Combinatorial Optimization : Matchings, Matroids and the Travelling Salesman On the crossroad of the postman and the salesman

András Sebő, CNRS (G-SCOP) Grenoble

support for an advanced course in Buenos Aires

Exercises to revise for the first course : series 4 and 5.

What is combinatorial optimization ?

Given $f: 2^S \rightarrow IR$, find $X \subseteq S$ that minimizes f, that is, such that $f(X) \leq f(Y)$ for all $Y \subseteq S$.

TOO GENERAL, NOT EXACT, IRRELEVANT, NOT TRUE, DRY, BORING, IGNORING IMPORTANT ASPECTS LIKE COMPLEXITY ISSUES ... We have to go through more specific, structured examples !

The postman

Edges = streets Do all the streets and come back ! In P

(Edmonds, Johnson 73)

The Travelling Salesman

Vertices = Cities Do all the cities and come back !

NP-hard (Karp, 1972)

The (Chinese) postman problem

Euler's theorem : G= (V,E), E : streets
One can go through all the streets exactly once ⇔
V Degree is even & G is connected, i.e. Eulerian)

min « Eulerian replication » ?= min "Eulerian duplication"= min cardinality of a set F with $d_F(v) \equiv d_G(v) \mod = 2 \quad \forall v \in V$ postman setExercise 4.1

Proposition : A postman set P is minimum \Leftrightarrow w(e):= $\begin{cases} -1 & \text{if } e \in P \\ 1 & \text{if } e \notin P \end{cases}$ has no cicrcuit of negarive total weight

Exercise 4.2.

TSP

TSP PATHINPUT : V cities, s , t \in V, c: V×V \rightarrow IR₊ métrique, cadc(uv) + c(vw) \geq c(uw) \forall u, v, w \in V

OUTPUT: shortest Hamiltonian path between *s* and *t*.

GRAPH-TSP PATH: c (uv) := minimum cardinality of an (u,v)-path in INPUT graph G=(V,E).

GRAPHE- TSP : s=t

 $c \in \{1,\infty\}$ any approx $\ \supseteq$ HAM ; the metric condition usually holds

Directions from bird's eyes ...

Our program

- 1. Bin packing (cutting stock, scheduling), how to look at it ?
 - LP, Total Dual Integrality, Integer Decomposition and Hilbert Bases
 - Paths (GPS, PERT, ...), what can be solved ?
 - Cuts (routing, clustering) various problems, different ways ...
- 2. Matching (mariages, scheduling) undirected shortest paths Tours : the salesman and the postman
- 3. Submodular functions (machine learning, network design), matroids
- 4. Matroid intersection, context and applications
- 5. Recent progress in approximating the TSP (using what we learnt)

Bin packing

BIN PACKING Input : $0 \le s_1, ..., s_n \le 1$ item *sizes,* Task : Minimize the number of bins (capacity 1)

PARTITION : Are 2 bins enough ?

NP-hard

Bin packing (picture)

Bin packing (heuristics)

BIN PACKING **Input**: $0 \le s_1, ..., s_n \le 1$ item *sizes,* **Task**: Minimize the number of bins (capacity 1)

Bin packing (patterns)

INPUT :
$$0 \le s_1, ..., s_d \le 1$$
 item sizes,
 $b_1, ..., b_d \in IN$ item multiplicities

Pack them to a min number of bins of capacity 1

pattern :
$$p \in IN_{+}^{d}$$
 such that $p_1s_1 + ... + p_ds_d \le 1$

P := the columns are the inclusinwise max patterns

Bin packing (example)

d=3

 $s=(1/2, 1/3, 1/5) \qquad b=(1, 2, 4)$ b $2 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$ $P= \qquad 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 1 \ 2$ $0 \ 0 \ 5 \ 0 \ 2 \ 1 \ 3 \ 4$

SIZE = 59/30 LP = $\frac{1}{2} + \frac{2}{3} + \frac{4}{5} = \frac{59}{30}$

Exercise : OPT= 2 or 3 ?

Bin packing (LP)

pattern : $p \in IN_{+}^{d}$ such that $p_1s_1 + ... + p_ds_d \le 1$

Gilmore-Gomory LP :

$$\begin{array}{ll} \mathsf{P} \mathbf{x} \geq \mathbf{b} & (\mathsf{P} \in \mathsf{IN}_{+}^{d \, \mathbf{x} \, \mathsf{big}}) & \mathsf{y} \mathsf{P} \leq \mathbf{1} \\ \mathbf{x} \geq \mathbf{0} & \mathsf{y} \geq \mathbf{0} \\ \min \ \mathbf{1}^\mathsf{T} \mathbf{x} & (\mathsf{b} \in \mathsf{IN}_{+}^{d}) & = \max \ \mathbf{1}^\mathsf{T} \mathsf{y} \end{array}$$

Conjecture (Scheithauer, Terno): $OPT \leq [LP] + 1$ (not better for restricted patterns)

Linear Programming Duality Theorem

Ax ≤ b		yA = c	
$(A \in \mathbf{Q}^{mxn}, b, c \in \mathbf{Q}^n)$	dual:	$\mathbf{y} \ge 0$	
max c ^T x	=	min y [⊤] b	

Linear Programming

Carathéodory's theorem

Fact : (Carathéodory) $v \in \text{cone} (a_{1,} \dots, a_m) \subseteq IR^n =>$ v is also a nonneg. comb of a linearly independent subset

Proof : $v = \lambda_1 a_1 + \ldots + \lambda_k a_k : \lambda_i > 0$ (i=1, ... k). If lin. dep: $0 = \alpha_1 a_1 + \ldots + \alpha_k a_k$ not all α_i are nonnegative. Add the right multiple of the second to the first.

