Introduction to Combinatorial Optimization

I. Bird's Eyes View and Tour d'horizon

András Sebő, CNRS (G-SCOP) Grenoble

What is combinatorial optimization ?

Given $f: 2^{S} \rightarrow \mathbb{R}$, find $X \subseteq S$ that minimizes f, that is, such that $f(X) \leq f(Y)$ for all $Y \subseteq S$. we have to go through more specific examples !

Directions from bird's eyes ...

Tour d'horizon: 6 fundamental benchmarks

Bin packing (cutting stock, scheduling)
Shortest paths (trafic, PERT)
Matching (mariages)

Tours (travelling, postman)
Cuts (routing, clustering)
Submodular functions (machine learning)

Tour d’horizon I : Bin packing

BIN PACKING
Input : $0 \leq \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}} \leq 1$ item sizes,
Task: Minimize the number of bins (capacity 1)

PARTITION: Are 2 bins enough?

NP-hard

Tour d'horizon I : Bin packing cont'd (example)

Tour d’horizon I: cont'd - bin packing (heuristics)

BIN PACKING

Input : $0 \leq \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}} \leq 1$ item sizes,
Task: Minimize the number of bins (capacity 1)

Heuristics : NF,

$$
2 \quad 17 / 10
$$

NFD,
FFD
11/9 OPT+1

Proposition: NF ≤ 2 OPT

Tour d'horizon I : cont'd - bin packing (patterns)

INPUT : $0 \leq s_{1}, \ldots, s_{d} \leq 1$ item sizes,

$$
\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{d}} \in \mathrm{IN} \text { item multiplicities }
$$

Pack them to a min number of bins of capacity 1
pattern : $p \in \mathbb{Z}_{+}^{d}$ such that $p_{1} s_{1}+\ldots+p_{d} s_{d} \leq 1$
$P:=$ the columns are the incl max patterns

Tour d'horizon I : Bin packing cont'd (examples)

$$
\begin{aligned}
& \text { d=3 } \\
& s=(1 / 2,1 / 3,1 / 5) \quad b=(1,2,4) \\
& \text { b } \\
& 20011001 \\
& \mathrm{P}=03010212 \\
& 00502134 \\
& \text { SIZE }=59 / 30 \quad \mathrm{LP}=1 / 2+2 / 3+4 / 5=59 / 30
\end{aligned}
$$

Exercise : OPT= 2 or 3 ?

Tour d'horizon I: cont'd - bin packing (LP)

pattern : $p \in \mathbb{Z}_{+}{ }^{d}$ such that $p_{1} s_{1}+\ldots+p_{d} s_{d} \leq 1$

Gilmore-Gomory LP :
$\mathbf{P x} \geq \mathbf{b} \quad\left(P \in \mathbb{Z}_{+}^{d x \text { big }}\right) \quad y \mathbf{P} \leq \mathbf{1}$
$x \geq 0$
$\mathrm{y} \geq 0$
$\min 1^{\top} x \quad\left(b \in \mathbb{Z}_{+}{ }^{d}\right)=\max 1^{\top} y$

Conjecture (Scheithauer,Terno): OPT $\leq\lceil L P\rceil+1$ (not better for restricted patterns)

Tour d’horizon II: Paths in Graphs

Directed, nonnegative weights (Dijkstra)
Directed -1 weights NP-hard (HAM)
Conservative (no circuit of neg total weight): P

Undirected: nonnegative ?, -1 ?, conservative ?

Exercise : Does the triangle inequality hold in the undirected case ? Are subpaths of shortest paths shortest?

Tour d’horizon III : matching

INPUT : G=(V,E) graph. matching : a set $\mathrm{M} \subseteq \mathrm{E}$ of vertex-disjoint edges TASK : Find a matching of maximum size

Tour d'horizon III : matching cont'd (augmenting paths)
augmenting path with respect to matching M : path alternating between M and $E \backslash M$ with the 2 endpoints uncovered by M

Proposition (Berge) : G graph, M matching in G . M is a maximum matching in G iff there is no augmenting path

Tour d’horizon III : cont’d - matching (cover)

matching : M set of vertex-disjoint edges

```
\(\operatorname{Max}|\mathrm{M}|: ~ \cup\)
```

vertex cover: T set of vertices so that G-T has no edges
$\operatorname{Min}|T|: \tau$

$$
v \leq \tau
$$

Tour d'horizon III : cont'd - matching (minmax)

Theorem (Kőnig) : If G is bipartite $v=\tau$
\leq is 'the easy part'; \geq is to be proved

1st Proof : If for some $v \in V: v(G-v)=v(G)-1$ DONE!

