
Another proof of optimality for greedy 

Submodularity => Sets A with positive dual variables form a chain !   

The F that we find satisfies: 

dual 
solution 

Proof: 

(If you can do it simple, make it complicated and sketch ! )   



The inverse of the duality theorem 

Proof : 

Theorem (Edmonds) :  M= (S, F ) matroid. Then 
  conv (F : FFi) =  { x  IRS :  x (A)  r (A)  for  all  A   S ,  x ≥ 0 }   

 :  

For  =   show   w  IRS  max wTx  for x  on the left    =  
                                             max wTx  for x  on the right 

 
This suffices , since if not =, then    and the hyperplane cTx=b  separating 
some   x  on the right from all on the left , shows that  
the max of  cTx  is larger on the right (choosing the sign of c  appropriately).  
 
But max of  cTx   on the right is equal, by the duality theorem to the min of 
its dual so the latter is larger then the max of  cTx   on the left, contradicting 
Edmonds’ minimax theorem (previous transparency).  
 

 

Clear !  



Matroid Intersection 
 Edmonds (1979) 

Let  M1 and M2 be two matroids,    
(S,r1) and (S,r2)  
(S,F1) and (S,F2)  
c: S IR+ 
 

maximize  { c(F)  : FF1F2 } 

Bipartite matchings :  

2 disjoint spanning trees :  M1 and M2 := M1
*  ,  c= 1 everywhere;  

actually arbitrary number of disjoint spanning trees (network design) 

  

Two examples :  

  

M1
 

  M2
 

      Both M1
, M2  are partition matroids: sums of uniform matroids on stars 

  



How to conjecture a « good characterization » ?  

We know :  x  conv (F : FFi)   x (A)  ri (A)  for  all    A   S    

maximize  { |F|  : FF1F2 } =?         conv (F : FF1F2 ) =?  
 

{x (A)  ri (A)  (i=1, 2)  for all A  S } 
 
 
 

 
 
 
  

Theorem (Edmonds 1979):  
 
 

 
     

   max    |F|   = min  r1 (X) + r2 (S \ X)  
 FF1F2              X  S 

If  |F|=r1(M) define X !  
 

Matroid Intersection Theorem 



Generalization of bipartite matching 

(of the alternating paths in the « Hungarian method ») 

Proof of  ≥ :  that is, there is F and X with     |F|   = r1 (X) + r2 (S \ X)  .   
  

We prove that the following algorithm terminates with such an F and X.   

Intersection algorithm  

0.) Let : FF1F2   maximal by inclusion (greedily) 

What is the INPUT  ?  S and  ORACLE  - rank, independence, etc  

1.)     Define arcs from   
 unique cycles  
Between S\F and S   :  

F x 

C1C1 

C2C2 

y 

Matroid Intersection Theorem 



Algorithmic proof 

F x 

C2C2 

y 

C1C1 

F 

3.) Sources S:={x  S \ F ,  F  {x}  F2 }  Sinks T:={x  S \ F , F  {x}F1} 
       
      Find an (S,T)-path.  
 
 

a.)  If there exists one, let P be one  with  
       inclusionwise minimal vertex-set  
       (equivalently, P is chordless).  
 
b.)   If there exists none, T   X  =  , where 
             X := {x  S : x is reachable from S}   
       

  
  

F 

T 

S 

F 

P 

F 

T 

S 

F 

S 
X 

If  S or T is empty ?  
 

Matroid Intersection Theorem 



exchange along an improving path 

Matroid Intersection Theorem 

F 

F 

T 

S 

F 

P 

x2 x1 x3 xk … 

y1 y3 … y2 yk 

xk+1 

a.) If  P= {x1, y1,x2,…xk,yk,xk+1} is a chordless path, then  F  P  F1 F2 

      To prove this, apply the following  to F{x1}  F2 , and F{xk+1}  F1  

 
Lemma : M = (S, F ) matroid,  F F  , x1, … , xk  F  

If       yi  is in the unique cycle of Fi  xi ,  
but    yj  , j=i+1, … k  is not, then  

( F \ { y1, … , yk } )  { x1, … , xk }  F  

 

F x 

C2C2 

y 

C1C1 

F 
F 
 

P 

x2 x3 xk 

y1 y3 … y2 yk 

x1 

Proof:  For k= 1 true, and then use it by induction to  (F \ {yk } )  {xk } .  

