To come :

Matchings,

Undirected Shortest Paths,

T-joins

Exercises to revise for the second course: series 3 and 6

Matching

matching : a set $\mathrm{M} \subseteq \mathrm{E}$ of vertex-disjoint edges

INPUT : G=(V,E) graph.
TASK : Find a matching of maximum size

Do the red edges form a maximum matching ?

Augmenting Paths

augmenting path with respect to matching M : path alternating between M and $E \backslash M$ with the 2 endpoints uncovered by M.

Proposition (Berge) : G graph, M matching in G.
M is a maximum matching in G iff there is no augmenting path

Matching and vertex cover

matching : M set of vertex-disjoint edges

Max |M|: v

vertex cover: T set of vertices so that G-T has no edges
$\operatorname{Min}|T|: \tau$
$v \leq \tau$

Minmax for bipartite graphs

Theorem (Kőnig) : If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite, then $\quad v=\tau$

Proof: \leq is the proven 'easy part'; \geq is to be proved:

If for some $v \in V: v(G-v)=v(G)-1$, by induction:

$$
v(G)=v(G-v)+1=\tau(G-v)+1 \geq \tau(G) .
$$

If $u v \in E$ then either u or v satisfy this condition!
Exercise 3.1, 3.2
Q.E.D.

LP for bipartite matchings

MATCHING POLYTOPE for $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ bipartite

$$
\begin{gathered}
x \in \mathrm{IR}^{\mathrm{E}}: \\
\mathrm{x}(\delta(\mathrm{v})) \leq 1, \forall \mathrm{v} \in \mathrm{~V} \\
\mathrm{x} \geq 0
\end{gathered}
$$

dual:

VERTEX COVER for $G=(V, E)$ bipartite

$$
\begin{gathered}
x \in I^{V}: \\
x_{i}+x_{j} \geq 1, \forall i j \in E \\
x \geq 0
\end{gathered}
$$

TDI (TU+Cramer, or no odd circuit)

The method of variables

$\mathrm{G}=(\mathrm{A}, \mathrm{B}, \mathrm{E})$ bipartite, $|\mathrm{A}|=|\mathrm{B}| . \quad \mathrm{M}:=\left(\mathrm{x}_{\mathrm{ij}} \text { if } \mathrm{ij} \in \mathrm{E} \text {, else } 0\right)_{\mathrm{n} \times \mathrm{n}}$:

Proposition : M is a nonzero polynomial $\Leftrightarrow \exists$ perfect matching

Proof : All terms of M are different. (There is no cancellation.)
n ! Terms, but determinants can be computed in polynomial time : randomized algorithm: substitute values and then compute!

Questions: If then the det is nonzero can we conclude ? If it is zero ?
What to do for nonbipartite graphs ?

The method of variables

The probability of error, precisely

Lemma: (Schwartz, Zippel) Let q be a nonzero polynomial of n variables x_{1}, \ldots, x_{n}, and let it be of degree $d ; S \subseteq I N$ is finite, $s:=|S|$. Moreover, let X_{1}, \ldots, X_{n} be random variables taken independently and uniformly from S. Then $\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0\right) \leq d / s$.

Proof: For $n=1$ obvious. Le $p \in Q\left[x_{1}, \ldots, x_{n-1}\right]$ the coefficient of the highest exponent to power μ of x_{n}, and let π be the degree of p.
$\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0\right) \leq \operatorname{Pr}\left(p\left(X_{1}, \ldots, X_{n}\right)=0\right)+\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0 \mid p\left(X_{1}, \ldots, X_{n}\right) \neq 0\right)$

$$
\leq \quad \pi / \mathrm{s} \quad+\quad \mu / \mathrm{s} \quad \leq \mathrm{d} / \mathrm{s}
$$

The method of variables

The Randomized Algorithm

Oracle Algorithm :

An oracle tells the substitution values of a polynomial in pol(deg) time.

