Submodular Functions

Def: $f: 2^{S} \rightarrow I R$ is submodular on 2^{S}, if

$$
f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)
$$

monoton submodular $\Leftrightarrow \forall A \subseteq B, \quad x \in S$:

$$
f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)
$$

1.) occurs often 2.) useful 3.) 'can be played with'
$\mathrm{MIN} \in \mathscr{P}$
MAX ${ }^{\text {NP }}$ - hard
versions: for machine learning, $f(0)=0$, mon, size k

Examples, special cases, connexions

 rank of vectors in any vector spaceIn a graph the number of edges leaving a set of vertices
Minus the number of components of a set of edges
Maximum size of an acyclic graph (forest) on a given set of vertices
For $k \in \mathbb{N}$ and finite set $S: \min \{k$, the size of a subset $\}$
Probability of the product of a subset of events
Total « Information in » a subset of random variables
Rank function of matroids
Many essential properties are reflected already in matroids:
Def: $M=(S, r)$ matroid: $r(\varnothing)=0, r$ monoton\&submodular, $r(\{s\})=1,(s \in S)$

Approx for submod max mon, size $k, f(0)=0$,

Algorithm (for sets of size \mathbf{k}): (Nemhauser, Wolsey) Having X already, WHILE $|X|<k$ choose x that maximizes

$$
f(X \cup\{x\})-f(X)
$$

Lemma $: f(X \cup\{x\})-f(X) \geq(f(O P T)-f(X)) / k$

Proof: Since mon: $f(O P T) \leq f(O P T \cup X) \leq$

$$
\leq f(X)+k(f(X \cup\{x\})-f(X))
$$

Let X^{i} be what we found until step i. Then

$$
\begin{aligned}
& f\left(X^{k}\right)-f\left(X^{k-1}\right) \geq f(O P T) / k-f\left(X^{k-1}\right) / k \text {, so } \\
& f\left(X^{k}\right) \geq f(O P T) / k+(1-1 / k) f\left(X^{k-1}\right) \\
& f\left(X^{k}\right) \geq f(O P T)\left(1-(1-1 / k)^{k}\right) \geq(1-1 / e) f(O P T)
\end{aligned}
$$

Matroids

$\mathrm{M}=(\mathrm{S}, \mathfrak{F})$ is a matroid if
(i) $\varnothing \in \mathcal{F} \quad$ that is, $\mathscr{F} \neq \varnothing$
(ii) $\mathrm{F} \in \mathcal{F}, \mathrm{F}^{\prime} \subseteq \mathrm{F} \Rightarrow \mathrm{F}^{\prime} \in \mathscr{F}$
(iii) $F_{1}, F_{2} \in \mathcal{F},\left|F_{1}\right|<\left|F_{2}\right| \Rightarrow \exists e \in F_{2} \backslash F_{1}$:

$$
F_{1} \cup\{e\} \in \mathcal{F}
$$

Def: $\quad \mathrm{F} \in \mathcal{F}$ is called an independent set.
The rank function of M is
$r: 2^{s} \rightarrow I N$ defined as $r(X):=\max \{|F|: F \subseteq X, F \in \mathcal{F}\}$
Exercise : Prove the equivalence with the previous def with rank functions! Hint : This means that submodularity etc have to be proved, and conversely \mathcal{F} should be defined from r and (i)-(iii) be proved.

Examples

representable
$S=$ finite set of vectors over a field (IR or extensions orGF(q)).
\mathcal{F} family of linearly independent subsets of S.
graphic $\mathrm{M}(\mathrm{G}):=$
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, and $\mathrm{S}:=\mathrm{E}$
\mathcal{F} := edge-sets of forests
uniform $U_{n, r}$
$|\mathrm{S}|=\mathrm{n}, \mathcal{F}:=$ subsets of S of size at most r

Transversal matroids, Gammoids, ...