Exercise: It is possible to do this so as at the same time

- to have one less nonzero coefficient
- to maintain the nonnegativity of all coefficients.

Q.E.D. « \exists solution => \exists basic solution »

Linear Programming

Integer Solutions

Ax ≤ b		yA = c	
(A \in Q ^{mxn} , b, c \in Q ⁿ)	dual:	$\mathbf{y} \ge 0$	
max c ^T x	=	min $y^{T}b = : LIN$	

integer polyhedron $Ax \leq b$ if $\forall c$ the LIN is integer \Leftrightarrow vertices (if any) are integer.

Totally dual integral (TDI) : $Ax \leq b$, if LIN= {min y^Tb, yA = c, y \geq 0, y integer}

integer rounding, if $\forall c : \{\min y^Tb, yA = c, y \ge 0, y \text{ integer}\} = [LIN(c)]$

TDI system = IR system & integer polyhedron

Linear Programming Hilbert bases (normal semigroups)

 $H \subseteq Z^n$ is a *Hilbert basis* if any nonneg comb which is also an integer comb is also a nonneg integer comb

adding (-1,2), (0,1), (1,0) } : Hilbert basis

Integer Caratheodory property (+'partition' into unimodular cones)

Linear programming Normal semigroups

Schrijver : $Ax \le b$ TDI \Leftrightarrow if $\forall x_0$ the equalities for x_0 form a H.b. Full dim => unique minimal TDI System (Schrijver sys.)

s,t paths and cuts,matching polytope,spanning trees,arborescences, bin packing, matroids and submodular polyhedra,

Gomory-Chvátal procedure, integer hull ... : rounding down the Schrijver system.

Integer Caratheodory property holds in 2 and 3 dim.

General Integer Caratheodory bound in n dim: 2n – 2, open in gen.

General Integer Programming : Gomory-Chvátal, Lovász-Schrijver, Balas, Ceria, etc ...

Bin packing (LP)

Theorem (McCormick, Smallwood, Spieksma 1990) : For two different item sizes $OPT \leq [LP]$ and can be found in poly. time.

Exercise* : Suppose d=2, and prove that { (p,1) : p is a pattern} is a Hilbert basis

Hint: Show that any three linearly independent vectors among these not containing a fourth one, form a Hb.

Theorem (Sebő, Shmonin 2006-) : For at most 7 different item sizes, OPT ≤ LP + 1 and can be "easily" found (Conj. True)

Theorem (Jansen, Solis-Oba 2011) : For any fixed number of item sizes OPT+1 can be found in polynomial time.

Paths in Graphs

Directed, nonnegative weights (Dijkstra)
 -1 weights NP-hard (HAM)
Conservative (no circuit of neg total weight): ∈ P

Undirected shortest paths with nonnegative weights? With -1 weights? With a conservative weighting?

Exercise : Does the triangle inequality hold in the undirected case ? Are subpaths of shortest paths shortest ?

Can we solve undirected shortest path problems in the same way as directed ones? Or reduce one to the other?

Conservativeness

Def: (G,w) where G is a graph, w: E(G) → Z is *conservative*, if for every circuit C of G : $w(C) \ge 0$.

 $\lambda(a,b) = \lambda(a,c) = -1$; $\lambda(b,c) = -2$; $\lambda(a,b) + \lambda(b,c) < \lambda(a,c)$ A shortest (a,c)-path is not shortest between a and b.

A Quick Proof of Seymour's theorem **Theorem:** G bipartite, w:E(G) \rightarrow {-1,1}, (G,w) conservative \Leftrightarrow E_{_} can be covered by disj cuts meeting it in exactly one edge each. Proof $x_0 \in V(G)$ (Sebő) Take $b \neq x_0$ such that $\lambda_w(x_0, b) = \min_{v \in V(G)} \lambda_w(x_0, v)$ **X**₀ **Claim 1** | δ (b) \cap **E** | = 1 Exercise 5.3 **Claim 2 :** Switching on C, w(C)=0 : **a.** Remains conservative **b.** Distances don't change Exercise 5.1

Claim 3: Contracting $\delta(b)$, a., (and b.) remain true! Exercise 5.4

Cuts

Input : $G=(V,E), c: E \rightarrow Q$ **Output**: Partition {X, Y} of V that minimizes $\sum_{x \in X, y \in Y, xy \in E} c(xy)$

minimum cut : c non-negative $\in \mathscr{P}$

maximum cut : c non-positive M9 - complete

Randomized 2-approx : Flip a coin !

- 2-approx : Derandomize !

Cuts Short Summary

$$\mathsf{MIN}\;\mathsf{CUT}\quad\in\mathscr{I}$$

Ford Fulkerson: algorithm and MFMC thm. (Improvments, analysis since then ...) Menger's theorems.

Goldberg-Tarjan : preflow push

Karger : uniform distribution on edges. Choose an edge, contract, stop if |V|=2.

Nagamochi-Ibarraki has been known (is maybe the derandomization of Karger)

MAX CUT *My* - hard

NP-hard, even max | | see GJ.

In planar graphs = Chinese postman problem. $\in \mathscr{P}$

Exercise: why ? (Hint : a cut is max iff 1 on it and -1 else, Is conservative in the dual)

0.878-approx:

Goemans-Williamson with Semidefinit Programming To come : Matchings, Undirected Shortest Paths, T-joins

Exercises to revise for the second course: series 3 and 6