
Def :   f : 2S   IR    is submodular on 2S ,  if   

     f(X)  +  f(Y)   ≥  f(XY) + f(XY) 

MAX MIN 

             submodular    A  B  , x  S \ B : 

f(A  {x}) - f(A)  ≥  f(B  {x}) -  f(B)  

 P               NP   - hard               

1.) occurs  often      2.) useful      3.) ‘can be played with’ 

monoton 

Submodular Functions   

for machine learning,  f(0)=0, mon, size k   versions:  

x  S :  



Examples, special cases, connexions 
rank of vectors   in any vector space 
 

 

In a graph the number of edges leaving a set of vertices 
 

 

Minus the number of components of a set of edges  
 

 

Maximum size of an acyclic graph (forest) on a given set of vertices. 
 

 

For k IN  and finite set S :  min { k, the size of a subset }   
 

 

Probability of the product of a subset of events  
 

 

Total « Information in » a subset of random variables  

 

Rank function of matroids 
 

 

Many essential properties are reflected already in matroids:   
 

 

Def: M=(S,r) matroid: r () =0,r monoton&submodular,r({s})=1,(sS)  



Approx for submod max 

Algorithm (for sets of size k): (Nemhauser, Wolsey) Having X already,  

      WHILE |X|< k   choose x that maximizes 

f(X  {x}) - f(X)  

 
Lemma : f(X  {x}) - f(X)  ≥  ( f(OPT) – f (X) ) /k 

 

Proof:  Since mon:   f(OPT) ≤ f(OPT U X) ≤ 

                   ≤ f(X) +  k (f(X  {x}) - f(X) ) 

  

Let Xi be what we found until step i.  Then  

f(Xk) - f(Xk-1)  ≥ f(OPT) / k   - f(Xk-1) / k, so  

f(Xk) ≥ f(OPT) / k + (1 – 1/k) f(Xk-1) 

f(Xk) ≥ f(OPT) (1 - (1 – 1/k) k ) ≥ (1-1/e) f(OPT) 

mon, size k, f(0)=0,  



Matroids 

Exercise : Prove the equivalence with the previous def with rank 
functions!  Hint : This means that  submodularity etc have to be proved, 
and conversely F should be defined from r and (i)-(iii) be proved.    

M = (S, F) is a matroid   if 

(i)  F   

(ii) F F  , F’ F   F’ F 

(iii)  F1 , F2  F , |F1| < | F2|    e  F2\ F1 : 

 F1  {e}  F 

that is, F  

Def :       F  F   is called an independent set. 

                The rank function of M is  

r : 2S   IN   defined as r(X):= max {|F| : F X, F  F } 



graphic   M(G):= 

Examples 

S = finite set of vectors  over a field (IR or extensions orGF(q) ). 
F  family of linearly independent subsets of  S.   

     

Let G=(V,E) be a graph, and S := E 
F  := edge-sets of forests 

representable 

uniform   Un,r 

|S|=n, F  := subsets of S  of size at most r 
 

Transversal matroids,  Gammoids, …  
 



Operations 

Contraction, deletion, dual ;    Nashwilliams sum :  

     

M1 = (S1, F1)  , M2 = (S2, F2)   :  

 

M1    NW    M2  is defined with { F1  F2 : F1  F1 ,  F2  F2  }  

partition matroid :  NW sum of  uniform matroids;  
                              often of rank 1    



Circuits 

Def:   C   family of (inclusionwise) minimal sets that are not independent 
 
 
 

Proof:  r(C1) + r(C2) - r(C1  C2) = |C1| - 1+ |C2| - 1  |C1  C2| =  
 

 

= | C1  C2 | -  2  

Exercise :    Prove the  other direction  !   That is, define the 
independent sets from circuits and prove their axioms (i)-(iii) 
from the above axioms (i) – (ii).   

Proposition: (i)  C1 , C2   C , C1  C2  

  (ii) C1   C2   C  , x  C1   C2 ,     C3   C : C3    C1   C2 \ {x}       

So we can now take  (i), (ii) as the definition of matroids with their 
circuits  



Bases 

Let  M= (S, F )  be a matroid.  B is a  base  if  B F ,  |B| = r(S) .   
 
Set of bases : B 
 
Fact  :    B1 , B2  B ,   x  B1 \ B2   

                      y  B2 \ B1  :  (B1 \ x)  {y}  B 
. 
 
 
Proof :  1.)   => The stated property holds.   <= :  
2.) There is unique possible matroid  with base-set B.   
3.) The uniquely defined set system is indeed a matroid    

So we can now take « Fact »   as the definition of matroids !  

F :={F   B: B  B} 

axiom (iii) to 
F1 = B1 \ x , F2 = B2  
 

        use the fact 

 Basis axiom 

Proposition: B≠  is the set of bases of a matr     the Fact  holds.      



Rank again and Span 



Bases, continuation 

 
Fact  :    B1 , B2  B ,   x  B2 \ B1   

                      y  B1 \ B2  :  (B1 \ y)  {x}  B 
 
Proposition: B≠  is the set of bases of a matr     the Fact  holds. 
 
Proof : =>  : Through the following property from the circuit-axiom:  

So we can now take « Fact »   as the definition !  

Corollary :   {S\B :  B  B } also satisfies the basis axioms.   

