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To come :  

Matchings, 

Undirected Shortest Paths, 

T-joins 

… 
 

                    Exercises to revise for the second course: series 3 and 6 

 

•   

 

 

 

 

 

 



Matching 

INPUT : G=(V,E)  graph.  

TASK  : Find a matching of maximum size 

matching :  a  set M  E of vertex-disjoint edges 

Do the red edges form a maximum matching ? 



Proposition                  :  G graph, M matching in G. 

M is a maximum matching in G iff there is no augmenting path  

augmenting path with respect to matching M :  path alternating     

between  M  and  E \ M with the 2 endpoints uncovered by M.  

Augmenting Paths 

true ? (Berge)  



  matching  : M set of  vertex-disjoint edges 

                                      

Max |M| :   

vertex cover : T set of  vertices  so that G-T   has no edges        

      

Min |T|  :    

      ≤ 

Matching and vertex cover 



 
    If  for some  v   V :   (G – v) =  (G) – 1 , by induction : 
         

                        (G) = (G – v) +1 = (G – v) + 1 ≥  (G) . 
      
    If uv  E then either u or v satisfy this condition ! 
 

   Q.E.D.   

Theorem (Kőnig) :  If G=(V,E)  is bipartite, then        =     

Minmax for bipartite graphs 

  Proof: ≤  is the proven  ‘easy part’;  ≥   is to be proved:  

Exercise 3.1, 3.2 



LP  for bipartite matchings 

 VERTEX COVER            for G=(V,E) bipartite 

x  IRV : 

xi + xj ≥ 1 ,  ij  E 

 x ≥ 0 

MATCHING POLYTOPE for G=(V,E) bipartite  

x  IRE : 

x ((v)) ≤ 1 ,  v  V 

     x ≥ 0      

 TDI  (TU+Cramer,  or no odd circuit)  

 dual: 



The method of variables 

Proposition :  M is a nonzero polynomial     perfect matching   

G = (A, B, E)  bipartite,  |A|=|B|.   M :=  (xij if ij  E, else 0 )n×n  :   
 

Proof :   All terms of M are different.   (There is no cancellation.) 

 n!  Terms,  but determinants can be computed in polynomial time :  

randomized algorithm:  substitute values  and then compute !  

Questions :  If then the det is nonzero can we conclude ? 

                       If it is zero ?    

                       What to do for nonbipartite  graphs  ?  



The method of variables 
The probability of error, precisely 

Proof: For  n=1 obvious. Le pQ[x1,…, xn-1]  the coefficient of the 
highest exponent to power  of xn , and let  be the degree of p.  

Pr (q(X1,…, Xn)=0) ≤ Pr (p(X1,…, Xn)=0)  + Pr (q(X1,…, Xn)=0 | p(X1,…, Xn) 0)  
                                 
                                ≤             /s                +                      /s            ≤ d/s  

Lemma: (Schwartz, Zippel) Let q be a nonzero  polynomial of n variables  
x1,…, xn, and let it be of degree d ; S  IN is finite, s:=|S|. Moreover, let  
X1,…, Xn be random variables taken independently and uniformly from S.  

Then Pr (q(X1,…, Xn)=0) ≤ d/s . 



The method of variables 
The Randomized Algorithm 

Oracle Algorithm :  
 
An oracle tells the substitution values of a polynomial in pol(deg) time.  
 
1. Let  S = {1,…,2n}.   
        
2. Make independent uniform choices in S for each variable. 

 
3. Compute the polynomial (oracle call) for the chosen values.   
                  If  0    :  the polynomial is nonzero ( perfect matching) 
                  If  =0   ?  We decide:  no perfect matching:  Pr (error) =½  
 
      Why not bigger S ?   Better to choose |S| = const x deg and repeat ! 
      

Proposition :  After O( log 1/ )   repetitions  Pr (error )      



The complexity class P  RP  NP 
 

Imagine :  x= a graph, y the certificate (eg  a  substitution with 0 polynomial value ) 

The same def as NP but there are many certificates : constant proportion 
. 



Tutte-Berge theorem 

Exercise  3.3 
Hint :  In  which part of the theorem are  
the vertices uncovered by matchings : in  
X ?   An even comp of G-X ?  An odd comp ?  

 
Theorem :  Let G=(V,E) be a  graph. Then the minimum, over all 
matchings M  of the number of uncovered vertices of V  =  

max { q(X) - |X|  :    X  V } 
 

Def : q(X) is the n. of comps of G-X having an odd number of vertices 
 

Proof :  ≥ easy.  

