Another proof of optimality for greedy
(If you can do it simple, make it complicated and sketch !)

$$
\begin{aligned}
& \text { Thu (Edwocds): Me(} 5,7 \text {) aah. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof: }: \sum_{a \in A} x_{a} \geq \ldots \geq w_{n} \\
& U_{i}=\{1, \ldots, i\} \\
& \text { w }
\end{aligned}
$$

Submodularity => Sets A with positive dual variables form a chain!
The F that we find satisfies: $\quad\left|F \cap U_{i}\right|=r\left(U_{i}\right)$

$$
\left.\begin{array}{l}
\dot{w}(F)=\left(w_{1}-w_{2}\right)\left|F \dot{F}_{1}\right|+ \\
+\left(w_{2}-w_{3}\right)\left|F \cap U_{v}\right|+\ldots \\
+w_{n}\left|F \cap U_{n}\right|
\end{array}\right\} \begin{aligned}
& \text { dual } \\
& \text { solution }
\end{aligned}
$$

The inverse of the duality theorem

Theorem (Edmonds) : $M=(S, \mathcal{F})$ matroid. Then

$$
\operatorname{conv}\left(\chi_{F}: F \in \mathcal{F}_{i}\right)=\left\{x \in \mathbb{R}^{S}: x(A) \leq r(A) \text { for all } A \subseteq S, x \geq 0\right\}
$$

Proof :

$\subseteq: ~ C l e a r!$

$$
\begin{aligned}
& \text { For }=\text { show } \forall w \in \mathbb{R}^{S} \max w^{\top} x \text { for } x \text { on the left }= \\
& \max w^{\top} x \text { for } x \text { on the right }
\end{aligned}
$$

This suffices, since if not $=$, then \subset and the hyperplane $c^{\top} x=b$ separating some x on the right from all on the left, shows that the max of $c^{\top} x$ is larger on the right (choosing the sign of c appropriately).

But max of $c^{\top} x$ on the right is equal, by the duality theorem to the min of its dual so the latter is larger then the max of $c^{\top} x$ on the left, contradicting Edmonds' minimax theorem (previous transparency).

Matroid Intersection

Edmonds (1979)

Let M_{1} and M_{2} be two matroids, (S, r_{1}) and (S, r_{2})
$\left(S, \mathscr{F}_{1}\right)$ and $\left(S, \mathscr{F}_{2}\right)$
$\mathrm{c}: \mathrm{S} \rightarrow \mathrm{IR}_{+}$
maximize $\left\{c(F): F \in \mathcal{F}_{1} \cap \mathscr{F}_{2}\right\}$

Two examples :

2 disjoint spanning trees: M_{1} and $\mathrm{M}_{2}:=\mathrm{M}_{1}{ }^{*}$, $\mathrm{c}=1$ everywhere; actually arbitrary number of disjoint spanning trees (network design)

Bipartite matchings :
 Both $\mathrm{M}_{1} \mathrm{M}_{2}$ are partition matroids: sums of uniform matroids on stars

Matroid Intersection Theorem

How to conjecture a « good characterization »?

We know : $x \in \operatorname{conv}\left(\chi_{F}: F \in \mathscr{F}_{i}\right) \Leftrightarrow x(A) \leq r_{i}(A)$ for all $A \subseteq S$
maximize $\left\{|\mathrm{F}|: \mathrm{F} \in \mathcal{F}_{1} \cap \mathcal{F}_{2}\right\}=? \quad \operatorname{conv}\left(\chi_{\mathrm{F}}: \mathrm{F} \in \mathcal{F}_{1} \cap \mathscr{F}_{2}\right)=$?

$$
\left\{x(A) \leq r_{i}(A) \quad(i=1,2) \text { for all } A \subseteq S\right\}
$$

Theorem (Edmonds 1979): $\quad \max |F|=\min r_{1}(X)+r_{2}(S \backslash X)$

$$
\mathrm{F} \in \mathscr{F}_{1} \cap \mathscr{F}_{2} \quad \mathrm{X} \subseteq \mathrm{~S}
$$

Matroid Intersection Theorem

Generalization of bipartite matching (of the alternating paths in the «Hungarian method»)

Proof of \geq : that is, there is F and X with $\quad|F|=r_{1}(X)+r_{2}(S \backslash X)$.
We prove that the following algorithm terminates with such an F and X .

