3. General $\{s, t\}$ path TSP

The $\{s, t\}$-path TSP

PATH TSP
INPUT : V cities, $s, t \in \mathrm{~V}$, $\mathrm{c}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{IR}_{+}$metric OUTPUT: shortest s, t Hamiltonian path

The LP, i.e. the s-t-path TSP polytope:

$$
P(V, s, t)=\left\{x \in \mathbb{R}_{+}{ }^{E}: x(\delta(W)) \geq 2, \varnothing \neq W \subset V, s, t \in W \text { or } \notin\right.
$$

1, if s, t separated by W
$=$ on vertices (1 for s, t, else 2) \}

$$
\begin{aligned}
=\left\{x \in \mathbb{R}_{+}^{E}: x(E(W))\right. & \leq n-1, \varnothing \neq W \subset V \\
& =n-1
\end{aligned}
$$

and $=1$ on stars of s, t and else 2 as before $\}$

Remarks about the s-t path TSP polytope

Spanning tree polytope intersected with star inequalities!

> Notation:
> OPT $:=\min$ Ham s-t path length.
> $\operatorname{OPT}_{L P}(s, t):=\min \left\{c^{\top} x: x \in P(V, s, t)\right\}$

Integer points : Hamiltonian paths
The proof of $\mathbf{2}$ is as easy, and 'the two proofs' of 5/3 are not difficult.

Of «Christofides » algorithm
Let us do 2 ! It looks easier, so why only $5 / 3$?

Why $5 / 3$? What is the difficulty?

None of the proofs for $3 / 2$ work,
Parity correction costs more than $1 / 2$:

Deleting an $\{\mathrm{s}, \mathrm{t}\}$-join, what remains is not an $\{\mathrm{s}, \mathrm{t}\}$-join

For $\mathrm{x} \in \mathrm{P}(\mathrm{V}, \mathrm{s}, \mathrm{t}), \mathrm{x}(\mathrm{C}) / 2<1$ is possible,
$\mathrm{x} / 2$ is not in all T -join polyhedra.

Def : A cut C is called narrow if $x(C)<2$

Narrow cuts are the guilty ones !

Narrow cuts form a chain

Lemma (An, Kleinberg, Shmoys, 2011) $G=(V, E)$ graph, $x \in P(V, s, t)$.
The set of narrow cuts is a chain $\delta\left(S_{i}\right)(i=1, \ldots, k), s \in S_{1} \subseteq \ldots \subseteq S_{k}$.

Proof: Suppose not:

$2+2>d(S)+d(T) \geq d(S \cap T)+d(S \cup T) \geq 2+2, \quad$ a contradiction

The first results

	cycle (s=t)	(s,t)-path
cardinality	Gamarnik,Lewenstein,Sviridenko (2005): $3 / 2-\varepsilon$ for cubic 3-connected Boyd, Sitters,van der Ster,Stougie (2011): $4 / 3$ for cubic Oveis, Gharan, Saberi, Singh (2011) : $3 / 2-\varepsilon$ Mömke, Svensson (2011) : 1.461... Mucha (2011) : 13/9=1.444...	```Hoogeveen (1991) 5/3 An,Kleinberg,Shmoys(2011) 1.578 ...```
general	Christofides $\begin{gathered} \text { CHR, } 1976 \\ 1.5 \end{gathered}$	3 Hoogeveen (1991) 5/3 An,Kleinberg,Shmoys(2011) "AKS" 1.619 ...

Last integrality gap (I) and approx ratio (A)

cycle or path cardinality or weights	cycle	(s,t)-path
graph metric (cardinality tour)	Sebő, Vygen SV12, Jan 2012 1.4 , conjectured: 4/3 (I)	Gao: simpler proof, March, 2013 Sebő, Vygen SV12, Jan 2012 1,5 best possible (I) Traub, Vygen <3/2 (A) ? April 2018
General metric	Christofides CHR, 1976 1,5 , conjectured: 4/3 (I)	Sebő, van Zuylen, 2016 3/2 + 1/34 (I) conjectured: 3/2 (I) Traub, Vygen 3/2+є (A) 2017 Zenklusen, April 2018: 3/2 (A)

Zenklusen’s 3/2 approximation April 2018

Let \mathscr{B} be a set of s-t cuts
This is a step 'towards integrality' And we show it is still tractable
$y \in P(V, s, t)$ is \mathscr{B}-good, if $y(B)$ is 1 or ≥ 3 for all $B \in \mathscr{B}$

The incidence vector χ^{H} of a Hamiltonian path H :

$$
\chi^{\mathrm{H}} \in \mathrm{P}(\mathrm{~V}, \mathrm{~s}, \mathrm{t}) \text {, and } \chi^{\mathrm{H}} \text { is } \mathcal{B}-\operatorname{good} \text { for } \forall \text { set } \mathscr{B}
$$

Apply this to $\left.\mathscr{B}:=\left\{\mathrm{C}: \mathrm{x}^{*}(\mathrm{C})\right)<3\right\}$
Karger: pol. Number and can be listed

Temptative reduction

If we know about green cuts that we want to meet once, the problem can be decomposed to smaller ones :

Using Karger + Ellipsoids we can solve all small problems.
But : There may be new narrow cuts ...

Min \mathcal{B}-good with shortest paths :

t

For all pairs $B_{1} \subseteq B_{2} \in \mathscr{B}$ and u, v minimize on $\mathrm{P}\left(\mathrm{B}_{2} \backslash \mathrm{~B}_{1}, \mathrm{u}, \mathrm{v}\right)$ requiring 3 on $\mathcal{B} \backslash\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}\right\}$

Solve shortest paths with $w\left(B_{2} \backslash B_{1}, u, v\right), c(a, b)$.
To be precise: the vertices of the auxiliary graph have to be triples ...

How to find a TSP solution

Shortest paths with input w (u,v), c (u,v) found the $\min \mathscr{B}$-good solution $\mathrm{y}, \mathrm{c}(\mathrm{y}) \leq \mathrm{OPT}$

If $B \in \mathscr{B}$ is in the chain of $1-c, y(B) \geq 3$;
if not, let B^{\prime} in the chain not containing B and not contained in B :
$y(B)+y\left(B^{\prime}\right) \geq y\left(B \cap B^{\prime}\right)+y(B \cup B) \geq 2+2$
$\stackrel{\|}{\bullet} \quad \frac{x^{*}+y}{2}$
is then in $\mathrm{P}(\mathrm{V}, \mathrm{s}, \mathrm{T})=$ the parity correction polyhedron !

Rico's algorithm

THE END OF THIS COURSE

THE END OF THIS MEETING

MANY THANKS TO THE ORGANIZERS!

Many thanks to the participants !
Hopefully you know more than before!