Operations

Contraction, deletion, dual ; Nashwilliams sum :
$M_{1}=\left(S_{1}, \mathcal{F}_{1}\right), M_{2}=\left(S_{2}, \mathcal{F}_{2}\right) \quad:$
M_{1} NW M_{2} is defined with $\left\{F_{1} \cup F_{2}: F_{1} \in \mathcal{F}_{1}, F_{2} \in \mathscr{F}_{2}\right\}$
partition matroid: NW sum of uniform matroids; often of rank 1

Circuits

Def: \mathcal{C} family of (inclusionwise) minimal sets that are not independent

Proposition: (i) $\mathrm{C}_{1}, \mathrm{C}_{2} \in \mathcal{C}, \mathrm{C}_{1} \not \subset \mathrm{C}_{2}$
(ii) $\mathrm{C}_{1} \neq \mathrm{C}_{2} \in \mathcal{C}, x \in \mathrm{C}_{1} \cap \mathrm{C}_{2}, \quad \exists \mathrm{C}_{3} \in \mathcal{C}: \mathrm{C}_{3} \subseteq \mathrm{C}_{1} \cap \mathrm{C}_{2} \backslash\{x\}$

Proof: $r\left(C_{1}\right)+r\left(C_{2}\right)-r\left(C_{1} \cap C_{2}\right)=\left|C_{1}\right|-1+\left|C_{2}\right|-1\left|C_{1} \cap C_{2}\right|=$

$$
=\left|C_{1} \cup C_{2}\right|-2
$$

Exercise: Prove the other direction ! That is, define the independent sets from circuits and prove their axioms (i)-(iii) from the above axioms (i) - (ii).

So we can now take (i), (ii) as the definition of matroids with their

Bases

Let $\mathcal{M}=(S, \mathcal{F})$ be a matroid. B is a base if $B \in \mathcal{F},|B|=r(S)$.

Set of bases : \mathfrak{B}

Fact : $\left.\forall \mathrm{B}_{1}, \mathrm{~B}_{2} \in \mathfrak{B}, \forall \mathrm{x} \in \mathrm{B}_{1} \backslash \mathrm{~B}_{2} \quad\right\} \quad$ Basis axiom

Proposition: $B \neq \varnothing$ is the set of bases of a matr \Leftrightarrow the Fact holds.

Proof : 1.) => The stated property holds. <= :
2.) There is unique possible matroid with base-set \mathfrak{B}.
3.) The uniquely defined set system is indeed a matroid

$$
\begin{aligned}
& \text { axiom (iii) to } \\
& F_{1}=B_{1} \backslash x, F_{2}=B_{2} \\
& \mathcal{F}:=\{F \subseteq B: B \in \mathscr{B}\}
\end{aligned}
$$

use the fact

So we can now take «Fact» as the definition of matroids !

Rank again and Span

Bases, continuation

Fact : $\forall \mathrm{B}_{1}, \mathrm{~B}_{2} \in \mathcal{B}, \forall \mathrm{x} \in \mathrm{B}_{2} \backslash \mathrm{~B}_{1}$

$$
\exists y \in B_{1} \backslash B_{2}:\left(B_{1} \backslash y\right) \cup\{x\} \in \mathscr{B}
$$

Proposition: $ß \neq \varnothing$ is the set of bases of a matr \Leftrightarrow the Fact holds.

Proof : => : Through the following property from the circuit-axiom:

Proposition : $\mathrm{M}=(\mathrm{S}, \mathcal{F})$ matroid, $\mathrm{F} \in \mathcal{F}, \mathrm{e} \in \mathrm{S} \backslash \mathrm{F}$. Then : either $F \cup\{e\} \in \mathcal{F}$ or $\mathrm{F} \cup\{\mathrm{e}\}$ contains a unique circuit of M .

So we can now take « Fact» as the definition!

Corollary : $\{S \backslash B: B \in \mathcal{B}\}$ also satisfies the basis axioms.

