4. Conservative weightings Undirected shortest paths
T-joins

Paths in Graphs

```
Directed, nonnegative weights (Dijkstra)
-1 weights NP-hard (HAM)
Conservative (no circuit of neg total weight): \(\in P\)
Undirected shortest paths with nonnegative weights?
With -1 weights ?
With a conservative weighting ?
```

Exercise : Does the triangle inequality hold in the undirected case ? Are subpaths of shortest paths shortest ?

Can we solve undirected shortest path problems in the same way as directed ones? Or reduce one to the other?

Conservativeness

Def: (G, w) where G is a graph, $\mathrm{w}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{Z}$ is conservative, if for every circuit C of G: $\quad w(C) \geq 0$.

$$
\lambda(x, y):=\lambda_{w}(x, y):=\quad \min \{w(P): P \text { path }\}=?
$$

$$
\begin{aligned}
& \qquad \lambda(\mathrm{a}, \mathrm{~b})=\lambda(\mathrm{a}, \mathrm{c})=-1 ; \lambda(\mathrm{b}, \mathrm{c})=-2 ; \\
& \qquad \lambda(\mathrm{a}, \mathrm{~b})+\lambda(\mathrm{b}, \mathrm{c})<\lambda(\mathrm{a}, \mathrm{c}) \\
& \text { A shortest (a,c)-path is not } \\
& \text { shortest between } a \text { and } b .
\end{aligned}
$$

Exercise 3.4

Recursively with 'Matrix Multiplication' ?
Bellman-Ford ? Floyd-Warshall ?

T-joins

Euler's theorem : G=(V,E), E : streets One can go through all the streets Exactly once \Leftrightarrow G conn., \forall degree even
T = vertices of odd degree of F.
Easy facts about T-joins: G connected, $|\mathrm{T}|$ even $\Rightarrow \exists \mathrm{T}$-join ; Exercise 3.1 min weight «Eulerian replication» = duplication of a min weight T_{G}-join
$\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{w}: \mathrm{E} \rightarrow \mathrm{IR}, \mathrm{F}$ is a minimum weight T -join \Leftrightarrow
$(\mathrm{G}, \mathrm{w}[\mathrm{F}])$ is conservative, where $\mathrm{w}[\mathrm{F}](\mathrm{e}):=\left\{\begin{array}{c}-1 \text { if } e \in F \\ 1 \text { if } e \notin F\end{array}\right.$
Is it true: $\lambda(x, y):=\lambda_{w}(x, y):=\min \{w(P): P\{x, y\}$-join $\}$?

A Quick Proof of Seymour's theorem

Theorem: G bipartite, w: $\mathrm{E}(\mathrm{G}) \rightarrow\{-1,1\}, \quad(\mathrm{G}, \mathrm{w})$ conservative \Leftrightarrow
E_ can be covered by disj cuts meeting it in exactly one edge each.

Proof : $\quad x_{0} \in V(G)$

S. : `Quick Take $b \neq x_{0}$ such that Proof $^{\prime}, \& \ldots \lambda_{w}\left(x_{0}, b\right)=\min _{v \in V(G)} \lambda_{w}\left(x_{0}, v\right)$

Claim 1: $\left|\delta(b) \cap E_{-}\right|=1$
Exercise 4.3
Claim 2 : Swapping on a circuit $\mathrm{C}, \mathrm{w}(\mathrm{C})=0$: $w[C]$ is conservative

Claim 3 : Contracting $\delta(\mathrm{b})$ deleting loops, cons. is kept Exercise 4.4

T-cuts

Def : $\delta(\mathrm{W}) \subseteq \mathrm{E}(\mathrm{G})(\mathrm{W} \subseteq \mathrm{V})$ is a T-cut, if $|\mathrm{W} \cap T|$ is odd

Proposition: F T-join, $\delta(\mathrm{W}) \mathrm{T}$-cut $\Rightarrow|\mathrm{F} \cap \delta(\mathrm{W})| \geq 1$

Exercise 5.1
Theorem (Seymour '81) If G is bipartite, $\tau(G, T)=v(G, T)$

Nonbipartite minmax

$V_{2}(G, T):=\max \{|\mathcal{C}|: \mathcal{C}$ 2-packing of T-cuts \}, where a 2 -packing is a family covering every element \leq twice

