponents of H2.As a side-produt |S(a, q)| = |Q(a, q)|, and therefore

|S(p, q) ∪ Q(q, b)| = |Q(a, q)| − 1 + Q(q, b)| = |P (p, b)|,whene S(p, q) ∪ Q(q, b) is also a geodesi and the indution hypothesis an be applied to D1 aswell, and with the geodesis S(p, q) ∪ Q(q, b) and P (p, b). So by indution, the omponents of H1are the paths S1,h (h ∈ S(p, q) onneting S(p, q) to a subset of P (p, b), and S1,h (h ∈ Q(q, b)) toanother subset. Let S := {S1,h ∪ S2,h : h ∈ S(p, q)}. Now learly, the set
{S2,e} ∪ S ∪ {S1,h : h ∈ Q(q, b)}is the set of omponents of H , and onnets eah edge of P (a, b) to an edge of Q(a, b), �nishingthe proof of Claim 2.Now applying Claim 2 to D := C and all the |C|/2 pairs of geodesis eah of whih (bi)partitions

C, we get that eah omponent of H onnets two edges that do not lie in the same lass of any ofthese bipartitions. It follows that the omponents of H join opposite edges of C.Frank proved that the problem is still polynomially solvable when only the inner verties of Gverify the Eulerian ondition:Theorem 4 (Frank) Let G = (V, E) be a planar graph and H = (T, D), (T ⊂ V ), where theverties of T are on the outer boundary of the embedding of G; let r : D → N and c : E → Nbe weight funtions, and suppose that for eah vertex v not ontained in the outer boundary of G,∑
e∈δ(v) c(e) is even. Then the edge-disjoint paths problem an be solved in polynomial time.However, the Euler property annot be ompletely removed:Theorem 5 (Shwärzler) The edge-disjoint paths problem when G is planar and the terminalslie on the outer boundary of G is NP-omplete.Shwärzler's gadget an be ompleted to redue the number of demand edges to 3:



1 Multi�ow Feasibility: an Annotated Tableau 11Theorem 6 The multi�ow problem when G is planar, |E(H)| = 3 and the terminals lie on theouter boundary of G is NP-omplete.
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1Fig. 1.6. An example of the redution, from the formula (X ∨Y ∨¬Z)∧ (X ∨¬Y )∧ (¬X ∨Z).The drawn graph is the supply graph, the demand edges join verties with their primes.Proof. (Sketh) We sketh Shwärzler's proof, rearranged and ompleted by a redution to threeparallel lasses of demand edges with a linear number of demands altogether. The redution isfrom Satisfiability. From a formula given in onjuntive normal form, a grid is built with asmany olumns and rows as there are lauses and variables respetively. There are two lines in eaholumn and in eah row, paths in the graph, but beause of the plaement of the terminals, thesewill not be paths in a solution, see Figure 1.6. The extremities of the demand edges are labeledverties and their primes.In a solution two paths will join the two demand edges of eah olumn, and one the demand edgeof eah row. The latter (horizontal) path of eah row will be obliged to be one of the two horizontallines of the row, and this hoie orresponds to hoosing a truth value for the orresponding variable:hoosing the upper path means that TRUE is assigned to it, and the lower path means that FALSEis the assigned value.The two paths of eah olumn are fored by the order of their terminal verties to exhangetheir lines. This exhange enodes the fat that eah lause must be satis�ed. Suh an exhange ispossible through two parallel horizontal �olumn-swith� edges. In eah square of the grid the twoparallel olumn-swith edges are plaed in the upper or lower line or neither depending on whethera variable, its negation or neither are present in the orresponding lause.By onsidering tight uts, Shwärzler proves that the horizontal paths do not use any vertialedges. This is the way of foring a horizontal path to stay in the same row and not to hangelines, orresponding to a hoie of truth value. Then, vertial paths an ross only through freeolumn-swith parallel edges, making the hoie of a true variable whih is positive in the lauseor a false one whih is negated.The number of parallel lasses of demand edges an be redued to 3 by introduing one parallellass for eah �type� of demand edge: �rst introdue two new terminals and one demand edge for