If $u v E$ then either u or v satisfy this condition!
Q.E.D.

Tour d’horizon III : cont'd - matching (submod)

Thm (Kőnig-Hall) : Let $\mathrm{G}=(\mathrm{A}, \mathrm{B}, \mathrm{E})$ be a bipartite graph
Then $\quad v=\min \{|A|-(|X|-|N(X)|): X \subseteq A\}$
$\mathbf{2}^{\text {nd }}$ Proof: $\delta(\mathrm{X})$ is supermodular. Call X tight, if $\delta(X)$ is $\max =: \quad \geq 0$
Claim: If X, Y are tight, $X \cap Y, X \cup Y$ too.
Are there disjoint tight sets? How does the family of inclusionwise min tight sets look like ? How does an inclusionwise min graph of given δ_{G} look like ?

Exercise : Prove Kőnig and Kőnig-Hall from one another

Tour d’horizon III : matching cont’d (LP\&RP)

VERTEX COVER for $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ bipartite $x \in \mathbb{R}^{V}$:
$\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}} \geq 1, \forall \mathrm{ij} \in \mathrm{E}$
$x \geq 0$
MATCHING POLYTOPE for $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ bipartite $x \in \mathbb{R}^{E}$:
$x(\delta(v)) \leq 1, \forall v \in V$
$x \geq 0$
Integrality (TU+Cramer, no odd circuit)

$\left(x_{\mathrm{i}}\right)_{\mathrm{n} \times \mathrm{n}}$ randomized algorithm, method of variables

Tour d'horizon III: matching cont'd (algorithms)

Proposition (Berge): G bipartite, M matching. M is a maximum matching iff there is no augmenting path

Algorithms for bipartite graphs: paths in digraphs; Algorithmic proof of Kőnig-Hall ; Integer Linear Prog; Ellipsoid method, method of variables

For non-bipartite ? Is it useful?

Tour d'horizon III: matching cont'd (application)

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length.
Output: Schedule of min completion time T

Thm : (Fujii \& als) : T = $\mathrm{n}-v\left(\mathrm{G}_{\text {input }}\right)$

Solutions for max (weighted) matchings: with Edmonds' algorithm (1965)
Grötschel, Lovász, Schrijver
with Padberg-Rao (1979)

Tour d’horizon IV: CPP versus TSP

Input : $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{w}: \mathrm{E} \rightarrow \mathbb{Z}_{+}$
Task: minimize the total weight :
CHINESE POSTMAN:

- of a closed walk through all edges

Graphic TRAVELLING SALESMAN:

- of a closed walk through all the vertices

Exercise: $G=(\mathrm{V}, \mathrm{E})$ connected, $\mathrm{w}: \mathrm{E} \rightarrow \mathbb{Z}_{+}, \mathrm{T} \subseteq$ even. Find a minimum weight subgraph F with $d_{F}(v)$ odd $\Leftrightarrow v \in T$ in polynomial time. (Hint: use min weight perfect matching in (T,w-distances))

Tour d'horizon IV: CPP versus TSP cont’d (metric)

TRAVELLING SALESMAN: once through every vertex
Metric ": + w satisfies the triangle inequality

Theorem: (Christofides) Heuristic for graphic \& for metric TSP which provides at most $3 / 2$ OPT

Proof. Heuristic: Min weight spanning tree F + with $T=\left\{v: d_{F}(v)\right.$ is odd $\}$ a minimum weight T-join.

Conjecture : $4 / 3$ is also true in these cases .