… 



No improving path :  show that the solution is optimal 

Matroid Intersection Theorem 

F 

T 

S 

F 

S 
X 

Let  X := {x  S : x is reachable from S} 
           

Lemma : Suppose b.) :   X  T =  , where  
     X := {x  S : x is reachable from S}   

Then |F|   = r1 (X) + r2 (S \ X)    

Proof : r1 (X) =  |FX|, because X   sp1 (FX) . 
 
r2 (S \ X) =  |F \ X |, because  S \ X   sp 2(F \ X) . 

F x 

C2C2 

y 

C1C1 



Corollaries  

Conversely these can be deduced with a similar algorithm and 
imply matroid intersection.   
 
matchability  to an independent set  
 
Matroid union  (partition) 
 
Minimum number of independent sets covering every element 
 
Maximum number of disjoint bases 
 
Theorem (Nashwilliams) :  In a graph there exist k disjoint spanning 
trees, if and only if for any partition  P  of the vertex-set  there exist 

at least |P |  - 1  edges with endpoints in different classes.  



 On the crossroad of the postman and 

the salesman 

Clermont-Ferrand, 21 juin 2013 



Polyhedra for the postman and the salesman 

For the postman apply to T:=TG  :  
 

Fractional relaxation of the TSP (subtour elimination « Held-Karp »):  
 

Objectifs :  
 

        P(V,s,t)={xIR+
E: x((W)) ≥ 2,  ≠ W  V, s, t  W or 

                                                        1,  if s,t separated by W} 

Integer points :   Hamiltonian cycles 

OPT := c-min Ham  

Theorem  Edmonds,Johnson (1973) :  conv (T-joins) + IR+
n = 

 

Q+(G,T) := {xIR+
E  x((W)) ≥ 1, (W) is a T-cut, i.e. |WT| is odd} 

 

Conjecture:  OPT  4/3 LIN 
 

 

Conjecture (s,t) :  OPT   3/2 LIN 
 

Relaxation:  LIN   :=  min { cTx :  x  P(V,s,t) }  x* 



Tours 

A tour in G=(V,E) is a « spanning Eulerian subgraph of 2G »,  

that is, H =  (V, F) such that  

- the elements of F  are in  E and with   1 or 2 parallel copies  

- all degrees of H are even  

- H is connected 

Tour  = ‘Graphical TSP tour ’ of 
Cornuéjols, Fonlupt, Naddef (1986) = TSP 

min c-weight of a tour      =   OPT of  TSP (min of metric HAM)   

min cardinality of a tour    =      OPT of  graph - TSP  

2 

3 



Reformulations to tours 

TSP 
INPUT: G graphe, c: E(G)  IR+  
OUTPUT: c-min  tour (dans 2G, degrés pairs, connexe) 

TSP PATH 
INPUT: G graph, s,t  V(G),  c: E(G)  IR+ 
OUTPUT: min  (s,t) – tour (in 2G, s,t: odd, otherwise even, connected) 

 

Advantages : 
- No  restriction on c , - no more necessarily a metric !   
- Even degrees, relaxed comparing to 2 
- equivalence with a less dense graph 
- has a cardinality case   c  1 
- becomes graph theory with combinatorial methods 

5 3 

12 
Can be deleted  

graph-TSP :  minimum cardinality of a tour 



The last results 

      cycle or   
             path  
 
cardinality 
 or  weights         

 
                          cycle 

 
                  (s,t)-path 

 
cardinality 

 Gamarnik,Lewenstein,Sviridenko (2005):  
3/2 -  for cubic 3-connected 

Boyd, Sitters,van der Ster,Stougie (2011): 
            4/3 for cubic  
 Oveis, Gharan, Saberi, Singh (2011) :  
            3/2 -    
Mömke, Svensson (2011) : 1.461… 
Mucha (2011) :  13/9=1.444… 

 