Easy: $\tau(\mathrm{G}, \mathrm{T}) \geq \mathrm{v}_{2}(\mathrm{G}, \mathrm{T}) / 2$
Proof: Let F be a T -join, and \mathcal{C} a 2-packing of T-cuts.
Then $2 \tau(\mathrm{G}, \mathrm{T})=2|\mathrm{~F}| \geq \sum_{\text {Cin }} \mathbb{C}|\mathrm{F} \cap \mathrm{C}| \geq|\mathbb{C}|=v_{2}(\mathrm{G}, \mathrm{T})$
On two minmax theorems in graph
Theorem (Lovász '76) If G is arbitrary: $\tau(\mathrm{G}, \mathrm{T})=\nu_{2}(\mathrm{G}, \mathrm{T}) / 2$

Theorem (Edmonds-Johnson '73) G=(V,E)

$$
\tau(G, T)=v^{*}(G, T)
$$

Polynomial algorithm for the postman

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{w}: \mathrm{E} \rightarrow \mathrm{IR}$
Task : minimize the weight of a T-join

Proposition (Edmonds) : If the weights are nonnegative easy reduction: min weight matching of the complete graph on T where the weights are the w-shortest paths in G between the vertices of T.

Can we find a negative circuit and shortest paths in undirected graphs?

Can we reduce the augmenting paths for matchings to this ?

6. Linear Programming (LP)

LP for bipartite matchings

MATCHING POLYTOPE for $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ bipartite

$$
\begin{gathered}
x \in I^{E}: \\
x(\delta(v)) \leq 1, \forall v \in V \\
x \geq 0
\end{gathered}
$$

Dual for the all 1 objective function:
VERTEX COVER for $G=(V, E)$ bipartite

$$
x \in \mathbb{R}^{\vee}:
$$

$$
\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}} \geq 1, \forall \mathrm{ij} \in \mathrm{E}
$$

$$
x \geq 0
$$

Proof : TDI, TU+Cramer, or comb. no odd circuit)

6.1 Fractional chromatic index

m : set of all matchings
fractional chromatic index := $\chi^{*}=$ Min $\sum_{M \text { in }} m \mathrm{y}_{M}, \mathrm{y}_{M} \geq 0$
$\sum_{M \text { in }} M_{\text {contains e }} \mathrm{y}_{M} \geq 1$ (or $\geq \mathrm{w}(\mathrm{e})$ where w is non-neg edge-weights)

$$
\chi^{*}=\chi^{\prime}(\mathrm{G}, \mathrm{w})=\operatorname{Min} \lambda: \mathrm{w} / \lambda \in \text { matching polytope }
$$

$\chi^{\prime}:$ in addition λ integer and $w=$ integer comb of m

What is χ^{*} for bipartite matchings ?

Minmax and computation of χ^{*}

Fractional Chromatic Index for bipartite graphs ?
At least Δ for all graphs so = for bip; $1 / \Delta$ on all edges \in polytope

For general graphs? Min $\lambda: w / \lambda \in$ matching polytope
Edmonds (1965) $\quad x \in \mathbb{R}^{E}: \quad x(\delta(v)) \leq 1, \quad x \geq 0$

$$
\begin{gather*}
x(E(U)) \leq \frac{|\mathrm{U}|-1}{2} \quad \mathrm{U} \subseteq \mathrm{~V},|\mathrm{U}| \text { odd } \\
\lambda \geq \Delta, \quad \lambda \geq \frac{2 \mathrm{~W}(E(U))}{|\mathrm{U}|-1}, \quad "
\end{gather*}
$$

Polynomial algorithm! Compare with average degree $\frac{2 w(E(U))!}{|U|}$! How does it compare if all weights are 1 (simple graphs) ?

Nonbipartite matching polytope

The Perfect Matching Polytope: Kőnig (1916), Jacobi (1890) Egerváry (1931), Birkhoff (1946), von Neuman (1952): easier to prove

If \mathbf{G} is bipartite :
$\operatorname{conv}\left(\chi_{M}: M\right.$ p.m. $)=\left\{x \in \mathbb{R}^{E}: x(\delta(v))=1, x \geq 0\right\}$
If \mathbf{G} is arbitrary :
Edmonds (1965), add : if $\mathrm{U} \subseteq \mathrm{V},|\mathrm{U}|$ is odd $\mathrm{x}(\delta(\mathrm{U})) \geq 1$

The linear inequalities of the Matching Polytope of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:
Edmonds (1965) $\quad x \in \mathbb{R}^{E}: \quad x(\delta(v)) \leq 1, \quad x \geq 0$

$$
x(E(U)) \leq \frac{|U|-1}{2} \quad U \subseteq V,|U| \text { odd }
$$

Conjectures about additive gap 0 or 1

P(G) matching polytope, k integer, $w \in k M(G)$ integer.
Conjecture (Lovász) : G without Petersen minor $\chi^{\prime}=\chi^{*}$ i.e.