Intersection algorithm
What is the INPUT ? S and \rightarrow ORACLE - rank, independence, etc
0.) Let : $\mathrm{F} \in \mathscr{F}_{1} \cap \mathcal{F}_{2}$ maximal by inclusion (greedily)
1.) Define arcs from unique cycles Between $\mathrm{S} \backslash \mathrm{F}$ and S :

$$
\mathrm{C}_{1} \in \boldsymbol{e}_{1}
$$

Matroid Intersection Theorem Algorithmic proof

$\mathrm{C}_{1} \in \boldsymbol{e}_{1}$

3.) Sources $S:=\left\{x \in S \backslash F, F \cup\{x\} \in \mathscr{F}_{2}\right\}$ Sinks $T:=\left\{x \in S \backslash F, F \cup\{x\} \in \mathcal{F}_{1}\right\}$ If S or T is empty?
Find an (S,T)-path.
a.) If there exists one, let P be one with inclusionwise minimal vertex-set (equivalently, P is chordless).
b.) If there exists none, $T \cap X=\varnothing$, where $X:=\{x \in S: x$ is reachable from $S\}$

Matroid Intersection Theorem

 exchange along an improving path
$\mathrm{C}_{1} \in \boldsymbol{\mathcal { C }}_{1}$

a.) If $\mathrm{P}=\left\{\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right\}$ is a chordless path, then $\mathrm{F} \Delta \mathrm{P} \in \mathscr{F}_{1} \cap \mathscr{F}_{2}$ To prove this, apply the following to $\mathrm{F} \cup\left\{\mathrm{x}_{1}\right\} \in \mathscr{F}_{2}$, and $\mathrm{F} \cup\left\{\mathrm{x}_{\mathrm{k}+1}\right\} \in \mathcal{F}_{1}$

Lemma : $\mathrm{M}=(\mathrm{S}, \mathscr{F})$ matroid, $\mathrm{F} \in \mathscr{F}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \notin \mathrm{F}$ If y_{i} is in the unique cycle of $F_{i} \cup x_{i}$, but $y_{j}, j=i+1, \ldots k$ is not, then

$$
\left(F \backslash\left\{y_{1}, \ldots, y_{k}\right\}\right) \cup\left\{x_{1}, \ldots, x_{k}\right\} \in \mathscr{F}
$$

Proof: For $k=1$ true, and then use it by induction to $\left(F \backslash\left\{y_{k}\right\}\right) \cup\left\{x_{k}\right\}$.

Matroid Intersection Theorem

No improving path : show that the solution is optimal

$$
\text { Let } X:=\{x \in S: x \text { is reachable from } S\}
$$

Lemma : Suppose b.) : $\mathrm{X} \cap \mathrm{T}=\varnothing$, where $X:=\{x \in S: x$ is reachable from $S\}$ Then $|F|=r_{1}(X)+r_{2}(S \backslash X)$

Proof : $r_{1}(X)=|F \cap X|$, because $X \subseteq \operatorname{sp}_{1}(F \cap X)$.
$r_{2}(S \backslash X)=|F \backslash X|$, because $S \backslash X \subseteq \operatorname{sp}_{2}(F \backslash X)$.

$\mathrm{C}_{1} \in \boldsymbol{C}_{1}$

Corollaries

Conversely these can be deduced with a similar algorithm and imply matroid intersection.
matchability to an independent set

Matroid union (partition)

Minimum number of independent sets covering every element

Maximum number of disjoint bases

Theorem (Nashwilliams) : In a graph there exist k disjoint spanning trees, if and only if for any partition \mathscr{P} of the vertex-set there exist at least $|\mathcal{T}|-1$ edges with endpoints in different classes.

On the cross oad of the oostman and the salesman

Polyhedra for the postman and the salesman

For the postman apply to $\mathrm{T}:=\mathrm{T}_{\mathrm{G}}$:
Theorem Edmonds,Johnson (1973) : conv (T-joins) $+I \mathrm{R}_{+}{ }^{\mathrm{n}}=$

$$
\mathrm{Q}_{+}(\mathrm{G}, \mathrm{~T}):=\left\{\mathrm{x} \in \mathrm{I}_{+}{ }^{\mathrm{E}} \mathrm{x}(\delta(\mathrm{~W})) \geq 1, \delta(\mathrm{~W}) \text { is a } \mathrm{T} \text {-cut, i.e. }|\mathrm{W} \cap T| \text { is odd }\right\}
$$

Fractional relaxation of the TSP (subtour elimination « Held-Karp »):

$$
\begin{array}{r}
P(V, s, t)=\left\{x \in I R_{+}^{E}: x(\delta(W)) \geq 2, \varnothing \neq W \subset V, s, t \in W \text { or } \notin\right. \\
1, \text { if } s, t \text { separated by } W\}
\end{array}
$$

Integer points: Hamiltonian cycles

Objectifs : Conjecture: OPT $\leq 4 / 3$ LIN
Conjecture (s, t) : OPT $\leq 3 / 2 \mathrm{LIN}$

OPT := c-min Ham
Relaxation: LIN := $\min \left\{c^{\top} x: x \in P(V, s, t)\right\} \rightarrow x^{*}$

Tours

A tour in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a « spanning Eulerian subgraph of 2 G », that is, $\mathrm{H}=(\mathrm{V}, \mathrm{F})$ such that

