Ideas from exact and approximative

 classic and recent Combinatorial Optimization:Matchings, Edge-colorings and the TSP

András Sebő,
CNRS (G-SCOP)
Université Grenoble Alpes

1. Basics

2. Edge-colorings Tashkinov (2000) for me: dec. 2017
3. Algorithms

Method of variables, class RP
Exact Matchings (Yuster, 2012), for me: June 2018
Edmonds' algorithm
4. Undirected shortest paths

Conservativeness, T-joins, Algorithms
5. Polyhedra, weights, Linear Programming

Approximation: additive error of 1 for edgecoloring and exact matching
Randomized algorithms, LP lower bound

Part B : TSP

1. Classical
$\mathrm{s}=\mathrm{t}$, General metric
2. Two-edge-connected spanning subgraph ear theorems `graph TSP’, s=t (S., Vygen) 2014
Submodular functions, matroids
matroid intersection and approx. of submod max
3. General s,t path TSP

Zenklusen's $3 / 2$ approx algorithm (April 2018)

1. Basics

Matching

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ graph.
matching : a set $\mathrm{M} \subseteq \mathrm{E}$ of vertex-disjoint edges. perfect matching : In addition M partitions V .

INPUT : G=(V,E) graph.
TASK : Find a matching of maximum size

Do the red edges form a maximum matching ?

Augmenting Paths

augmenting path with respect to matching M : path alternating between M and $E \backslash M$ with the 2 endpoints uncovered by M.

Proposition (Berge) :
G graph, M matching in G .
M is a maximum matching in G iff there is no augmenting path

Matching polytope: $=\operatorname{conv}\left(\chi^{\mathrm{M}}: \mathrm{M}\right.$ matching $)$

$$
\chi_{M}(e)= \begin{cases}1 & \text { if } \\ 0 & e \in M \\ 0 & \text { if } e \notin M\end{cases}
$$

Perfect matching polytope: $=\operatorname{conv}\left(\chi^{\mathrm{M}}: \mathrm{M}\right.$ perfect matching)

Interpretation with random sampling

$x=\sum_{M \in \mathcal{M}} \lambda_{M} \chi_{M},\left(\lambda_{M} \geq 0, \sum_{M \in \mathcal{M}} \lambda_{M}=1\right), \mathcal{M}$ a set of p.m.
\mathcal{M} can be viewed as a p.m. valued random variable

$$
\begin{array}{ll}
& \operatorname{Pr}(\mathcal{M}=M)=\lambda_{M} \\
\text { Then for } \mathrm{e} \in \mathrm{E}: \quad & \operatorname{Pr}(\mathrm{e} \in \mathcal{M})=\mathrm{x}(\mathrm{e}) \\
& \mathrm{E}[\mathcal{M}]=\mathrm{x}
\end{array}
$$

Particular distributions (max entropy, or comb. restrictions)
Our use is notational, mainly: $\mathrm{E}[\mathscr{F}+\mathcal{J}]=\mathrm{E}[\mathscr{F}]+\mathrm{E}[\mathcal{J}]$

Matching and vertex cover

matching : M set of vertex-disjoint edges

$\operatorname{Max}|\mathrm{M}|: ~ \cup$
vertex cover : T set of vertices so that G-T has no edges
$\operatorname{Min}|\mathrm{T}|: \tau$

$$
v \leq \tau
$$

Min max

Theorem (Kőnig) : If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite, then $\quad \mathrm{v}(\mathrm{G})=\tau(\mathrm{G})$

Proof: \leq is the proven 'easy part'; \geq is to be proved:

If for some $v \in V: v(G-v)=v(G)-1$, by induction:

$$
v(G)=v(G-v)+1=\tau(G-v)+1 \geq \tau(G) .
$$

If $u v \in E$ then either u or v satisfy this condition!
Exercise 1.1
Q.E.D.