12 Guyslain Naves, András Seb®all the horizontal paths, this does not ause any di�ulty; then onstrut the two parallel lassesof demand edges for the vertial paths, one for paths swithing from left to right, and one for thoseswithing from right to left, with one demand edge per path, and a gadget making possible forthese paths to ross in a planar way (Figure 1.7). The demand graph is redued then to only threesets of parallel edges � one horizontal, and two vertial ones. To hek that this operation does nothange the problem, note:The tight uts represented by the dashed lines fore all starting points of both lines of allolumns to be ontained in di�erent vertial paths. It an be shown by indution from left to rightthat these paths are rooted like in the previous part of the proof.
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Fig. 1.7. Redution of the demand graph to only three sets of parallel edges. The entral partorresponds to the grid built before, thik edges are the new edges. The demands areequal to the number of variables for the demand edge (X, X ′), and to the number oflauses for (U, U ′) and (V, V ′). Dashed lines de�ne tight uts.This result an be further strengthened to two demand edges [22℄. Keeping Shwärzler's globalidea of the redution from 3-SAT, the details beome muh more ompliated sine the two lassesof �vertial demand edges� are dereased to one with a triky idea whose tehnial realization isalso more ompliated.In Shwärzler's proof vertial paths usually do not swith olumns (allowing then two horizontalpaths per row to ross the olumn), olumns are swithed only in one row, where the orrespondingvariable is set to TRUE in the lause of the olumn. In this ase the orresponding horizontal lineis prevented from beoming a path in the multi�ow.The idea now is to do just the opposite in terms of swithing olumns: vertial paths willusually swith olumns, exept in the row assoiated with the partiular TRUE valued variable ofthe olumn, when they don't swith. The number of rows an be supposed to be even, so in ase ofa feasible truth assignment there are an odd number of olumn-swithes in every olumn!This is realized this time by paths that run in pairs parallelly and never ross. The orrespondingdemand edges form one parallel lass. Let us explain the main ideas of realizing this and the relatedtehnial problems of [22℄:First, for onveniene, the problem is generalized by forbidding rossing paths in a subset
W ⊆ V of verties of degree 4. This is not really a generalization, sine eah w ∈ W an be split



1 Multi�ow Feasibility: an Annotated Tableau 13into four verties of degree 1, with one new vertex for eah inident edge; then add a C4 betweenthe four new verties in the yli order of the four edges in the planar embedding. Clearly, there isa bijetion between the solutions of the edge-disjoint paths problem after the appliation of thesegadgets and the solutions where paths are not rossing in the verties of W in the original graph.A ombination of the two gadgets of Figure 1.8 will be plaed in the rossing of olumns (assoiated
a

d

cb b c

d

a

Fig. 1.8. The two gadgets used for the redution to the ase where there are only two demandedges. Two paths an ross in the bold verties and nowhere else.with lauses) and rows (assoiated with variables).These gadgets have the following properties:The two parallel vertial paths we mentioned in our general desription arrive either from thetwo left verties in the upper left orner, or from the two verties in the upper right orner. Eitherboth stay in the same (left or right) side, or both hange sides (olumn-swith) when they gothrough the gadget.If one horizontal path goes through the left gadget, then the two parallel vertial paths are obligedto swith sides, while in the right gadget they are allowed to stay on the same side. If two horizontalpaths go through the gadgets both paths are obliged to swith sides.A ombination of these gadgets plaed in the same �grid� as before enodes a truth assignmentsatisfying the goal we have desribed. Again, the most di�ult part of the proof is to ensure thatthe paths annot deviate from their intended itineraries. There are indeed only two kinds of demandedges: vertial and horizontal, as required.1.4.2 Ayli DigraphsShwärzler gave also a direted ayli version of his redution [34℄:Theorem 7 (Shwärzler) The ar-disjoint paths problem is NP-omplete, even if G is planarand ayli, and all terminals lie on the outer boundary of G.The trik presented in Subsetion 1.4.1 serves now again to redue the number of terminals:Theorem 8 The ar-disjoint paths problem is NP-omplete, even if G is planar and ayli,
|E(H)| = 3, and all terminals lie on the outer boundary of G.Both the ar-disjoint and the vertex-disjoint paths problems are polynomial-time solvable whenthe total number of demand is �xed. We show that the omplexity of the vertex-disjoint versionis again the same as the edge-disjoint versions when |E(H)| is not bounded, both problems areNP-omplete:Theorem 9 The vertex-disjoint paths problem is NP-omplete in ayli digraphs, even if G + His planar.
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vxc

