4. Conservative weightings Undirected shortest paths T-joins

Paths in Graphs

Directed, nonnegative weights (Dijkstra)
 -1 weights NP-hard (HAM)
Conservative (no circuit of neg total weight): ∈ P

Undirected shortest paths with nonnegative weights ? With -1 weights ? With a conservative weighting ?

Exercise : Does the triangle inequality hold in the undirected case ? Are subpaths of shortest paths shortest ?

Can we solve undirected shortest path problems in the same way as directed ones ? Or reduce one to the other ?

Conservativeness

Def: (G,w) where G is a graph, w: $E(G) \rightarrow Z$ is *conservative*, if for every circuit C of G : $w(C) \ge 0$.

 $\lambda(\mathbf{x},\mathbf{y}) := \lambda_{w}(\mathbf{x},\mathbf{y}) :=$

min {w(P) : P path } = ?

$$\begin{split} \lambda(a,b) &= \lambda(a,c) = -1 \quad ; \quad \lambda(b,c) = -2 \quad ; \\ \lambda(a,b) &+ \lambda(b,c) < \quad \lambda(a,c) \end{split}$$

A shortest (a,c)-path is not shortest between a and b.

NO!

Exercise 3.4

Recursively with `Matrix Multiplication' ? Bellman-Ford ? Floyd-Warshall ?

negative

T-joins

Euler's theorem : G= (V,E), E : streets One can go through all the streets Exactly once ⇔ G conn., ∀degree even

 $F \subseteq E(G)$ is a *T-join,* if

T = vertices of odd degree of F.

Easy facts about T-joins : G connected, |T| even $\Rightarrow \exists$ T-join ; Exercise 3.1 **min weight** «Eulerian replication» = duplication of a min weight T_G-join

G=(V,E), w: E \rightarrow IR, F is a minimum weight T-join \Leftrightarrow (G, w[F]) is *conservative*, where w[F](e):= $\begin{cases} -1 \text{ if } e \in F \\ 1 \text{ if } e \notin F \end{cases}$

Is it true : $\lambda(x,y) := \lambda_w(x,y) := \min \{w(P) : P \{x,y\}\text{-join}\}$?

T-cuts

Def : $\delta(W) \subseteq E(G)$ ($W \subseteq V$) is a *T*-*cut*, if $|W \cap T|$ is odd

Proposition : F T-join, $\delta(W)$ T-cut $\Rightarrow | F \cap \delta(W) | \ge 1$

Exercise 5.1

Theorem (Seymour '81) If G is bipartite, $\tau(G,T) = v(G,T)$

Nonbipartite minmax

```
Exercise 5.3
```

 $v_2(G,T) := \max\{ |\mathcal{C}| : \mathcal{C} \text{ 2-packing of T-cuts } \}$, where a *2-packing* is a family covering every element \leq twice

Easy : $\tau(G,T) \ge v_2(G,T)/2$

Proof: Let F be a T-join, and \mathcal{C} a 2-packing of T-cuts. Then $2\tau(G,T) = 2 | F | \ge \sum_{C \text{ in } \mathcal{C}} |F \cap C| \ge |\mathcal{C}| = v_2(G,T)$

On two minmax theorems in graph

Theorem (Lovász '76) If G is arbitrary : $\tau(G,T) = v_2(G,T)/2$

Theorem (Edmonds-Johnson '73) G=(V,E) τ (G,T) = ν * (G,T)

Polynomial algorithm for the postman

Input : G=(V,E), w: $E \rightarrow IR$ **Task** : minimize the weight of a T-join

Proposition (Edmonds) : If the weights are nonnegative easy reduction: min weight matching of the complete graph on T where the weights are the w-shortest paths in G between the vertices of T.

Can we find a negative circuit and shortest paths in undirected graphs?

Can we reduce the augmenting paths for matchings to this ?

6. Linear Programming (LP)

LP for bipartite matchings

MATCHING POLYTOPE for G=(V,E) bipartite $x \in IR^E :$ $x (\delta(v)) \le 1 , \forall v \in V$ $x \ge 0$

Dual for the all 1 objective function:

 $\begin{array}{ll} \text{VERTEX COVER} & \text{for G=(V,E) bipartite} \\ & x \in IR^{\vee}: \\ & x_i + x_j \geq 1 \ , \ \forall \ ij \in E \\ & x \geq 0 \end{array}$

Proof: **TDI**, TU+Cramer, or comb. no odd circuit)

6.1 Fractional chromatic index

m : set of all matchings

fractional chromatic index := $\chi'^* = \text{Min } \sum_{M \text{ in } \mathcal{M}} y_M, y_M \ge 0$ $\sum_{M \text{ in } \mathcal{M} \text{ contains } e} y_M \ge 1$ (or $\ge w(e)$ where w is non-neg edge-weights)

 $\chi'^* = \chi' (G, w) = Min \lambda : w / \lambda \in matching polytope$ $\chi':$ in addition λ integer and w = integer comb of \mathcal{M}

What is χ'^* for bipartite matchings ?