Proposition :  M= (S, F ) matroid, F  F ,  e  S \ F .  Then :  
                           either    F   {e}  F 

  or    F   {e}  contains a unique circuit of M.  
 



Dual Matroid 

Fact:  

Proof:  

Def:  

Def:  



Planarity and Duality 

Equivalently :  F is a spanning tree    

    E \ F  is a spanning tree of the dual graph 

 

Euler’s formula :   n – 1 +  f – 1  = m 

cocircuits of G = cocircuits of M(G)=  

circuits of G = circuits of M(G)  

Inclusionwise min cuts of G* 

M*(G) =  M(G*) 



Greedy alg for max weight indep 

Greedy algorithm for a family of sets H 2S:   
If x1 , … , xi have been chosen,  
let xi+1  be such that {x1 , … , xi+1}  H , c(xi+1) max 

Theorem If  H   is hereditary , then the greedy algorithm finds the  
optimum for any nonnegative objective function  H is a matroid.  

Proof:  => 
<=      : 
 
We find : 
 
The opt:  
 
 
 
 
 
 
 
  
 

The independence 
axiom (iii)  contradicts 
the choice of xi  



If you can do it simple, make it complicated!  

Submodularity => Sets A with positive dual variables form a chain !   

The F that we find satisfies: 

dual 
solution 

Proof: 



The inverse of the duality theorem 

:   clear !  

Farkas’ Lemma 



Matroid Intersection 
 Edmonds (1979) 

Let  M1 and M2 be two matroids,   c: 
 

(S,r1) and (S,r2)  
(S,F1) and (S,F2)  

 
maximize  { c(F)  : FF1F2 } 

 

Bipartite matching 

2 disjoint spanning trees :  M1 and M2 := M1
* 

  

Two examples of cases :  

  

2 disjoint spanning trees :  M1 and M2 = M1
 

  

M1
 

  M2
 

      Both are partition matroids: sums of uniform matroids on stars 

  



How to conjecture a « good characterization » ?  

We know :  x  conv (F : FFi)   x (A)  ri (A)  for  all    A   S    

maximize  { |F|  : FF1F2 } =? conv (F : FF1F2 )  
 

max  { 1T x :       x (A)  ri (A)  (i=1, 2)  for all A  S } 
 
 
 

 
 
 
  

Theorem (Edmonds 1979):  
 
 

 
     

max    |F|   = min  r1 (X) + r2 (S \ X)  
              FF1F2                X  S 

If  |F|=r1(M) ?  
 

Matroid Intersection Theorem 



Generalization of bipartite matching 
(of the alternating paths in the « Hungarian method ») 

Proof of  ≥ :  that is, there is F and X with     |F|   = r1 (X) + r2 (S \ X)  .   
  

We prove that the following algorithm terminates with such an F and X.   

Algorithme d’intersection 

0.) Let : FF1F2   maximal by inclusion (greedily) 

What is the INPUT  ?   ORACLE  - rank, independence, etc  

1.)     Define arcs from   
 unique cycles :  F x 

C1C1 

C2C2 

y 

Matroid Intersection Theorem 



Algorithmic proof of the matroid intersection theorem 

F x 

C2C2 

y 

C1C1 

F 

F 

T 

S 

3.) Sources S:={x  S \ F ,  F  {x}  F2 }  Sinks T:={x  S \ F , F  {x}F1} 
       
Find an (S,T)-path.  
 
 

a.)  If there exists one, let P be one  with  
       inclusionwise minimal vertex-set  
       (equivalently, P is chordless).  
 
b.)   If there exists none, T   X  =  , where 
             X := {x  S : x is reachable from S}   
       

  

  

F 

P 

F 

T 

S 

F 

S 
X 

If  S or T is empty ?  
 

Matroid Intersection Theorem 



exchange along an improving path 
Matroid Intersection Theorem 

F 

F 

T 

S 

F 

P 

x2 x1 x3 xk … 

y1 y3 … y2 yk 

xk+1 

a.) If  P= {x1, y1,x2,…xk,yk,xk+1} is a chordless path, then  F  P  F1 F2 

      Apply the following  to F{x1}  F2 , and F{xk+1}  F1  

 
Lemma : M = (S, F ) matroid,  F F  , x1, … , xk  F  

If       yi  is in the unique cycle of Fi  xi ,  
but    yj  , j=i+1, … k  is not, then  

( F \ { x1, … , xk } )  { y1, … , yk }  F  
 

F x 

C2C2 

y 

C1C1 

F 
F 

 
P 

x2 x3 xk … 

y1 y3 … y2 yk 

x1 

Proof:  For k= 1 true, and then use it by induction to  (F \ {xk } )  {yk } .  



No improving path :  show that the solution is optimal 

Matroid Intersection Theorem 

F 

T 

S 

F 

S 
X 

Let  X := {x  S : x is reachable from S} 
           

Lemma : Suppose b.) :   X  T =  , where 
X := {x  S : x is reachable from S}   

Then |F|   = r1 (X) + r2 (S \ X)    

Proof : r1 (X) =  |FX|, because X   sp1 (FX) . 
 
r2 (S \ X) =  |F \ X |, because  S \ X   sp 2(F \ X) . 

F x 

C2C2 

y 

C1C1 