$$
w=M_{1}+\ldots+M_{k}
$$

Conjectures (Schrijver) : t-perfect graphs ...
Conjecture (Goldberg, Seymour) : MID = ID +1 $x \in \lambda$ matching $(G) \Rightarrow x$ is $\lceil\lambda\rceil+1$-colorable; tight: Petersen

Conjecture (Aharoni): matroid indep set are MID
Conjecture (Scheithauer and Terno): cutting stock (bin packing patterns) are MID.

6.2 How are LP, polyhedra useful for insight?

Lower bound because relaxation

Can be part of the solution algorithm

Example of another use ... :
A generalization of Petersen's theorem

Petersen's theorem (1891)

A graph is cubic if all of its degrees are 3 .

Theorem: G is a cubic graph G has no bridge $\Rightarrow \mathrm{G}$ has a p.m.

Weighted generalization

Exercise : Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be cubic, w: $\mathrm{E} \rightarrow \mathrm{IR}$ on the edges. Then a. If G is bipartite, or
b. If G is arbitrary bridgeless

There exists a p.m. of weight $\geq 1 / 3 w(E)$

$$
\begin{gathered}
10+9+11+2 \times 15 \\
=60 \geq 1 / 3 w(E) \\
(w(E)=179)
\end{gathered}
$$

Bridgeless, but cannot be partitioned to 3 p.m.

Through the polyhedral lens

If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ cubic, bipartite
The constant $1 / 3$ function on the edges is in the convex hull of matchings.

If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ cubic, bridgeless
The constant $1 / 3$ function on the edges is in the convex hull of matchings.

If G is cubic, bridgeless (or bipartite),
\exists matching valued random variable $\boldsymbol{\mathcal { M }}$
so that $\mathrm{E}(\mathcal{M})=$ constant $1 / 3$ on E .

Theorem: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ cubic, bridgeless (or bipartite), $\mathrm{w}: \mathrm{E} \rightarrow \mathrm{IR} . \exists$ matching $\mathrm{M}, \mathrm{w}(\mathrm{M}) \geq w(E) / 3$

6.3 The T-join polyhedron

 Method: the inverse of the duality theoremTheorem Edmonds,Johnson (1973) : $\mathrm{Q}_{+}(\mathrm{G}, \mathrm{T}):=\operatorname{conv}$ (T-joins) $+I \mathrm{R}_{+}{ }^{\mathrm{n}}=$

$$
\left\{x \in \mathbb{R}_{+}{ }^{E} x(\delta(W)) \geq 1, \delta(W) \text { is a } T \text {-cut, i.e. }|W \cap T| \text { is odd }\right\}
$$

Proof :
$\subseteq:$ Clear!

For $=$ show $\forall c \in \mathbb{R}^{S} \quad \min c^{\top} x$ for x on the left $=$ $\min c^{\top} x$ for x on the right

This suffices, since if not $=$, then \subset and the hyperplane $c^{\top} x=b$ separating some x on the right from all on the left ($=>c \geq 0$ maybe changing the sign), shows that the min of $c^{\top} x$ is smaller on the right.

But min of $c^{\top} x$ on the right is equal, by the duality theorem to the max of its dual so the latter is smaller then the min of $c^{\top} x$ on the left, contradicting Edmonds and Johnson's minimax theorem (Corollary of Seymour's theorem):

Proving the T-join polyhedron Thm

Metatheorem : weighted minmax theorem \Leftrightarrow polyhedron
(ρ-approximation for all weights $\Leftrightarrow \rho$ - polyhedron containment)
Q.E.D.
\Leftrightarrow
Edmonds-Johnson: $\quad \tau(\mathrm{G}, \mathrm{T}, \mathrm{c})=v^{*}(\mathrm{G}, \mathrm{T}, \mathrm{c}):=$ fractional opt
\Leftarrow
Lovász (76): If G arbitrary, $\tau(\mathrm{G}, \mathrm{T})=\mathrm{v}_{2}(\mathrm{G}, \mathrm{T}) / 2$
\Leftarrow
Seymour (81): If G is bipartite, $\tau(\mathrm{G}, \mathrm{T})=v(\mathrm{G}, \mathrm{T})$

End of Part A: MATCHINGS

To come : TSP + a bit of submodularity, matroids

Exercises for the Courses 3-4 : series 6