2. Edge-coloring

Def : $\mathrm{G}=(\mathrm{V}, \mathrm{E}) . \quad$ edge-coloring : each color is a matching
Edge-chromatic number $=$ chromatic index $=\chi^{\prime}:=m$ in n . of colors

Bipartite edge-coloring

Theorem (Kőnig) : If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite, then $\quad \chi^{\prime}(\mathrm{G})=\Delta(\mathrm{G})$

Exercise 2.2
Proof: Now \geq is now the 'easy part'; \leq is to be proved:
If $u v \in E$ is not yet colored then u, v both miss some color !
If it is the same color or can be recolored so: DONE
If not, they are joined by an even path:
Q.E.D.

a. There is a common missing color in u and $N(u)$ on F \Rightarrow uv can be colored

Tashkinov tree 2

b. There are two neighbors of u in F missing the same color
\Rightarrow uv can be colored
swap a red-green component

Reduced to Case a.

Vizing's theorem

Theorem: If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is simple, then $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$

Exercise 2.4

Proof: Color as much as you can with $\Delta(\mathrm{G})+1$ colors. Then : every vertex has always a missing color!

either a. or b. :
a. There is a common missing color in u and $N(u)$ on F
b. There are two neighbors of u in F missing the same color either \Rightarrow uv can be colored

Tashkinov's theorem

Generalizing the above proof :

Theorem: If such a BFS tree has two vertices missing the same color, then all colored edges + edge uv can be colored.

Corollaries: Better and better edge-coloring

3. Algorithms

Method of variables, class RP
Exact Matchings
Edmonds'algorithm

The method of variables (Tutte, Lovász, Geelen,...)

$\mathrm{G}=(\mathrm{A}, \mathrm{B}, \mathrm{E})$ bipartite, $|\mathrm{A}|=|\mathrm{B}| . \quad \mathrm{M}:=\left(\mathrm{x}_{\mathrm{ij}} \text { if } \mathrm{ij} \in \mathrm{E} \text {, else } 0\right)_{\mathrm{n} \times \mathrm{n}}$:
Proposition : $\operatorname{det}(M)$ is a nonzero polynomial $\Leftrightarrow \exists$ perfect matching

Proof : All terms of M are different, so there is no cancellation.
n ! Terms, but determinants can be computed in polynomial time : randomized algorithm: substitute values and then compute!

Questions: If then the det is nonzero can we conclude ?
If it is zero ?
What to do for nonbipartite graphs ?

The method of variables

The probability of error, precisely

Lemma: (Schwartz, Zippel) Let q be a nonzero polynomial of n variables x_{1}, \ldots, x_{n}, and let it be of degree $d ; S \subseteq I N$ is finite, $s:=|S|$. Moreover, let X_{1}, \ldots, X_{n} be random variables taken independently and uniformly from S. Then $\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0\right) \leq d / s$.

Proof: For $\mathrm{n}=1$ obvious. Let $\mathrm{p} \in \mathrm{Q}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right]$ the coefficient of the highest power μ of x_{n}, and let π be the degree of p.
$\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0\right) \leq \operatorname{Pr}\left(p\left(X_{1}, \ldots, X_{n-1}\right)=0\right)+\operatorname{Pr}\left(q\left(X_{1}, \ldots, X_{n}\right)=0 \mid p\left(X_{1}, \ldots, X_{n-1}\right) \neq 0\right)$

$$
\leq \quad \pi / \mathrm{s} \quad+\quad \mu / \mathrm{s} \quad \leq \mathrm{d} / \mathrm{s}
$$

The method of variables
 A Randomized Algorithm

Oracle Algorithm :

An oracle tells the substitution values of a polynomial in pol(deg) time.

1. Let $S=\{1, \ldots, 2 n\}$.
2. Make independent uniform choices in S for each variable.
3. Compute the polynomial (oracle call) for the chosen values. If $\neq 0$: the polynomial is nonzero (\exists perfect matching) If $=0$? We decide: no perfect matching: $\operatorname{Pr}($ error $) \leq 1 / 2$

Why not bigger S ? Better to choose $|S|=$ const \times deg and repeat!