Tour d’horizon V : Cuts

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}: \mathrm{E} \rightarrow \mathbb{Z}$ Output: Partition $\{\mathrm{X}, \mathrm{Y}\}$ of V that minimizes $\sum_{x \in X, y \in Y, x y \in E} C(x y)$

minimum cut : c non-negative $\in \mathscr{P}$
maximum cut : c non-positive NP-complete

Randomized 2-approx: Flip a coin!
2-approx: Derandomize!

Tour d’horizon V cont'd: Cuts

MIN CUT $\in \mathscr{F}$

Ford Fulkerson: algorithm and Max Flow Min Cut. (Improvments, analysis: Dinits, Frank-Tardos ...)

Menger's theorems.
Goldberg-Tarjan : preflow push
Karger : uniform distribution on edges. Choose an edge, contract. When |V|=2 stop. Simple, beautiful analysis

Nagamochi-lbarraki derandomization

MAX CUT
MP - hard
NP-hard, see GJ.

In planar graphs = Chinese postman problem. $\in \mathscr{P}$

0.878-approx: GoemansWilliamson with
Semidefinit Programming

Tour d’horizon VI : Submodular Functions

Def: $f: 2^{s} \rightarrow \mathbb{R}$ is submodular on 2^{s}, if

$$
f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)
$$

submodular $\Leftrightarrow \forall A \subseteq B, x \in S$:

$$
f(A \cup\{x\})-f(A) \geq f(B \cup\{x\})-f(B)
$$

$\begin{array}{lll}\text { 1.) occurs often } & \text { 2.) useful } & 3 .) \text { can be played with }\end{array}$
$\mathrm{MIN} \in \mathscr{P}$
MAX 19 - hard
versions: For machine learning, $f(0)=0$, mon, size k

Examples, special cases, connexions

Total « Information in » a subset of random variables
Probability of the product of a subset of events

Vector ranks in any vector space
Minus the number of components of a set of edges
Maximum size of a spanning tree
For $k \in \mathbb{N}$ and finite set $S: \min \{k$, the size of a subset $\}$

Many essential is in matroids:
Def: $\mathrm{M}=(\mathrm{S}, \mathrm{r})$ matroid: $\mathrm{r}(\varnothing)=0, \mathrm{r}$ monoton\&submodular, $\mathrm{r}(\mathrm{s})=1,(\mathrm{~s} \in \mathbb{N})$

Approx for submod max mon, size $k, f(0)=0$
Algorithm (for sets of size \mathbf{k}): Having X already, WHILE $|X|<k$ we choose x that maximizes $f(X \cup\{x\})-f(X)$

Lemma : $f(X \cup\{x\})-f(X) \geq(f(O P T)-f(X)) / k$
Proof: Since mon. $f(O P T) \leq f(O P T \cup X) \leq$

$$
\leq f(X)+k(f(X \cup\{x\})-f(X))
$$

Let X^{i} be what we find in step i. Then $f\left(X^{k}\right)-f\left(X^{k-1}\right) \geq$
$\geq f(O P T) / k-f\left(X^{k-1}\right) / k$, so

$$
f\left(X^{k}\right) \geq f(O P T) / k+(1-1 / k) f\left(X^{k-1}\right)
$$

$$
f\left(X^{k}\right) \geq f(O P T)\left(1-(1-1 / k)^{k}\right) \geq(1-1 / e) f(O P T)
$$

Matroids

$$
M=(S, F) \quad F \subseteq P(s)
$$

mathaide, sú
$\begin{array}{ll}(\omega) \\ (i i) & F \in \mathcal{F}, F^{\prime} \subseteq F \Rightarrow\end{array}\binom{\Leftrightarrow}{\neq \phi}$
(ii) $F \in \mathcal{F}, F^{\prime} \subseteq F \Rightarrow$

$$
F^{\prime} \in F^{\prime}
$$

$$
\begin{array}{r}
\text { iii) } \quad F_{11} F_{2} \in \neq,\left|F_{i}\right| Q F_{2} \mid \\
\Rightarrow \quad \exists \times F_{2} \backslash F_{1}: \\
F_{2} \cup\{x\} \in F
\end{array}
$$

Prove the equivalence with the other def!