1. Let $S=\{1, \ldots, 2 n\}$.
2. Make independent uniform choices in S for each variable.
3. Compute the polynomial (oracle call) for the chosen values. If $\neq 0$: the polynomial is nonzero (\exists perfect matching) If $=0$? We decide: no perfect matching: $\operatorname{Pr}($ error $)=1 / 2$

Why not bigger S ? Better to choose $|S|=$ const x deg and repeat!

Proposition : After $\mathrm{O}(\log 1 / \varepsilon)$ repetitions $\operatorname{Pr}($ error $) \leq \varepsilon$

The complexity class $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$

$$
\begin{aligned}
& \sum \text { abplahet } \\
& L \subseteq \Sigma^{*} \\
& L \in N P \Leftrightarrow \exists R_{L}: \Sigma^{*} \times \Sigma^{x} \rightarrow\{0,\} \\
& x \notin L: \quad R(x, y)=0 \quad \forall y \in \Sigma^{*} \\
& v \in L: \exists y \in \Sigma^{*}: R(x, y)=1 .
\end{aligned}
$$

Imagine: $x=a$ graph, y the certificate (eg a substitution with $\neq 0$ polynomial value)

$$
\begin{aligned}
& L \in R P \Leftrightarrow-"-x \rightarrow Y_{x} \\
& -\quad-1 \\
& x \in L: \quad\left\{y \in \Sigma^{*}: R(x, y)=1\right\} \geq \frac{\left|y_{x}\right|}{2}
\end{aligned}
$$

The same def as NP but there are many certificates : constant proportion

Tutte-Berge theorem

Theorem : Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then the minimum, over all matchings M of the number of uncovered vertices of $\mathrm{V}=$

$$
\max \{q(X)-|X|: X \subseteq V\}
$$

Def : $q(X)$ is the n. of comps of $G-X$ having an odd number of vertices

Proof : \geq easy.
\leq : We can adapt the proof of Kőnig's theorem:
If $v(G-v)=v(G)-1$, induction is easy, else apply the exercises.

Exercise 3.3
Exercise 3.5

Hint: In which part of the theorem are the vertices uncovered by matchings : in X ? An even comp of G-X ? An odd comp ?

Edmonds' algorithm

1. Grow an (inclusionwise max) alternating forest F rooted in uncovered vertices
2. If two even vertices are adjacent
a.) between 2 different components : augment
b.) in the same component

Generalize Exercise 3.3 to this case. root Heureka you shrink! (Edmonds)
even odd
In both cases GOTO 1 (possibly using the actual forest).
3. If there is no edge between the even vertices STOP

X:= odd vertices

Theorem : X is a Tutte-set and F is a maximum matching

Summary of algorithms for matchings

Unweighted :

- Algorithms for bipartite graphs: paths in digraphs;
- Method of variables
- Edmonds'algorithm;
- Structural algorithms (for matchings by Lovász, T-joins, b-match: S.)

Weighted :

- Primal-Dual framework with max cardinality subroutine
- Ellipsoid method

T-joins

Euler's theorem : G=(V,E), E : streets One can go through all the streets exactly once \Leftrightarrow
\forall Degree is even \& G is connected
$F \subseteq E(G)$ is a T-join, if
$T=$ vertices of odd degree of F.

Easy facts about T-joins : G connected, $|T|$ even $\Rightarrow \exists$ T-join ; min weight «Eulerian replication» = duplication of a minimum T_{G}-join.
$G=(V, E), w: E \rightarrow I R, F$ is a minimum weight T-join $\Leftrightarrow(G, w[C])$ is
conservative, where $w(e):=\left\{\begin{array}{r}-1 \\ \text { if } e \in F \\ 1 \text { if } e \notin F\end{array}\right.$

Polynomial algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{w}: \mathrm{E} \rightarrow \mathrm{IR}$
Task : minimize the weight of a T-join

Proposition (Edmonds) : If the weights are nonnegative easy reduction tminimum weight matching of the complete graph on T where the Weights are the w-shortest paths in G between the vertices of T .