 Hoogeveen (1991)  
5/3 

 

An,Kleinberg,Shmoys(2011) 
1.578 …                    

 
general 

 
 

Christofides 

CHR, 1976 
                       1.5 

 

Hoogeveen (1991)  
5/3 

 

An,Kleinberg,Shmoys(2011)
“AKS”            1.619 … 

      cycle or   
             path  
 
cardinality 
 or  weights         

 
                          cycle 

 
                  (s,t)-path 

 
cardinality 

 
 
             Sebő, Vygen 

 SV12, Jan  2012 
                                                            1.4 
 
 
 

 

 
             Sebő, Vygen 
             SV12, Jan 2012 

1,5 
 

  
general 
 

 
Christofides 

CHR, 1976 
                       1,5 

 

              Sebő 

  S12, Sept 2012 
                              1,6 
 

   Gao: preuve simple, mars 2013 

1 

2 

3 

4 



Clermont-Ferrand, 21 juin 2013 



 

Christofides Tour  :    c-min spannicng tree F +        parity correction  (pc) 

 

diconnects 

Can 
be 
delet
ed 

Christofides : connectivity & parity correction 

Trick : If x Q+(G,T), then c(modifying the parith on T) ≤ cT x    
 
 

Wolsey ‘80 : x*  P(G,s=t) , so  x*/2Q+(G,T)   T, apply  to  T=TF 

for (s,t)-tours     2/3  

tour \ TF-join  is a TF-join  => pc ≤ 1/2 

TF-joins, où  

TF :={v: dF(v) est impair} 

F 



opt connected T-join T = {s,t} Proof : 

INPUT    : G graph, T  V(G), c:E(G)  IR+ 
OUTPUT: shortest T-tour 

‘Christofides type’ :  c-min spanning tree F +  parity correction 

s t s t 
F 

T  TF -join 

TF -join 
T  TF -join 

T -join 

5/3 for T-tours: another proof 

TF 

Theorem: (Hoogeveen 1991) : Christofides-type alg is 5/3-approx  



Graph-TSP paths = {s,t}-tours, cardinality 

 

Theorem  (SV12) :  3/2 approximation  for  graph-TSP paths 

                                                OPT    3/2 LIN’ 

 

Theorem  (Gao, mars 2013) :       OPT    3/2 LIN 

 

Gao :   The  «level-sets » of Q  are connected : 

Proof:  AKS:  x*/2 can be << 1 on T-cuts, no more good for parity corr !    

 AKS:    Q := { Q is a cut, x*(Q) < 2 }        narrow {s,t}-cuts 

By submodularity,  belongs to a chain of vertex-sets ! 

 s  t 

 
level
set 

< 2 < 2 < 2 

  spanning tree F st |F  Q |=1 for all  Q Q   

x*/2Q+(G,TF)   : good for parity correction 



{s,t}-tours arbitrary weights 

Theorem  (S 12) :  8/5 approximation  for TSP paths 

                                                OPT    8/5 LIN 

 x* is (≥) a conv combination of a pol number F   of spanning trees 
Used by Gharan, Saberi, Singh (’12) for « random sampling » . 

Not just matroid partition!  Cunningham(1984), Barahona(1995), Gabow, Manu

Best of Many (BOM) Algorithm: (AKS11) Output  F + JF ,where  

FF  minimizes c(F)+ c(JF)  ,   JF is a (c-min) TF {s,t} –join in G  

‘Classical’ part :   « Random sampling »  derived  from x*, where

Complete   x* / 2  with some correcting vector     (AKS11)  





‘Classical’ part‘Classical’ partrrr 

New part (S 12) :  

s 
t 

TF 

F 

G 

(x* + p*) /2    is in  Q+ , i.e. 

dominates parity correction 
F \ F(s,t)  corrects the parity of F  

       ≤ 2/3 cTx*=  2/3X 
    

p*:=E[F(s,t )] 

q*:=E[F \ F(s,t )] 

x*= p* + q* = E[F]   

E[c(parity correction)] ≤ cTq* = cTx* -  cTp*= X - Y  

cTx*/2 + cTp*/2 = X/2 + Y/2  

{s,t}-tours arbitrary weights 

s 

2 k-1 1 

t 

1 

1/2 

0 TF  {s,t} 

F 

G 

...  
OPT=LIN  

BOM=3/2 OPT 



Key idea (for pc 3/5LIN) in the worst case 
 
Suppose the worst :   x*(Q) = 3/2  for all   Q Q 

 

2 

3/2 

1 

… 

1  x*(Q)2 

Cost of the parity correction : cT   ½ (x* + p* / 2)  

The complement :    xQ(e) :=  Pr ( {e}  = Q F )  

 Add   xQ   only when necessary.  