- the elements of F are in E and with 1 or 2 parallel copies
- all degrees of H are even
- H is connected
min c-weight of a tour $=$ OPT of TSP (min of metric HAM)

Tour = ‘Graphical TSP tour ' of Cornuéjols, Fonlupt, Naddef (1986)
= TSP
min cardinality of a tour $=$ OPT of graph - TSP

Reformulations to tours

TSP
INPUT: G graphe, c: $\mathrm{E}(\mathrm{G}) \rightarrow \mathrm{IR}_{+}$
OUTPUT: c-min tour (dans 2G, degrés pairs, connexe)

TSP PATH

INPUT: G graph, $s, t \in V(G), c: E(G) \rightarrow \mathbb{R}_{+}$
OUTPUT: min (s, t) - tour (in 2G, s, t : odd, otherwise even, connected)

Advantages :

- No restriction on c, - no more necessarily a metric !
- Even degrees, relaxed comparing to 2
- equivalence with a less dense graph
- has a cardinality case $c \equiv 1$

- becomes graph theory with combinatorial methods
graph-TSP : minimum cardinality of a tour

The last results

cycle or path
cardinality
or weights

Gao: preuve simple, mars 2013

> Sebő, Vygen
> SV12, Jan 2012
> 1.4
> 42
> 13
> Christofides
> CHR, 1976
> 1,5
> Sebő, Vygen
> SV12, Jan 2012
> 1,5
> Sebő
> S12, Sept 2012
> 1,6

Christofides : connectivity \& parity correction

Christofides Tour : c-min spannicng tree F $+\quad$ parity correction (pc)

$$
\begin{aligned}
& \text { tour } \backslash T_{F} \text {-join is a } T_{F} \text {-join }=>p c \leq 1 / 2 \\
& \text { for }(s, t) \text {-tours } 2 / 3
\end{aligned}
$$

Trick: If $x \in Q_{+}(G, T)$, then $c($ modifying the parith on $T) \leq c^{\top} x$
Wolsey ' $80: x^{*} \in P(G, s=t)$, so $x^{*} / 2 \in Q_{+}(G, T) \forall T$, apply to $T=T_{F}$

5/3 for T-tours: another proof

INPUT : G graph, $\mathrm{T} \subseteq \mathrm{V}(\mathrm{G}), \mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{R}_{+}$ OUTPUT: shortest T-tour

Theorem: (Hoogeveen 1991) : Christofides-type alg is 5/3-approx
'Christofides type': c-min spanning tree F + parity correction

Proof :

opt connected T-join

Graph-TSP paths = \{s,t\}-tours, cardinality

Theorem (SV12) : 3/2 approximation for graph-TSP paths

$$
\mathrm{OPT} \leq 3 / 2 \mathrm{LIN}^{\prime}
$$

Theorem (Gao, mars 2013): OPT $\leq 3 / 2 \mathrm{LIN}$

Proof: AKS: $x^{*} / 2$ can be << 1 on T-cuts, no more good for parity corr !
AKS: $\quad Q:=\left\{Q\right.$ is a cut, $\left.x^{*}(Q)<2\right\} \quad$ narrow $\{s, t\}$-cuts
By submodularity, belongs to a chain of vertex-sets!

Gao: The «level-sets» of Q are connected:
\exists spanning tree F st $|F \cap Q|=1$ for all $Q \in Q$
$x^{*} / 2 \in \mathrm{Q}_{+}\left(\mathrm{G}, \mathrm{T}_{\mathrm{F}}\right) \quad:$ good for parity correction

$$
<2<2<2
$$

$\{s, t\}-$ tours arbitrary weights

Theorem (S 12) : 8/5 approximation for TSP paths

$$
\mathrm{OPT} \leq 8 / 5 \mathrm{LIN}
$$

'Classical' part : «Random sampling » derived from x^{*}, where x^{*} is (\geq) a conv combination of a pol number \mathscr{F} of spanning trees Used by Gharan, Saberi, Singh ('12) for « random sampling ».
Not just matroid partition! Cunningham(1984), Barahona(1995), Gabow, Manu (1998)

Best of Many (BOM) Algorithm: (AKS11) Output F + J ${ }_{F}$, where $F \in \mathcal{F}$ minimizes $c(F)+c\left(J_{F}\right), J_{F}$ is a (c-min) $T_{F} \Delta\{s, t\}$-join in G

$\{s, t\}-$ tours arbitrary weights

New part (S 12) :

$$
\begin{aligned}
& \mathrm{p}^{*}:=\mathrm{E}[\mathcal{F}(\mathrm{~s}, \mathrm{t})] \\
& \mathrm{q}^{*}:=\mathrm{E}[\mathcal{F} \backslash \mathscr{F}(\mathrm{~s}, \mathrm{t})] \\
& \mathrm{x}^{*}=\mathrm{p}^{*}+\mathrm{q}^{*}=\mathrm{E}[\mathscr{F}]
\end{aligned}
$$