The postman polyhedron

$$
\text { Def : } \delta(\mathrm{W}) \subseteq \mathrm{E}(\mathrm{G})(\mathrm{W} \subseteq \mathrm{~V}) \text { is a } T \text {-cut, if }|\mathrm{W} \cap T| \text { is odd }
$$

```
Proposition:F T-join, \delta(W) T-cut }=>|F\cap\delta(W)|\geq
```

Theorem Edmonds,Johnson (1973) : $\mathrm{Q}_{+}(\mathrm{G}, \mathrm{T}):=\operatorname{conv}(\mathrm{T}-\mathrm{joins})+I \mathrm{R}_{+}{ }^{n}=$

$$
\left\{x \in \mathbb{R}_{+}{ }^{E} x(\delta(W)) \geq 1, \delta(W) \text { is a } T \text {-cut, i.e. }|W \cap T| \text { is odd }\right\}
$$

Minmax

$$
\begin{array}{lll}
\tau(\mathrm{G}, \mathrm{~T}) & := & \min \{|\mathrm{F}|: \mathrm{F} \subseteq \mathrm{E}, \mathrm{~F} \text { is a T-join }\} \\
v(\mathrm{G}, \mathrm{~T}) & := & \max \{|\mathcal{C}|: \mathbb{C} \text { dijoint T-cuts }\}
\end{array}
$$

Easy : $\tau(\mathrm{G}, \mathrm{T}) \geq v(\mathrm{G}, \mathrm{T})$

Theorem (Seymour '81) If G is bipartite,

$$
\tau(\mathrm{G}, \mathrm{~T})=v(\mathrm{G}, \mathrm{~T})
$$

Proving the T-join polyhedron Thm

$$
\begin{aligned}
& Q_{+}(G, T)=\left\{x \in I R^{E}: x(W)\right. \geq 1, W \text { is a } T \text {-cut } \\
&x \geq 0\}
\end{aligned}
$$

Edmonds-Johnson: ½ TDI, vertices: T-joins

$$
\begin{aligned}
& \Leftrightarrow \\
\tau(\mathrm{G}, \mathrm{~T}, \mathrm{c})= & \dot{v}(\mathrm{G}, \mathrm{~T}, 2 \mathrm{c}) / 2 \\
& \Leftrightarrow
\end{aligned}
$$

Seymour: If G is bipartite, $\tau(\mathrm{G}, \mathrm{T})=v(\mathrm{G}, \mathrm{T})$

Connection to Shortest Paths

Guan (1962): J T-join w-min iff w[C] conservative conservative : no negative weight circuit

$$
\begin{aligned}
\lambda(x, y):=\lambda_{w}(x, y): & =\min \{w(P): P \text { path }\}= \\
& \min \{w(P): P\{x, y\} \text {-join }\}
\end{aligned}
$$

Reformulation of Seymour's theorem (81)
G bipartite, w : E(G) $\rightarrow\{-1,1\}$;

Theorem : G conservative $\Leftrightarrow E$. can be covered by disjoint cuts C, with $\left|C \cap E_{-}\right|=1$

If negative weights are allowed ?

$c(F)=|c|\left(F \backslash E_{-}\right)-|c|\left(F \cap E_{-}\right)=|c|\left(F \Delta E_{-}\right)-c\left(E_{-}\right)$
(So $\lambda_{w}(x, y):=\min \{w(P): P$ path $\}=$

$$
\min \{w(P): P\{x, y\} \text {-join }\}
$$

Is reducible to min weight perfect matchings.)

This reduction leads to the T-join polytope

Another application

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length.
Output: Schedule of min completion time T

Theorem : (Fujii \& als) : $\mathrm{T}=\mathrm{n}-\mathrm{v}\left(\mathrm{G}_{\text {input }}\right)$

Solutions for max (weighted) matchings: with Edmonds' algorithm (1965)
Grötschel, Lovász, Schrijver
with Padberg-Rao (1979)

To come : matroids

Exercises to revise for the third course : series 7.