vxa

vxb

vzc

vxc vyc

Fig. 1.9. The gadget for the lauses is on the left, for the variables it is on the right. Dottededges are demand edges, bold verties are those that subdivide the edges in the originalgraph.Proof. The proof is the direted ayli version of Middendorf and Pfei�er's proof [19℄ of theirTheorem 1 establishing the NP-hardness of the edge-disjoint paths problem if G + H is planar.(However, again, we annot redue the theorem to their result.)We redue Planar 3-Sat to the stated problem: let ϕ be a formula whose assoiated graphis planar, and suppose (without loss of generality) that eah variable appears at most three times,exatly one negatively, and there is no lause with twie the same variable. De�ne the undiretedbipartite graph (C, V, F ) with the set of lauses C and the set V of variables as lasses, and
F := {xc : variable x appears in lause c} and subdivide eah edge (x, c) into two edges by addinga new node vxc.Take now an arbitrary ordering of the set of variables, and de�ne for eah lause a gadget in thefollowing way: hoose z to be an arbitrary of the three variables of the lause, and then hoose thenotation x and y so that x < y. With this notation onstrut the gadget on the left of Figure 1.9upon the verties vxc, vyc, vzc, adding the other verties of the �gure anew for eah lause. Finallydelete the vertex representing c.Now for eah variable vertex x ourring in three lauses, let a and b be the lauses in whih
x ours positively (in arbitrary order), and c the one in whih it is negated, and put the gadgetdepited in the right side of Figure 1.9 upon the verties vxa, vxb, vxc. (If x ours only twie,positively in a and negatively in c, we add the vertex vxb arti�ially.) Let Gϕ, Hϕ denote theonstruted graph and the onstruted demand graph.Then we have to prove that there exist ar-disjoint paths in (Gϕ, Hϕ) if and only if φ issatis�able. The proof is similar to that of [19℄, let us sketh it:It is easy to see that the demand ar in a variable gadget is satis�ed either by a path that ontains
vxc orresponding to x = TRUE , or a path that ontains the ar vxavxb, whih orresponds to
x = FALSE.The demands of a lause gadget an be satis�ed if and only if at least one of the three boldverties of the �gure is not used by variable demands, enoding that the lause is satis�ed by thevariable assignment.Finally we prove that the digraph is ayli. Eah gadget is ayli, thus if there is a yle, ituses at least two gadgets. Suppose for a ontradition that Q is a yle. Then it intersets lausegadgets in (vxa, vya)-paths and variable gadgets in (vxa, vxb)-paths. The yle Q would then followa sequene where the variable gadgets belong to variables forming an inreasing sequene.1.5 Key AssertionsIn this setion we state the assertions (theorems or problems) that provide (or would provide) mostof the results of the tableau: the �minimal� NP-omplete problems, and the �maximal� polynomialones. Those that allowed �lling in most of the tableau, also using the basi redutions of setion 1.3;and also those problems that were output by the tableau as missing. Some historial results ited



1 Multi�ow Feasibility: an Annotated Tableau 15in the footnotes of the tableau do not reappear here, beause they are subsumed by more reenttheorems that do reappear. By giving the main theorems in a �full-text� version, we try to providethe most preise formulation and thus a high redibility for the tableau.We give the list without omment. We hope it will then be easy to swith between the tableauand this list hene and forth to see the fats and their reasons.1.5.1 NP-ompletenessTheorem 10 (Fortune, Hoproft and Wyllie, 1980) The vertex-disjoint paths problem is NP-omplete, even if E(H) = 2.Theorem 11 (Middendorf and Pfei�er 1993) The edge-disjoint paths problem is NP-omplete,even if G + H is planarTheorem 12 (Vygen 1995) The multi�ow problem is NP-omplete, even if G is an ayli di-graph, r + c is Eulerian and |E(H)| = 3.Note that under the same ondition, supposing r(h) = 1, for all h ∈ H , the problem is solvablein polynomial-time but still non-trivial, see the nie algorithm of Ibaraki and Poljak [8℄.Theorem 9 The vertex-disjoint paths problem is NP-omplete in ayli digraphs, even if G + His planar.Theorem 13 (Marx 2003) The multi�ow problem is NP-omplete if G is planar (also if it is agrid) and G + H is Eulerian, both in the undireted and direted ayli ase.Theorem 14 (Naves 2008) The multi�ow problem is NP-omplete, even with one of the follow-ing restritions:(i) G is a planar undireted graph, H has only two edges, both on the in�nite fae of G,(ii) G is a direted graph, G + H is planar, H has only two terminals.(iii) G is a direted ayli digraph, H has only two edges, both on the in�nite fae of G.1.5.2 PolynomialityTheorem 15 (Frank, 1989) The multi�ow problem in Eulerian digraphs with |E(H)| = 2 issolvable in polynomial-time. The ut ondition is su�ient for the existene of a solution.Theorem 16 (Luhesi and Younger, 1978) The multi�ow problem in direted ayli graphswith G + H planar is solvable in polynomial-time.Theorem 17 (Fortune, Hoproft and Wyllie, 1980) The vertex-disjoint paths problem in di-reted ayli graphs with |E(H)| bounded is solvable in polynomial-time.Theorem 18 (Seymour, 1981) The multi�ow problem is solvable in polynomial time in undi-reted graphs, if G + H is planar (or more generally if it does not have a K5 minor) and r + c isEulerian. The ut ondition is then neessary and su�ient for the existene of a solution.Theorem 19 (Lomonosov, 1985) The multi�ow problem in Eulerian undireted graphs with
E(H) being the union of two stars, or K4 or C5, is solvable in polynomial-time. The ut on-dition is su�ient for the existene of a solution.Theorem 20 (Robertson and Seymour, 1990) The vertex-disjoint and edge-disjoint paths prob-lems in undireted graphs with r(E(H)) bounded are solvable in polynomial-time.Theorem 21 (Shrijver, 1992) The vertex-disjoint paths problem in planar digraphs with |E(H)|bounded is solvable in polynomial-time.Theorem 22 (Seb®, 1993) The integer multi�ow problem in undireted graphs with |E(H)|bounded is solvable in polynomial-time.