Exemples: 1.) $\underset{\text { Sicn }}{\text { Sic }} G F(q)^{n}$

$$
\widetilde{F}:=\{F \subseteq S: \text { eiwindies }\}
$$

M(G):=
2. G greple $S=E(G) F=$ ferôts nomrel escemple?
3. Un,r

$$
|S|=n, \neq:=\{F \subseteq S:|F| \in \mid\}
$$

Examples cont'd
B. Unor

$$
|S|=n, \mathcal{F}:=\{F \subseteq S:|F| \in r\}
$$

4.) Fact: (soune Washurlloar)

$$
M_{1} \nsubseteq M_{2} \quad\left(M_{1}=\left(S, F_{2}\right)\right.
$$

$$
\begin{aligned}
& M_{1}=\left(S, F_{2}\right) \\
& \left.M_{2}=\left(S, F_{2}\right)\right)
\end{aligned}
$$

$$
\left\{\ddot{F}_{1} \cup F_{2}: F_{1} \in F_{1}, F_{2} \in F_{\cup}\right\}
$$

5ixuscraridel

$$
\begin{array}{ll}
G=(A, B, E) & S:=A \\
F:=\{F \subseteq S: & F \text { courle }\}
\end{array}
$$

Circuits
Defie gamele des defentents

$$
\begin{aligned}
& \text { Fact: } \\
& { }_{n} \# c_{2} \in e \quad x \in c_{1} \cap c_{2} \\
& \left.\Rightarrow \exists C \in C: C \subseteq c_{1} \cup c_{2}\right) \times \\
& \text { Proot: }\left(C_{1}\right)+r\left(C_{2}\right) \geq r\left(C_{1} \cap C_{2}=C_{1 N}\right. \\
& c_{1}+\ddot{R}_{-2}-2+r\left(c_{1} \cup c\right)
\end{aligned}
$$

Bases

B is a base if $B \in \mathscr{J},|B|=r(S)$.
Set of bases: \mathfrak{B}
Fact : $\forall \mathrm{B}_{1}, \mathrm{~B}_{2} \in \mathcal{B}, \forall \mathrm{x} \in \mathrm{B}_{1} \backslash \mathrm{~B}_{2}$

$$
\exists y \in B_{2} \backslash B_{1}:\left(B_{1} \backslash x\right) \cup\{y\} \in \mathcal{B}
$$

Proposition: $\mathfrak{B \neq \varnothing}$ is the set of bases of a matr \Leftrightarrow the Fact holds.

So this def is also equivalent!

Matroid dual
Def: chal

$$
\begin{aligned}
& M^{*}=\left(S, B^{*}\right) \text { dralde } \\
& B^{*}=\{S, B: B \in B, B)
\end{aligned}
$$

Fact: $r^{*}(x)=|x|-(r(S)-r(S, x))$
Proof:

Def: ocircent
coupe d'un matreride: curc.dudal

Planarity and Duality
graple plan ane:
circuit de $G=$ archit de M(G) coupe un fer inclusion

Proposition: F is a spanning tree \Leftrightarrow $E \backslash F$ is a spanning tree of the dual graph

Euler's formula : $n-1+f-1=m$

Greedy alg for max weight indep
forbhne gloutones) : Si $x_{1} \ldots x_{i}$
ons efte cobis 10 ot $x_{\text {its }} G, q$.
$\left\{x_{1} \ldots, x_{i+1}\right\} \in f, \ldots\left(x_{i+1}\right)$ masc.
Théorème: $H=(S, H)$ Reléditur
$\forall w(\in \mathbb{M})$ AG howee l'opt
$\Leftrightarrow \quad H$ est wn wakoide
\Rightarrow arios

Par l'asciome des indef on ourout plus doásir ewlas: phs gox

Let us make it more complicated!
Thm (Edmocds): Mo(5,7) wath
$p^{a \in A} x_{a}$
Renve: $w_{1} \geq \ldots \geq w_{n}$

$$
u_{i}=\{1, \ldots, i\}
$$

Le F quion hoube $:\left|F \cap U_{i}\right|=r\left(U_{j}\right.$

$$
\left.\begin{array}{l}
\dot{w}(F)=\left(w_{1}-w_{2}\right)\left|F \sim u_{1}\right|+ \\
+\left(w_{2}-w_{3}\right)\left|F \cap U_{v}\right|+\cdots \\
+w_{n}\left|F \cap U_{n}\right|
\end{array}\right\} \begin{aligned}
& 12 d \\
& \text { doe }
\end{aligned}
$$

