To come : Matchings, Undirected Shortest Paths, T-joins

Exercises to revise for the second course: series 3 and 6

Matching

matching : a set $M \subseteq E$ of vertex-disjoint edges

INPUT : G=(V,E) graph. TASK : Find a matching of maximum size

Do the red edges form a maximum matching ?

Augmenting Paths

augmenting path with respect to matching M : path alternating between M and $E \setminus M$ with the 2 endpoints uncovered by M.

Proposition (Berge) : G graph, M matching in G. M is a maximum matching in G iff there is no augmenting path Matching and vertex cover

matching : M set of vertex-disjoint edges

Max |M| : **v**

vertex cover: T set of vertices so that G-T has no edges

Min |T| : τ

υ ≤ τ

Minmax for bipartite graphs

Theorem (Kőnig) : If G=(V,E) is bipartite, then $\upsilon = \tau$

Proof: \leq is the proven 'easy part'; \geq is to be proved:

If for some $v \in V$: v(G - v) = v(G) - 1, by induction : $v(G) = v(G - v) + 1 = \tau(G - v) + 1 \ge \tau(G)$.

If $uv \in E$ then either u or v satisfy this condition !

Exercise 3.1, 3.2

Q.E.D.

LP for bipartite matchings

MATCHING POLYTOPE for G=(V,E) bipartite $x \in IR^E$: $x (\delta(v)) \le 1$, $\forall v \in V$ $x \ge 0$

dual:

 $\begin{array}{ll} \text{VERTEX COVER} & \text{for G=(V,E) bipartite} \\ & x \in IR^{\vee}: \\ & x_i + x_j \geq 1 \ , \ \forall \ ij \in E \\ & x \geq 0 \end{array}$

TDI (TU+Cramer, or no odd circuit)

The method of variables

G = (A, B, E) bipartite, |A|=|B|. $M := (x_{ij} \text{ if } ij \in E, \text{ else } 0)_{n \times n}$:

Proposition : M is a nonzero polynomial ⇔ ∃ perfect matching

Proof: All terms of M are different. (There is no cancellation.)

n! Terms, but determinants can be computed in polynomial time : randomized algorithm: substitute values and then compute !

Questions : If then the det is nonzero can we conclude ? If it is zero ? What to do for nonbipartite graphs ?

The probability of error, precisely

Lemma: (Schwartz, Zippel) Let q be a nonzero polynomial of n variables $x_1, ..., x_n$, and let it be of degree d ; $S \subseteq IN$ is finite, s:=|S|. Moreover, let $X_1, ..., X_n$ be random variables taken independently and uniformly from S. Then Pr (q($X_1, ..., X_n$)=0) $\leq d/s$.

Proof: For n=1 obvious. Le $p \in Q[x_1, ..., x_{n-1}]$ the coefficient of the highest exponent to power μ of x_n , and let π be the degree of p.

 $\Pr(q(X_1,...,X_n)=0) \le \Pr(p(X_1,...,X_n)=0) + \Pr(q(X_1,...,X_n)=0 \mid p(X_1,...,X_n) \neq 0)$

$$\leq \pi/s + \mu/s \leq d/s$$

The method of variables The Randomized Algorithm

Oracle Algorithm :

An oracle tells the substitution values of a polynomial in pol(deg) time.

- 1. Let $S = \{1, ..., 2n\}$.
- 2. Make independent uniform choices in S for each variable.
- Compute the polynomial (oracle call) for the chosen values.
 If ≠ 0 : the polynomial is nonzero (∃ perfect matching)
 If =0 ? We decide: no perfect matching: Pr (error) =¹/₂

Why not bigger S? Better to choose |S| = const x deg and repeat !

Proposition : After O(log $1/\epsilon$) repetitions Pr (error) $\leq \epsilon$

The complexity class $P \subseteq RP \subseteq NP$

= alphabet $\Box \subseteq \Sigma^{+}$

 $L \in NP \iff \exists R_{L} : \Xi^{*} \times \Xi^{*} \rightarrow \{9\}$ $x \notin L : \qquad R(x,y) = 0 \quad \forall y \in \Xi^{*}$ $x \in L : \exists y \in Z^{*} : R(x,y) = 1$

Imagine : x= a graph, y the certificate (eg a substitution with \neq 0 polynomial value)

The same def as NP but there are many certificates : constant proportion

Tutte-Berge theorem

Theorem : Let G=(V,E) be a graph. Then the minimum, over all matchings M of the number of uncovered vertices of V = $\max \{q(X) - |X| : X \subseteq V \}$

Def: q(X) is the n. of comps of G-X having an odd number of vertices

Proof : \geq easy.

 \leq : We can adapt the proof of Kőnig's theorem: If v (G - v) = v (G) - 1, induction is easy, else apply the exercises.

