4. Complements
 to the first 3 series

The postman polyhedron

$$
\text { Def : } \delta(\mathrm{W}) \subseteq \mathrm{E}(\mathrm{G})(\mathrm{W} \subseteq \mathrm{~V}) \text { is a } T \text {-cut, if }|\mathrm{W} \cap T| \text { is odd }
$$

```
Proposition:F T-join, }\delta(\textrm{W})\textrm{T}\mathrm{ -cut }=>|F\cap\delta(W)|\geq
```

Theorem Edmonds,Johnson (1973) : $\mathrm{Q}_{+}(\mathrm{G}, \mathrm{T}):=\operatorname{conv}(\mathrm{T}-\mathrm{joins})+\mathrm{I}_{+}{ }^{\mathrm{n}}=$

$$
\left\{x \in \mathbb{R}_{+}^{E} x(\delta(W)) \geq 1, \delta(W) \text { is a } T \text {-cut, i.e. }|W \cap T| \text { is odd }\right\}
$$

Proof : Through the following slides.

Minmax bipartite

$$
\begin{array}{lll}
\tau(\mathrm{G}, \mathrm{~T}) & := & \min \{|\mathrm{F}|: \mathrm{F} \subseteq \mathrm{E}, \mathrm{~F} \text { is a T-join }\} \\
v(\mathrm{G}, \mathrm{~T}) & := & \max \{|\mathcal{C}|: \mathbb{C} \text { disjoint T-cuts }\}
\end{array}
$$

Easy : $\tau(\mathrm{G}, \mathrm{T}) \geq v(\mathrm{G}, \mathrm{T})$

Theorem (Seymour '81) If G is bipartite,

$$
\tau(\mathrm{G}, \mathrm{~T})=v(\mathrm{G}, \mathrm{~T})
$$

Minmax nonbipartite

$\nu_{2}(G, T):=\max \{|\mathcal{C}|: \mathcal{C}$ 2-packing of T-cuts $\}$, where
a 2-packing is a family covering every element \leq twice

Easy: $\tau(\mathrm{G}, \mathrm{T}) \geq \mathrm{v}_{2}(\mathrm{G}, \mathrm{T}) / 2$

Proof: Let F be a T-join, and \mathcal{C} a 2-packing of T-cuts.
Then $2|\mathrm{~F}|=\sum_{\text {Cine }}|F \cap \mathrm{C}| \geq \mathrm{v}_{2}(\mathrm{G}, \mathrm{T})$

Theorem (Edmonds-Johnson '73) If G is arbitrary,

$$
\tau(\mathrm{G}, \mathrm{~T})=v_{2}(\mathrm{G}, \mathrm{~T}) / 2
$$

Packing

A packing is a family covering every element \leq once
A 2-packing is a family covering every element \leq twice
$v_{2}(G, T) / 2 \geq v(G, T)$
(Possibly) fractional : coefficients $\mathrm{y}_{\mathrm{c}}(\mathrm{C} \in \mathcal{C})$ whose sum has to be maximized : v^{*} for packings .

For $\mathrm{c}: \mathrm{E} \rightarrow \mathrm{R}_{+}: v(\mathrm{G}, \mathrm{T}, \mathrm{c}), v_{2}(\mathrm{G}, \mathrm{T}, \mathrm{c}), v^{*}(\mathrm{G}, \mathrm{T}, \mathrm{c})$

Linear Programming

Duality Theorem

$A x \leq b$		$y A=c$
$\left(A \in Q^{m \times n}, b, c \in Q^{n}\right)$	dual:	$y \geq 0$
$\operatorname{max~} c^{\top} x$	$=$	$\min y^{\top} b$

Weak duality \leq : every primal x is feasible for all nonnegative combinations

Farkas Lemma: Every 'tight' consequence of linear inequalities is their nonneg.lin.comb.

Duality Theorem \Leftrightarrow If the max for c is $c^{\top} x_{0}$, then $c x \leq c^{\top} x_{0}$ is a nonneg.lin.comb of $a_{i}^{\top} x_{0} \leq b_{i}$

Weak duality for the T-join polyhedron

Let F be a T-join, and \mathcal{C} a 2-packing of T-cuts.
Then $2|F|=\sum_{C \text { ine }}|F \cap C| \geq v_{2}(G, T)$

Let F be a T-join, and C a (possibly fractional)
1-packing of T-cuts with coefficients $\mathrm{y}_{\mathrm{C}}(\mathrm{C} \in \mathcal{C})$
Then $|F|=\sum_{C \text { in }} e^{y_{C}}|F \cap C| \geq v^{*}(G, T)$

Let F be a T -join, and \mathcal{C} a (possibly fractional)
c-packing of T-cuts with coefficients $\mathrm{y}_{\mathrm{C}}(\mathrm{C} \in \mathcal{C})$
Then $|\mathrm{F}|=\sum_{C \text { in }} \mathcal{C}^{\mathrm{y}_{\mathrm{C}}|F \cap \mathrm{C}| \geq \mathrm{v}^{*}(\mathrm{G}, \mathrm{T}, \mathrm{c})(\operatorname{or} \mathrm{v}(\mathrm{G}, \mathrm{T}, \mathrm{c}))}$

Linear Programming

Hilbert bases (normal semigroups)
$\mathrm{H} \subseteq \mathrm{Z}^{\mathrm{n}}$ is a Hilbert basis if any integer vector which is a nonneg comb is also a nonneg integer comb

Example $\mathrm{n}=2$: pointed cone : cone $\{(-2,3),(5,-1)\} \quad|\operatorname{det}|=13$

adding $(-1,2),(0,1),(1,0)\} \quad$ Hilbert basis
Integer Caratheodory property (+‘partition’ into unimodular cones)

Proving the T-join polyhedron Thm

$Q_{+}(G, T)=\left\{x \in \mid \mathbb{R}^{E}: x(W) \geq 1, W\right.$ is a T-cut, $\left.x \geq 0\right\}$
Edmonds-Johnson: ½ TDI, vertices: T-joins

Seymour (81): If G arbitrary, $\tau(\mathrm{G}, \mathrm{T})=\mathrm{v}_{2}(\mathrm{G}, \mathrm{T}) / 2$

Edmonds, Johnson(73): If G is bipartite, $\tau(\mathrm{G}, \mathrm{T})=v(\mathrm{G}, \mathrm{T})$

Metatheorem : Polyhedron the same as weighted minmax theorem

If negative weights are allowed ?

$c(F)=|c|\left(F \backslash E_{-}\right)-|c|\left(F \cap E_{-}\right)=|c|\left(F \Delta E_{-}\right)-c\left(E_{-}\right)$
(So if (G, w) is conservative, $\lambda_{w}(x, y):=\min \{w(P): P$ path $\}=$ $\min \{w(P): P\{x, y\}$-join $\}$
Is reducible to min weight perfect matchings.)

This reduction leads to the T-join polytope

Another application

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length.
Output: Schedule of min completion time T

Theorem : (Fujii \& als) : $\mathrm{T}=\mathrm{n}-\mathrm{v}\left(\mathrm{G}_{\text {input }}\right)$

Solutions for max (weighted) matchings: with Edmonds' algorithm (1965)
Grötschel, Lovász, Schrijver
with Padberg-Rao (1979)

To come : matroids

Exercises to revise for the third course : series 7.

