3. General {s,t} path TSP

The {s,t}-path TSP

PATH TSP INPUT : V cities, s, t \in V, c: V×V \rightarrow IR₊ metric OUTPUT: shortest s, t Hamiltonian path

The LP, i.e. the s-t-path TSP polytope:

 $\mathsf{P}(\mathsf{V},\mathsf{s},\mathsf{t}) = \{ x \in \mathsf{IR}_{+}^{\mathsf{E}} : x(\delta(\mathsf{W})) \ge 2, \emptyset \neq \mathsf{W} \subset \mathsf{V}, \mathsf{s}, \mathsf{t} \in \mathsf{W} \text{ or } \notin \mathsf{V} \}$

- 1, if s,t separated by W
- = on vertices (1 for s, t, else 2) }

= { x∈IR₊^E: x(E(W)) ≤ n-1, $\emptyset \neq W \subset V$, = n-1, and = 1 on stars of s, t and else 2 as before }

Remarks about the s-t path TSP polytope

Spanning tree polytope intersected with star inequalities !

Notation: OPT := min Ham s-t path length. OPT_{LP} (s,t) := min { $c^Tx : x \in P(V,s,t)$ }

Integer points : Hamiltonian paths

The proof of 2 is as easy, and `the two proofs' of 5/3 are not difficult.

Of « Christofides » algorithm

Let us do 2 ! It looks easier, so why only 5/3 ?

Why 5/3 ? What is the difficulty ?

None of the proofs for 3/2 work, Parity correction costs more than 1/2 :

Deleting an {s,t}-join, what remains is not an {s,t}-join

For $x \in P(V,s,t)$, x(C)/2 < 1 is possible, x/2 is not in all T-join polyhedra.

Def: A cut C is called *narrow* if x (C) < 2

Narrow cuts are the guilty ones !

Narrow cuts form a chain

Lemma (An, Kleinberg, Shmoys, 2011) G=(V,E) graph, $x \in P(V,s,t)$.

The set of narrow cuts is a chain $\delta(S_i)$ (i=1, ... , k), $s \in S_1 {\subseteq} ... {\subseteq} S_k$

Proof : Suppose not :

 $2+2 > d(S) + d(T) \ge d(S \cap T) + d(S \cup T) \ge 2 + 2$, a contradiction

The first results

cycle or path cardinality or weights	cycle (s=t)	(s,t)-path
cardinality	Gamarnik,Lewenstein,Sviridenko (2005): $3/2 - \varepsilon$ for cubic 3-connected Boyd, Sitters,van der Ster,Stougie (2011): 4/3 for cubic Oveis, Gharan, Saberi, Singh (2011) : $3/2 - \varepsilon$ Mömke, Svensson (2011) : 1.461 Mucha (2011) : 13/9=1.444	Hoogeveen (1991) 5/3 An,Kleinberg,Shmoys(2011) 1.578
general	1 Christofides CHR, 1976 1.5	 3 Hoogeveen (1991) 5/3 An,Kleinberg,Shmoys(2011) "AKS" 1.619

Last integrality gap (I) and approx ratio (A)

cycle or path cardinality or weights	cycle	(s,t)-path
graph metric (cardinality tour)	Sebő, Vygen SV12, Jan 2012 1.4 , conjectured: 4/3 (I)	Gao: simpler proof, March, 2013 Sebő, Vygen SV12, Jan 2012 1,5 best possible (I) Traub, Vygen <3/2 (A) ? April 2018
General metric	Christofides CHR, 1976 1,5 , conjectured: 4/3 (I)	Sebő, van Zuylen, 2016 3/2 + 1/34 (I) conjectured: 3/2 (I) Traub, Vygen 3/2 + ε (A) 2017 Zenklusen, April 2018: 3/2 (A)

Zenklusen's 3/2 approximation April 2018

Let \mathcal{B} be a set of s-t cuts $y \in P(V,s,t)$ is $\mathcal{B} - good$, if y(B) is $1 \text{ or } \geq 3$ for all $B \in \mathcal{B}$

The incidence vector χ^{H} of a Hamiltonian path H : $\chi^{H} \in P(V,s,t)$, and χ^{H} is \mathcal{B} -good for \forall set \mathcal{B} So min c(y), y \mathcal{B} -good still lower bounds OPT

> Karger: pol. Number and can be listed

Apply this to $\mathcal{B} := \{C: x^*(C)\}$

Temptative reduction

If we know about green cuts that we want to meet once, the problem can be decomposed to smaller ones :

Using Karger + Ellipsoids we can solve all small problems. **But** : There may be new narrow cuts ...

Min \mathcal{B} – *good* with shortest paths :

For all pairs $B_1 \subseteq B_2 \in \mathcal{B}$ and u, v

minimize on $P(B_2 \setminus B_1, u, v)$ requiring 3 on $\mathcal{B} \setminus \{B_1, B_2\}$

Solve shortest paths with w (B₂ \ B₁, u, v), c(a,b).
To be precise: the vertices of the auxiliary graph have to be triples ...

How to find a TSP solution

Shortest paths with input w(u, v), c(u, v)found the min \mathcal{B} – *good* solution y, $c(y) \leq OPT$

If $B \in \mathcal{B}$ is in the chain of 1-c, y (B) \geq 3;

if not, let B' in the chain not containing B and not contained in B:

 $y(B) + y(B') \ge y(B \cap B') + y(B \cup B) \ge 2 + 2$ $\frac{x^* + y}{2}$

is then in P(V,s,T) = the parity correction polyhedron !

Rico's algorithm

THE END OF THIS COURSE

THE END OF THIS MEETING

MANY THANKS TO THE ORGANIZERS !

Many thanks to the participants !

Hopefully you know more than before !