Exercise 3.3Hint : In which part of the theorem are
the vertices uncovered by matchings : in
X ? An even comp of G-X ? An odd comp ?

Edmonds' algorithm

- 1. Grow an (inclusionwise max) alternating forest F rooted in uncovered vertices
- 2. If two even vertices are adjacent

 a.) between 2 different components : augment
 b.) in the same component
 Generalize Exercise 3.3 to this case.
 Heureka you shrink ! (Edmonds)
 In both cases GOTO 1 (possibly using the actual forest).
- If there is no edge between the even vertices STOP
 X:= odd vertices

Theorem : X is a Tutte-set and F is a maximum matching

Summary of algorithms for matchings

Unweighted :

- Algorithms for bipartite graphs: paths in digraphs;
- Method of variables
- Edmonds'algorithm;
- Structural algorithms (for matchings by Lovász, T-joins, b-match: S.)

Weighted :

- Primal-Dual framework with max cardinality subroutine
- Ellipsoid method

T-joins

Euler's theorem : G= (V,E), E : streets
One can go through all the streets
exactly once ⇔
∀ Degree is even & G is connected

 $F \subseteq E(G)$ is a *T-join,* if T = vertices of odd degree of F.

Easy facts about T-joins : G connected, |T| even $\Rightarrow \exists$ T-join ; **min weight** « Eulerian replication » = duplication of a minimum T_G-join.

G=(V,E), w: E \rightarrow IR, F is a minimum weight T-join \Leftrightarrow (G, w[C]) is conservative, where w(e):= $\begin{cases} -1 & if e \in F \\ 1 & if e \notin F \end{cases}$ Exercise 4.2, 6.2

Polynomial algorithm

Input : G=(V,E), w: $E \rightarrow IR$ **Task** : minimize the weight of a T-join

Proposition (Edmonds) : If the weights are nonnegative easy reduction tminimum weight matching of the complete graph on T where the Weights are the w-shortest paths in G between the vertices of T.

The postman polyhedron

Def : $\delta(W) \subseteq E(G)$ ($W \subseteq V$) is a *T-cut*, if $|W \cap T|$ is odd

Proposition : F T-join, $\delta(W)$ T-cut $\Rightarrow | F \cap \delta(W) | \ge 1$

Theorem Edmonds, Johnson (1973) : $Q_+(G,T) := \text{conv}(T-\text{joins}) + IR_+^n =$ $\{x \in IR_+^E x(\delta(W)) \ge 1, \delta(W) \text{ is a T-cut, i.e. } |W \cap T| \text{ is odd}\}$

Minmax

 $\tau(G,T) := \min \{ |F| : F \subseteq E, F \text{ is a T-join } \}$ $\nu(G,T) := \max\{ |\mathcal{C}| : \mathcal{C} \text{ dijoint T-cuts } \}$

Easy : $\tau(G,T) \ge \nu(G,T)$

Theorem (Seymour '81) If G is bipartite, $\tau(G,T) = \nu(G,T)$

Proving the T-join polyhedron Thm

 $Q_{L}(G,T) = \{x \in IR^{E} : x(W) \ge 1, W \text{ is a T-cut}\}$ $x \ge 0$ Edmonds-Johnson: ¹/₂ TDI, vertices: T-joins \Leftrightarrow $\tau(G,T,c) = v(G,T,2c)/2$ \bigcirc Seymour: If G is bipartite, $\tau(G,T) = v(G,T)$

Metatheorem : Polyhedron the same as weighted minmax theorem

Connection to Shortest Paths

Guan (1962): J T-join w-min iff w[C] conservative *conservative* : no negative weight circuit

$$\lambda(x,y) := \lambda_w(x,y) := \min \{w(P) : P \text{ path }\}= \min \{w(P) : P \{x,y\}\text{-join}\}$$

Reformulation of Seymour's theorem (81) G bipartite, w : E(G) \rightarrow {-1,1} ;

Theorem : G conservative \Leftrightarrow E₋ can be covered by disjoint cuts C, with $|C \cap E_{-}| = 1$

If negative weights are allowed ?

c (**F**) = |c| (**F** \ E_{-}) - |c| (**F** \cap E_{-}) = |c| (**F** Δ E_{-}) - c (E_{-})

(So λ_w(x,y) := min {w(P) : P path }= min {w(P) : P {x,y}-join} Is reducible to min weight perfect matchings.)

> This reduction leads to the T-join polytope

Another application

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length. **Output**: Schedule of min completion time T

Theorem : (Fujii & als) : $T = n - v (G_{input})$

Solutions for max (weighted) matchings: with Edmonds' algorithm (1965) Grötschel, Lovász, Schrijver with Padberg-Rao (1979)

To come : matroids

Exercises to revise for the third course : series 7.