Minmax and computation of χ'^*

Λ

Fractional Chromatic Index for **bipartite graphs**?

At least Δ for all graphs so = for bip;1/ Δ on all edges \in polytope

For general graphs ? Min λ : w / $\lambda \in$ matching polytope

Edmonds (1965)
$$x \in IR^{E}$$
 : $x (\delta(v)) \le 1$, $x \ge 0$
 $x (E(U)) \le \frac{|U| - 1}{2}$ $U \subseteq V$, $|U|$ odd
 $\lambda \ge \Delta$, $\lambda \ge \frac{2w(E(U))}{|U| - 1}$, "

Polynomial algorithm ! Compare with average degree $\frac{2w(E(U))}{|U|}$! **How does it compare if all weights are 1 (simple graphs) ?**

Nonbipartite matching polytope

The Perfect Matching Polytope: Kőnig (1916), Jacobi (1890) Egerváry (1931), Birkhoff (1946), von Neuman (1952): easier to prove

If G is bipartite : $conv (\chi_M : M p.m.) = \{x \in IR^E : x (\delta(v))=1, x \ge 0\}$ If G is arbitrary : Edmonds (1965), add : if $U \subseteq V$, |U| is odd $x (\delta(U)) \ge 1$

The linear inequalities of the Matching Polytope of G=(V,E):Edmonds (1965) $x \in IR^E$: $x (\delta(v)) \leq 1$, $x \geq 0$ $x (E(U)) \leq \frac{|U|-1}{2}$ $U \subseteq V$, |U| odd

Conjectures about additive gap 0 or 1

P(G) matching polytope, k integer, $w \in k$ M (G) integer.

Conjecture (Lovász) : G without Petersen minor $\chi' = \chi'^*$ i.e. w = M₁ + ... + M_k

Conjectures (Schrijver) : t-perfect graphs ...

Conjecture (Goldberg, Seymour): MID = ID +1 $x \in \lambda$ matching(G) $\Rightarrow x$ is $\lceil \lambda \rceil$ +1-colorable; tight: Petersen

Conjecture (Aharoni): matroid indep set are MID

Conjecture (Scheithauer and Terno): cutting stock (bin packing patterns) are MID.

6.2 How are LP, polyhedra useful for insight ?

Lower bound because relaxation

Can be part of the solution algorithm

Example of another use ... :

A generalization of Petersen's theorem

Petersen's theorem (1891)

Weighted generalization

Exercise : Let G=(V,E) be cubic, w: $E \rightarrow IR$ on the edges. Then

- a. If G is bipartite, or
- b. If G is arbitrary bridgeless

There exists a p.m. of weight $\geq 1/3 w(E)$

10 + 9 + 11 + 2x15= 60 $\geq 1/3$ w(E) (w (E) = 179)

Bridgeless, but cannot be partitioned to 3 p.m.

Through the polyhedral lens

If G=(V,E) cubic, bipartite The constant 1/3 function on the edges is in the convex hull of matchings. If G=(V,E) cubic, bridgeless The constant 1/3 function on the edges is in the convex hull of matchings.

If G is cubic, bridgeless (or bipartite), \exists matching valued random variable \mathcal{M} so that $E(\mathcal{M}) = \text{constant } 1/3 \text{ on } E$.

Theorem: G=(V,E) cubic, bridgeless (or bipartite), w: E \rightarrow IR. \exists matching M, w(M) $\geq w(E)/3$

6.3 The T-join polyhedron Method: the inverse of the duality theorem

Theorem Edmonds, Johnson (1973) : $Q_+(G,T) := conv (T-joins) + IR_+^n =$

 ${x \in IR_{+}^{E} x(\delta(W)) \ge 1, \delta(W) \text{ is a T-cut, i.e. } |W \cap T| \text{ is odd}}$

Proof: \subseteq Clear !

For = show $\forall c \in IR^{S}$ min $c^{T}x$ for x on the left = min $c^{T}x$ for x on the right

This suffices, since if not =, then \subset and the hyperplane $c^Tx=b$ separating some x on the right from all on the left (=> $c \ge 0$ maybe changing the sign), shows that the min of c^Tx is smaller on the right.

But min of c^Tx on the right is equal, by the duality theorem to the max of its dual so the latter is smaller then the min of c^Tx on the left, contradicting Edmonds and Johnson's minimax theorem (Corollary of Seymour's theorem):

Proving the T-join polyhedron Thm

Metatheorem : weighted minmax theorem \Leftrightarrow polyhedron (ρ -approximation for all weights $\Leftrightarrow \rho$ - polyhedron containment)

Q.E.D. \Leftrightarrow Edmonds-Johnson : $\tau(G,T,c) = v^*(G,T,c) := \text{fractional opt}$ \leftarrow Lovász (76): If G arbitrary, $\tau(G,T) = v_2(G,T)/2$ \leftarrow Seymour (81): If G is bipartite, $\tau(G,T) = v(G,T)$

End of Part A: MATCHINGS

To come : TSP + a bit of submodularity, matroids

Exercises for the Courses 3-4 : series 6