$\left(x^{*}+p^{*}\right) / 2$ is in Q_{+}, i.e.
dominates parity correction
$\mathcal{F} \backslash \mathcal{F}(\mathrm{s}, \mathrm{t})$ corrects the parity of \mathcal{F}

E[c(parity correction)] \leq

$$
\begin{gathered}
c^{\top} x^{*} / 2+c^{\top} p^{*} / 2=X / 2+Y / 2 \\
c^{\top} q^{*}=c^{\top} x^{*}-c^{\top} p^{*}=X-Y
\end{gathered}
$$

$$
\leq \mathbf{2 / 3} \mathbf{c}^{\boldsymbol{\top}} \mathbf{x}^{*}=2 / 3 X
$$

Key idea (for $\mathrm{pc} \leq 3 / 5 \mathrm{LIN}$) in the worst case

Suppose the worst : $x^{*}(Q)=3 / 2$ for all $Q \in Q$
The complement: $x^{Q}(e):=\operatorname{Pr}(\{e\}=Q \cap \mathscr{F})$ Add x^{Q} only when necessary.
$\operatorname{Pr}\left(|Q \cap \mathcal{F}|=1\right.$ and then we don't add $\left.x^{Q}\right) \geq 1 / 2$

$\operatorname{Pr}\left(\right.$ we add x^{Q}) $\leq 1 / 2$
$1 \leq x^{*}(Q) \leq 2$

Events ' $\mathrm{Q} \cap \mathscr{F}=\{\mathrm{e}\}^{\prime}$:

- mutually exclusive for different Q,
- $\subseteq{ }^{\prime} \mathrm{e} \in \mathcal{F}(\mathrm{s}, \mathrm{t})$ '

In expectation we add: $\quad 1 / 2 \sum \mathrm{x}^{\mathrm{Q}} \leq 1 / 2 \mathrm{p}^{*}$
Cost of the parity correction : $c^{\top} 1 / 2\left(x^{*}+p^{*} / 2\right)$

Graph-TSP = min cardinality tours

Theorem : (SV12) \exists T-tour of cardinality $\leq 3 / 2$ LIN $-\pi$

Corollary 1: (SV12) ヨ tour of cardinality $\leq 7 / 5$ LIN

Proof : Applying an ingenious lemma of Mömke \& Svensson :
\exists tour of cardinality $\leq 4 / 3|\mathrm{~V}|+2 / 3 \pi$

Relaxation : 2-Edge-Connected Spanning Subgraph (2ECSS)

Corollary 2 : (SV12) $\exists 2$ ECSS of size $\leq 4 / 3$ LIN
Proof : Simple recursion + result of A. Frank: $5 / 4$ LIN + $1 / 2 \pi$

The future ? : Boyd, Iwata, Takazawa ('11) for 3-EC cubic: 6/5|V|

Ears

For understanding $\pi+$ matroid idea +useful if you don't know :

$$
G=P_{0}+P_{1}+P_{2}+\ldots+P_{k}
$$

2-approx for 2ECSS: delete 1-ears!
You get: $\quad \leq 5 / 4$ OPT $+1 / 2 \pi_{3}$
The longer the ears, the smaller the quotient n . of edges / vertices

Theorem : (Whitney, Cheriyan, Sebő, Szigeti, Vygen, 1932-2012) If G is 2 -connected, then there exists a nice open ear-decomposition, i.e.

- 1-ears last, 2-ears, 3-ears « before the last »
- no edges between their inner vertices,
- min number of even ears

«Rerout» short ears

R : = internal vertices
of short ears
(2-, 3-oreilles)

Short ears are not efficient in terms of n. of edges / n. of vertices but they are very flexible for changes!
$\mathrm{G}_{0}:=\mathrm{G}-\mathrm{R}$

c.)

Which three ears would you choose ?

The 2 ingrediants of the alg and of the proof

a.) 1 ear for all edges and vertices in R (independent in a partition matroid)
b.) acyclic
(independent in a cycle-matroïde

1.) Heureka, intersection of 2 matroides (Edmonds 1965) solves it !
2.) Heureka, the parity has to be corrected only in G_{0}, whence $-\pi$

Lower bounds for best garantee unless P=NP (tours):

$$
\begin{aligned}
& \frac{5381}{5380} ; \frac{3813}{3812} ; \frac{220}{219} \text { (2000); } \frac{185}{184} \text { (2012) } \\
& \text { Papadimitriou, Vempala; Lampis }
\end{aligned}
$$

For paths ?
Can the bounds be improved ?
Study of BOM for all variants !

.Directions from bird's eyes ...

