4. Complements to the first 3 series

The postman polyhedron

Def : $\delta(W) \subseteq E(G)$ ($W \subseteq V$) is a *T-cut*, if $|W \cap T|$ is odd

Proposition : F T-join, $\delta(W)$ T-cut $\Rightarrow | F \cap \delta(W) | \ge 1$

Theorem Edmonds, Johnson (1973) : $Q_+(G,T) := \text{conv}(T-\text{joins}) + IR_+^n =$ $\{x \in IR_+^E x(\delta(W)) \ge 1, \delta(W) \text{ is a T-cut, i.e. } |W \cap T| \text{ is odd}\}$

Proof : Through the following slides.

Minmax bipartite

 $\tau(G,T) := \min \{ |F| : F \subseteq E, F \text{ is a T-join } \}$ $\nu(G,T) := \max\{ |\mathcal{C}| : \mathcal{C} \text{ disjoint T-cuts } \}$

```
Easy : \tau(G,T) \ge \nu(G,T)
```

Theorem (Seymour '81) If G is bipartite, $\tau(G,T) = \nu(G,T)$

Minmax nonbipartite

 $v_2(G,T) := \max\{ |\mathcal{C}| : \mathcal{C} \text{ 2-packing of T-cuts }\}, \text{ where}$ a *2-packing* is a family covering every element \leq twice

Easy : $\tau(G,T) \ge v_2(G,T)/2$

Proof: Let F be a T-join, and \mathcal{C} a 2-packing of T-cuts. Then $2 | F | = \sum_{C \text{ in } \mathcal{C}} |F \cap C| \ge v_2(G,T)$

Theorem (Edmonds-Johnson '73) If G is arbitrary, $\tau(G,T) = v_2(G,T)/2$

Packing

A *packing* is a family covering every element \leq once

A 2-packing is a family covering every element \leq twice

 $v_2(G,T)/2 \ge v(G,T)$

(Possibly) fractional : coefficients y_C ($C \in \mathcal{C}$) whose sum has to be maximized : v^* for packings.

For c: $E \rightarrow IR_+$: $\nu(G,T,c)$, $\nu_2(G,T,c)$, $\nu^*(G,T,c)$

Linear Programming Duality Theorem

Ax ≤ b		yA = c	
(A \in Q ^{mxn} ,b,c \in Q ⁿ)	dual:	$y \ge 0$	
max c ^T x	=	min y [⊤] b	

Weak duality for the T-join polyhedron

Let F be a T-join, and \mathcal{C} a 2-packing of T-cuts. Then $2 | F | = \sum_{C \text{ in } \mathcal{C}} |F \cap C| \ge v_2(G,T)$

Let F be a T-join, and \mathcal{C} a (possibly fractional) 1-packing of T-cuts with coefficients y_C ($C \in \mathcal{C}$) Then $|F| = \sum_{C \text{ in } \mathcal{C}} y_C |F \cap C| \ge v^* (G,T)$

Let F be a T-join, and \mathscr{C} a (possibly fractional) c-packing of T-cuts with coefficients y_C ($C \in \mathscr{C}$) Then $|F| = \sum_{C \text{ in } \mathscr{C}} y_C |F \cap C| \ge v^* (G,T,c)$ (or v(G,T,c))

Linear Programming

Hilbert bases (normal semigroups)

 $H \subseteq Z^n$ is a *Hilbert basis* if any integer vector which is a nonneg comb is also a nonneg integer comb

adding (-1,2), (0,1), (1,0) } : Hilbert basis

Integer Caratheodory property (+'partition' into unimodular cones)

Proving the T-join polyhedron Thm

Metatheorem : Polyhedron the same as weighted minmax theorem

If negative weights are allowed ?

c (**F**) = |c| (**F** \ E_{-}) - |c| (**F** \cap E_{-}) = |c| (**F** Δ E_{-}) - c (E_{-})

(So if (G,w) is conservative, λ_w(x,y) : = min {w(P) : P path }= min {w(P) : P {x,y}-join} Is reducible to min weight perfect matchings.)

> This reduction leads to the T-join *polytope*

Another application

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length. **Output**: Schedule of min completion time T

Theorem : (Fujii & als) : $T = n - v (G_{input})$

Solutions for max (weighted) matchings: with Edmonds' algorithm (1965) Grötschel, Lovász, Schrijver with Padberg-Rao (1979)

To come : matroids

Exercises to revise for the third course : series 7.