Dual Matroid
Def: chal: $M^{*}=\left(S, B^{*}\right)$ dwal de

$$
B^{*}=\{S, B: B \in B\}
$$

Fact: $r^{*}(x)=|x|-(r(S)-r(\xi \sim x))$
Proof:

Def: ocircent
coupe d'un matreride: culc.dudal

Planarity and Duality

circuits of $G=$ circuits of $M(G)$

Inclusionwise min cuts of G*

$$
M^{*}(G)=M\left(G^{*}\right)
$$

Equivalently : F is a spanning tree \Leftrightarrow
$E \backslash F$ is a spanning tree of the dual graph
Euler's formula : $\mathrm{n}-1+\mathrm{f}-1=\mathrm{m}$

Greedy alg for max weight indep

Greedy algorithm for a family of sets $\mathscr{H} \subseteq 2^{s}$:
If x_{1}, \ldots, x_{i} have been chosen,
let x_{i+1} be such that $\left\{x_{1}, \ldots, x_{i+1}\right\} \in \mathscr{H}, c\left(x_{i+1}\right) \max$

Theorem If \mathscr{H} is hereditary, then the greedy algorithm finds the optimum for any nonnegative objective function $\Leftrightarrow \mathscr{H}$ is a matroid.

Proof: =>

$<=$:

We find :

If you can do it simple, make it complicated!

$$
\begin{aligned}
& \text { Thu (Edwocds): Me(5, F) wat. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof: }: w_{1} \geq \ldots \geq w_{n} \\
& U_{i}=\{1, \ldots, i\}
\end{aligned}
$$

Submodularity => Sets A with positive dual variables form a chain !
The F that we find satisfies: $\quad\left|F \cap U_{i}\right|=r\left(U_{i}\right)$

$$
\left.\begin{array}{l}
\dot{w}(F)=\left(w_{1}-w_{2}\right)\left|F \tilde{F}_{1}\right|+ \\
+\left(w_{2}-w_{3}\right)\left|F \cap U_{v}\right|+\ldots \\
+w_{n}\left|F \cap U_{n}\right|
\end{array}\right\} \begin{aligned}
& \text { dual } \\
& \text { solution }
\end{aligned}
$$

The inverse of the duality theorem
Thm (Eduouds): M=S, F) woh $\operatorname{couv}\left(Y_{F}:, F \in T\right)=$

$$
=\left\{x \in \mathbb{R}^{s}: \begin{array}{l}
x(A) \leq r(A)\} \\
x \geq 0
\end{array}\right.
$$

C
: clear!
rowher que $\alpha \omega$

$$
\underbrace{\operatorname{var}}_{x \in \text { gaude }} w^{\top} x=\operatorname{uex}_{x \in \text { dreve }}^{w^{+} x}
$$

SUFFIT:

Farkas' Lemma

cersizo
$\exists \begin{aligned} 6 \\ \text { derit }\end{aligned}$
$\left\{x: c^{+}+x=16\right\}$
$\begin{aligned} & \text { C hyoylan } \\ & \text { seofestern }\end{aligned}$

$$
\begin{aligned}
& C^{T} x_{0}>b \quad \text { qicioforw } x \text { de gounce } \\
& C_{0}^{T} x \leq b \quad \forall \in \text { gancle }
\end{aligned}
$$

Matroid Intersection Edmonds (1979)

Let M_{1} and M_{2} be two matroids, c :

$$
\begin{aligned}
& \left(S, r_{1}\right) \text { and }\left(S, r_{2}\right) \\
& \left(S, \mathscr{F}_{1}\right) \text { and }\left(S, \mathscr{F}_{2}\right)
\end{aligned}
$$

maximize $\left\{c(F): F \in \mathcal{F}_{1} \cap \mathcal{F}_{2}\right\}$
2 disjoint spanning trees: M_{1} and $\mathrm{M}_{2}=\mathrm{M}_{1}$
Two examples of cases :
2 disjoint spanning trees: M_{1} and $M_{2}:=M_{1}{ }^{*}$