 

Pr ( |Q F|=  1 and then we don’t add xQ )   ≥ ½  

Pr ( we add  xQ)   ≤ ½ 
 

 

 

Events  ‘ Q F = { e } ’  : 

• mutually exclusive for different Q ,   

•      ‘ e F (s,t)  ’ 
 

 

 

In expectation we add:        ½   xQ   ≤  ½  p* 
X - Y  

X/2 +Y/4 
≤ 0.6X 



Graph-TSP = min cardinality tours 

Theorem :  (SV12)    T-tour of cardinality   3/2 LIN  -    

Proof : Applying an ingenious lemma of Mömke & Svensson :  
                       tour of cardinality    4/3  |V|   +  2/3   

Corollary 1 : (SV12)    tour  of  cardinality    7/5   LIN  

Corollary 2 : (SV12)     2ECSS  of size    4/3  LIN  

Proof : Simple recursion + result of  A. Frank :   5/4 LIN + ½     

 The future ? :  Boyd, Iwata, Takazawa (‘11) for 3-EC cubic: 6/5|V|   

Relaxation : 2-Edge-Connected Spanning Subgraph (2ECSS) 



Ears 
For understanding  + matroid idea +useful if you don’t know :  

Theorem : (Whitney, Cheriyan, Sebő, Szigeti, Vygen, 1932-2012) 
If G is 2-connected,  then there exists a nice open ear-decomposition, i.e.    

P0 

P2 

P1 

P3 

P6 

P4 

P7 

P5 

P8 

P9 
The longer the ears, the smaller the  
quotient  n. of edges / vertices 

G = P0 +P1 + P2 + … + Pk 

 

2-approx for 2ECSS:  delete  1-ears! 

You get :     ≤ 5/4 OPT + 1/23  

• 1-ears last,  2-ears, 3-ears « before the last » 

• no edges between their  inner vertices,   

• min number of even ears   … 

 

 

 

 

  

 



« Rerout »  short ears 

  

 

 

 

 

G0:= G - R 

Short ears are not efficient in terms of 

n. of edges / n.of vertices 

but they are very flexible for changes ! 

R: = internal vertices 

 of short ears  

(2-, 3-oreilles) 

 Which  three ears would you choose ?  

a.) b.) 

c.) 



The 2 ingrediants of the alg and of the proof 

G0:= G - R 

a.) 1  ear for all edges 

and vertices in R 

(independent in  a 

partition  matroid)  

b.)  acyclic 

(independent in a  cycle-matroïde 

1.)  Heureka, intersection of 2 matroides (Edmonds 1965)  solves it ! 

2.) Heureka,  the parity has to be corrected only in G0 , whence    -  



THE  APPY  HEND 



Lower bounds for best garantee unless P=NP (tours):  

 
5381
5380

  ;  
3813
3812

  ; 
220
219

  2000 ;  
 185
 184

  (2012) 

              Papadimitriou, Vempala;  Lampis 
        
 
        For paths ? 
 
 

             Can  the bounds  be improved  ? 
 
 

         Study of BOM  for all variants ! 
       

   



●Directions from bird’s eyes …  

 

Bipartite matching 

 

   (poly) matroid 

Intersection, 

partition, …  

 

 

 

Eg:  packing 
arborescences,… 

              submod flows 

  

 

Matching, 

b-matching,  

T-joins, 

Orientations with 

parity, … 

 

 

   orientations 

flows 

 

 
Matchoid, jump system 

 
P  :  individual methods 

 

         distances in undir  

conservative graphs 