16 Guyslain Naves, András Seb®1.5.3 Relevant open problemsLast, we state 5 (in fat 7) of the 21 open problems that we �nd partiularly nie or frustrating.Problem 2 (Round-trip problem, [32℄ Problem 50) Is the problem of �nding a onnetedEulerian subgraph of a digraph, ontaining two pre-given verties, polynomial-time solvable ?Problem 3 Let k be an integer. What is the omplexity of routing k pairs of terminals in a Euleriandigraph if k is �xed ? Is this problem easier if G is planar ?Ibaraki and Poljak [8℄ found a polynomial-time algorithm for arbitrary graphs and k = 3. Asfar as we know, this is the only partial result about this question.Problem 4 Is the integer multi�ow problem solvable in polynomial-time when G is a Euleriandireted ayli graph ? And when the demand graph is �xed ?Problem 5 What is the omplexity of the undireted multi�ow problem if G is planar and G + H(or more generally r + c) is Eulerian and |E(H)| is �xed ?The omplexity of this last problem is open already if |E(H)| = 3. One of the latest results [18℄establishes NP-ompleteness in both the undireted and direted ase, if the number of edges ofthe demand graph is not �xed. For the direted ase this settles Problem 3 if k is not �xed.Referenes1. C. BENTZ, Résolution exate et approhée de problèmes de multi�ot entier et de multioupe: algo-rithmes et omplexité, thèse de doteur en informatique, Conservatoire Nationale des Arts et Métiers(November 2006).2. C. BENTZ, M.-C. COSTA, L. LÉTOCART, F. ROUPIN, Minimal multiut and maximal integermulti�ow: A survey, EJOR 162 (2005), 55-69.3. S. EVEN, A. ITAI, A. SHAMIR, On the omplexity of Timetable and Multiommodity Flow Problems,SIAM Journal of Computing 5, No.4 (1976), 691-703.4. S. FORTUNE, J. HOPCROFT, J. WYLLIE, The Direted Subgraph Homeomorphism Problem, Theo-retial Computer Siene 10 (1980), 111-121.5. A. FRANK, On onnetivity properties of Eulerian digraphs, in Annals of Disrete Mathematis 41,North Holland, Amsterdam, 1989, pp 179-194.6. A. FRANK, Paking Paths in Planar Graphs, Combinatoria 10 (4) (1990) 325-331.7. A. FRANK, Paking Paths, Ciruits and Cuts - a Survey, in: B. Korte, L. Lovász, H.J. Pr®mel, A.Shrijver (Eds.): Paths, Flows, and VLSI-Layout, Springer, Berlin, (1990).8. T. IBARAKI, S. POLJAK, Weak Three-Linking in Eulerian Digraphs, SIAM Journal on DisreteMathematis 4 (1991), 84-98.9. R.M. KARP, On the Complexity of Combinatorial Problems, Networks 5 (1975), 45-68.10. B. KORTE, L. LOVÁSZ, H.-J. PRÖMEL, A. SCHRIJVER (Eds.), Paths, Flows, and VLSI-Layout,Springer, Berlin, (1990).11. B. KORTE, J. VYGEN, Combinatorial Optimization: Theory and Algorithms, Algorithms and Com-binatoris 21 Springer, Berlin Heidelberg New York, (2000).12. M.R. KRAMER, J. VAN LEEUWEN, The Complexity of Wire-Routing and Finding the MinimumArea Layouts for Arbitrary VLSI Ciruits, in: F.P. Preparata: Advanes in Computing Researh 2:VLSI Theory, JAI press, London (1984), 129-146.13. M. LOMONOSOV, Combinatorial Approahes to Multi�ow Problems, Disrete Applied Matyhematis11 (1985), 1-94.14. M. LOMONOSOV, A. SEB�, On the geodesi struture of graphs: a polyhedral approah to metrideomposition, in Integer Programming and Combinatorial Optimization, Proeedings of the 3d IPCOonferene, Erie (Italy) 1993, Rinaldi and Wolsey eds. (1993) page 221-234.15. C.L. LUCCHESI, D.H. YOUNGER, A minimax theorem for direted graphs, The journal of the LondonMathematial Soiety (2) 17 (1978), 369-374.16. N. LYNCH, The Equivalene of Theorem Proving and the Interonnexion problem, (ACM) SIGDANewsletters 5:3 (1975), 31-36.17. L. LOVÁSZ, Combinatorial Problems and Exerises, Akadémiai Kiadó, Budapest, 1979.
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