Bipartite matching

Both are partition matroids: sums of uniform matroids on stars

Matroid Intersection Theorem

 How to conjecture a « good characterization » ?We know : $x \in \operatorname{conv}\left(\chi_{F}: F \in \mathcal{F}_{i}\right) \Leftrightarrow x(A) \leq r_{i}(A)$ for all $A \subseteq S$

$$
\begin{aligned}
& \text { maximize }\left\{|F|: F \in \mathcal{F}_{1} \cap \mathscr{F}_{2}\right\}=? \text { conv }\left(\chi_{F}: F \in \mathcal{F}_{1} \cap \mathscr{F}_{2}\right) \\
& \max \left\{1^{\top} x: \quad x(A) \leq r_{i}(A)(i=1,2) \text { for all } A \subseteq S\right\}
\end{aligned}
$$

Theorem (Edmond 1979): $\max |F|=\min r_{1}(X)+r_{2}(S \backslash X)$

$$
F \in \mathcal{F}_{1} \cap \mathscr{F}_{2} \quad X \subseteq S
$$

If $|F|=r_{1}(M)$?

Matroid Intersection Theorem

Generalization of bipartite matching
(of the alternating paths in the «Hungarian method»)
Proof of \geq : that is, there is F and X with $\quad|F|=r_{1}(X)+r_{2}(S \backslash X)$.

We prove that the following algorithm terminates with such an F and X.

Algorithme d'intersection

What is the INPUT ? \rightarrow ORACLE - rank, independence, etc
0.) Let : $\mathrm{F} \in \mathscr{F}_{1} \cap \mathcal{F}_{2}$ maximal by inclusion (greedily)
1.) Define arcs from unique cycles :

3.) Sources $S:=\left\{x \in S \backslash F, F \cup\{x\} \in \mathscr{F}_{2}\right\}$ Sinks $T:=\left\{x \in S \backslash F, F \cup\{x\} \in \mathscr{F}_{1}\right\}$ If S or T is empty?

Find an (S,T)-path.
a.) If there exists one, let \mathbf{P} be one with
inclusionwise minimal vertex-set
(equivalently, P is chordless).
b.) If there exists none, $T \cap X=\varnothing$, where $X:=\{x \in S: x$ is reachable from $S\}$

Matroid Intersection Theorem exchange along an improving path

a.) If $\mathrm{P}=\left\{\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}\right\}$ is a chordless path, then $\mathrm{F} \Delta \mathrm{P} \in \mathscr{F}_{1} \cap \mathscr{F}_{2}$ Apply the following to $\mathrm{F} \cup\left\{\mathrm{x}_{1}\right\} \in \mathcal{F}_{2}$, and $\mathrm{F} \cup\left\{\mathrm{x}_{\mathrm{k}+1}\right\} \in \mathcal{F}_{1}$

Lemma : $\mathrm{M}=(\mathrm{S}, \mathscr{F})$ matroid, $\mathrm{F} \in \mathscr{F}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \notin \mathrm{F}$ If y_{i} is in the unique cycle of $F_{i} \cup x_{i}$, but $y_{j}, j=i+1, \ldots k$ is not, then

$$
\left(F \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right) \cup\left\{y_{1}, \ldots, y_{k}\right\} \in \mathscr{F}
$$

Proof: For $k=1$ true, and then use it by induction to $\left(F \backslash\left\{x_{k}\right\}\right) \cup\left\{y_{k}\right\}$.

Matroid Intersection Theorem

No improving path : show that the solution is optimal

Let $X:=\{x \in S: x$ is reachable from $S\}$
Lemma : Suppose b.) : $\mathrm{X} \cap \mathrm{T}=\varnothing$, where $X:=\{x \in S: x$ is reachable from $S\}$

Then $|F|=r_{1}(X)+r_{2}(S \backslash X)$

$$
\begin{aligned}
& \text { Proof : } r_{1}(X)=|\mathrm{F} \cap \mathrm{X}| \text {, because } \mathrm{X} \subseteq \mathrm{sp}_{1}(\mathrm{~F} \cap \mathrm{X}) . \\
& r_{2}(\mathrm{~S} \backslash \mathrm{X})=|\mathrm{F} \backslash X| \text {, because } \mathrm{S} \backslash X \subseteq \mathrm{sp}_{2}(\mathrm{~F} \backslash X) .
\end{aligned}
$$