Exercise  3.5 

                 We can adapt the proof of Kőnig’s theorem: 

If  (G – v) =  (G) – 1 ,  induction is easy, else apply the exercises.  
  : 



Edmonds’ algorithm 

1. Grow  an (inclusionwise max) alternating forest   F   rooted 
in uncovered vertices  

 
2. If two even vertices are adjacent 
        a.) between 2 different components : augment 
        b.)  in the same component 
               Generalize Exercise  3.3  to this case.  
                Heureka you shrink ! (Edmonds)  
         In  both cases GOTO 1 (possibly using the actual forest).  
 
3. If there is no edge between the even vertices STOP 
        X:=  odd vertices  
  

root  

even  odd  

Theorem :   X is a Tutte-set and  F is  a maximum matching   



Unweighted :  

- Algorithms for bipartite graphs: paths in digraphs; 

- Method of variables 

- Edmonds’algorithm;  

- Structural algorithms ( for matchings by Lovász, T-joins, b-match: S.) 

 

 

Weighted : 

-  Primal-Dual framework with max cardinality subroutine  

-  Ellipsoid method  

   

Summary of algorithms for matchings 



T-joins 

Euler’s theorem : G= (V,E), E : streets 
One can go through all the streets  
exactly once    
  Degree is even  &  G is connected  

F  E(G)  is a  T-join, if  

T = vertices of odd degree of F.   

Easy facts about T-joins : G connected, |T| even   T-join ; 

min weight « Eulerian replication »  =  duplication of a minimum TG-join. 

 

G=(V,E),  w: E  IR,  F is a minimum weight T-join  (G, w[C]) is 

TG-joins, where  

TG :={v: d(v) is odd} 

conservative, where w(e):= 
−1 𝑖𝑓 𝑒𝐹 

     1 𝑖𝑓 𝑒 𝐹  
 Exercise 4.2,  6.2  



Input :  G=(V,E),  w: E  IR 

Task  :   minimize the weight  of a T-join    
 

Polynomial algorithm 

 

Proposition (Edmonds) : If the weights are nonnegative easy reduction  

tminimum weight matching of the complete graph on T  where the 

Weights are the w-shortest paths in G between the vertices of T.  

 



The postman polyhedron 

Theorem  Edmonds,Johnson (1973) : Q+(G,T) := conv (T-joins) + IR+
n = 

 

{xIR+
E  x((W)) ≥ 1, (W) is a T-cut, i.e. |WT| is odd} 

Def : (W)  E(G)  (W  V)  is a T-cut, if  |WT| is odd 

Proposition : F  T-join, (W)  T-cut    | F  (W) | ≥  1    



Minmax 

(G,T)   :=  min { |F| : FE, F is a T-join } 

(G,T)  :=   max{ |C|: C  dijoint T-cuts } 

 

Easy : (G,T) ≥ (G,T)  

 

Theorem (Seymour ‘81)  If G is bipartite,  

 (G,T) = (G,T)  

                              



Proving the T-join polyhedron Thm 

 

 

Q+(G,T)= {xIRE :  x(W) ≥ 1 ,  W is a T-cut 

             x ≥  0 }  

Edmonds-Johnson: ½ TDI, vertices: T-joins  

 

        (G,T, c)= (G,T,2c) /2 

 

Seymour: If G is bipartite, (G,T) = (G,T)  

                              

  

 
. 

 
. 

Metatheorem :    Polyhedron the same as weighted minmax theorem 



Connection to Shortest Paths 

Guan (1962):   J  T-join w-min  iff  w[C] conservative  

conservative : no negative weight circuit 

 

(x,y) : = w(x,y) : = min {w(P) :  P path }= 

                                min {w(P) :  P {x,y}-join}  

   
 

Reformulation of Seymour’s theorem (81)  

G bipartite,  w :  E(G)  {-1,1} ;  

  

Theorem :  G conservative    E-  can be  

covered by disjoint cuts C, with  |C E- | =1 

  



This reduction leads to the  
T-join polytope 

If negative weights are allowed ?  

 

c  ( F ) = |c| (F \ E-) - |c| (F  E-) = |c| (F  E-) - c ( E-)  
 

(So w(x,y) : = min {w(P) :  P path }= 

                                min {w(P) :  P {x,y}-join}  

Is reducible to min weight perfect matchings.) 

  



SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES 

 

Input:    Partially ordered set of tasks of unit length.  

Output: Schedule of min completion time T 

  Solutions for max (weighted) matchings:  

                    with Edmonds’ algorithm (1965) 

                    Grötschel, Lovász, Schrijver  

                    with Padberg-Rao (1979) 

Theorem : (Fujii & als)  :  T = n -  (Ginput )   

Another application 



To come : matroids  

 

 

Exercises to revise for the third course : series 7. 

 

•   

 

 

 

 

 

 