Proposition : After $\mathrm{O}(\log 1 / \varepsilon)$ repetitions $\operatorname{Pr}($ error $) \leq \varepsilon$

The complexity class $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$

$$
\begin{aligned}
& \sum \text { abplahet } \\
& L \subseteq \Sigma^{*} \\
& L \in N P \Leftrightarrow \exists R_{L}: \Sigma^{*} \times \Sigma^{x} \rightarrow\{9,\} \\
& x \notin L: \quad R(x, y)=0 \quad \forall y \in \Sigma^{*} \\
& v \in L: \exists y \in \Sigma^{*}: R(x, y)=1 .
\end{aligned}
$$

Imagine: $x=a$ graph, y the certificate (eg a substitution with $\neq 0$ polynomial value)

$$
\begin{aligned}
& L \in R P \Leftrightarrow-"-x \rightarrow Y_{x} \\
& -\quad-1 \\
& x \in L: \quad\left\{y \in \Sigma^{*}: R(x, y)=1\right\} \geq \frac{\left|y_{x}\right|}{2}
\end{aligned}
$$

The same def as NP but there are many certificates : constant proportion

Randomized algorithms for matching generalizations

$\mathbf{R P}$ thought of $\cong \mathbf{P}$
$\mathrm{G}=(\mathrm{A}, \mathrm{B}, \mathrm{E})$ bipartite, $\mathrm{n}=|\mathrm{A}|=|\mathrm{B}| . \quad \mathrm{M}:=\left(\mathrm{x}_{\mathrm{ij}} \text { if } \mathrm{ij} \in \mathrm{E} \text {, else } 0\right)_{\mathrm{n} \times \mathrm{n}}$
$G=(V, E), n=|V|$ skew symm $M:=\left(x_{\mathrm{ij}}=-x_{\mathrm{ji}} \text { if } \mathrm{ij} \in E \text {, else } 0\right)_{\mathrm{n} \times \mathrm{n}}$
`Tutte matrix' : square of the `Pfaffian'. Good for testing!
Path matchings (Cunningham, Geelen)

Exact matching: Given $R \subseteq E, k \in I N$, a max matching $M,|M \cap R|=k$. \exists Exact matching \Leftrightarrow multiplying x_{ij} for $\mathrm{ij} \in \mathrm{R}$ by y in the Tutte matrix, the coeff of y^{k} is not the 0 pol: \forall substitution this pol can be evaluated with $n+1 \times n+1$ lin equ; $\in R P$ (Lovász 1979) and not known to be in P !

Approximation for exact matchings

Theorem : (Yuster 2012) $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ graph, $\mathrm{R} \subseteq \mathrm{E}, \mathrm{k} \in \mathrm{IN}$, then Exactly one of the following possibilities holds :
(i) Each maximum matching of G meets R in $<k$ edges.
(ii) Each maximum matching of G meets R in $>k$ edges.
(iii) There exists a matching of size at least $v(G)-1$ that meets R in $=k$ edges

Remark: (i), (ii) certified, checked in polytime (weighted match.)

Proof: If neither (i) nor (ii) holds, Then M_{1} : R-min max matching
$\mathbf{M}_{\mathbf{2}}$: R-max max matching

Additive error of 1

Tutte-Berge theorem

Theorem : Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Then the minimum, over all matchings M of the number of uncovered vertices of $\mathrm{V}=$ $\max \{q(X)-|X|: X \subseteq V\}$

Def : $q(X)$ is the n. of comps of $G-X$ having an odd number of vertices

Proof: \geq : easy.
$\leq: \quad$ We can adapt the proof of Kőnig's theorem: Exercise 1.4

- If $v(G-v)=v(G)-1$, induction is easy.
- If $v(G-u)=v(G-v)=v(G)$, apply Exercises 1.1, 1.3, 1.5 extended.

Hint : Observe that the new vertex is unconvered by a (actually two) maximum matching of the contracted
Q.E.D. graph. Can it be in X ? See Exercise 1.5.

Edmonds' algorithm

1. Grow an (inclusionwise max) alternating forest F rooted in uncovered vertices
2. If two even vertices are adjacent
a.) between 2 different components : augment
b.) in the same component :

Adapt Exercise 1.3 to this case.
root
Heureka you shrink! (Edmonds)
even odd
In both cases GOTO 1 (possibly using the actual forest).
3. If there is no edge between the even vertices STOP

X:= odd vertices

Theorem : X is a Tutte-set and F is a maximum matching

Summary of algorithms for matchings

Unweighted :

- Algorithms for bipartite graphs: paths in digraphs;
- Method of variables
- Edmonds' algorithm;
- Structural algorithms (for matchings by Lovász, S.:T-joins, b-match)

Weighted : Mainly two possibilities

- Primal-Dual framework with max cardinality subroutine
- Ellipsoid method