The inverse of the duality theorem
Thm (Eduouds): Mos, F) wh
$\operatorname{couv}\left(\Psi_{F}:, F \in T\right)=$

$$
=\left\{x \in \mathbb{R}^{s}: \begin{array}{l}
x(A) \leq r(A)\} \\
x \geq 0
\end{array}\right.
$$

C : clear!
rowher que $\alpha \omega$

$$
\underbrace{\operatorname{var}}_{x \in \text { gaude }} w^{\top} x=\operatorname{uex}_{x \in \text { dreve }}^{w^{+} x}
$$

SUFFIT:

Farkas' Lemma

$$
\begin{aligned}
& \exists \begin{array}{l}
\text { cer shlow } \\
\exists \text { rederid }
\end{array} \\
& \exists \text { rederie } \\
& \left\{x: c^{+} x=16\right\} \\
& \text { chyoylen }
\end{aligned}
$$

$$
\begin{aligned}
& C^{T} x_{0}>b \quad \text { qicioforw } x \text { de gounce } \\
& C_{0}^{T} x \leq b \quad \forall \in \text { gancle }
\end{aligned}
$$

Intersection des matroïdes $\left(S, r_{1}\right)$ et $\left(S, r_{2}\right)$ Edmonds (1979)
peur The orème de \cap

$$
1 \text { ?: Wax } F_{F \in F_{1} \cap F_{2}}=\lim _{x \in S^{\prime}} r_{1}(x)
$$

Roog: \leq

$$
F^{E^{+}}
$$

$$
|F J=|F \cap x|+|F, x| \leq
$$

$$
\Leftrightarrow r_{1}(x)+r_{2}(S(x)
$$

$E \times 0: 2$ gerhes disj $\quad M_{1}=\left(S, B_{1}\right) \quad M_{2}=M_{1}^{*}$

$$
\begin{aligned}
& \operatorname{covev}\left(\psi_{F}: f \in F_{1}\left(F_{2}\right)\right.
\end{aligned}
$$

Algorithme d'intersection
Prenve: (algorithne)
0.) Solit $F E F_{1}$ NF masc par inclusion

2.) Clerceer un demin S, T

What remains: If $P=\left\{x_{1}, y_{1}, x_{2}, \ldots x_{k}, y_{k}, x_{k+1}\right\}$ is a chordless path, then $\mathrm{F} \Delta \mathrm{P} \in \mathscr{F}_{1} \cap \mathscr{F}_{2}$

Lemma: $M=(S, \mathscr{F})$
FG$\underset{F}{ }$

$x_{i} \in F, y_{i} \in F(i=1, \ldots, a)$
yo est dens. le ry de unique de F Uni
uni $j>i n^{\prime} y$ estras.
seas F, $\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{x_{1}, \ldots, x_{8}\right\} \widetilde{\notin F}$

Corollaries

Cordlaire (Tado) !: $G=(A, B, E)$ aver un uataide $M=(B, F)$. $\max _{x \subseteq A}|x|=\min _{x \subseteq A} r(\Gamma(x))+|A|$

Cot: \exists urtchj dans A à un volóp de M $\Leftrightarrow \quad r(\Gamma(x)) \geq|x|_{1} \forall x \subseteq A$.
Fonction derang de $M_{A}, \otimes \ldots \Delta M_{2}$: $S^{\prime} \subseteq S: \quad r_{\infty}\left(S^{\prime}\right)=\operatorname{cim}_{x \subseteq S^{\prime}} \sum_{i=1}^{n} r_{i}(x)+\left|s^{\prime}\right| x \mid$
Reuve: avec Rado
Pour $r_{i}=r \forall i, r_{\infty}=a r$

4Cordlave (Washuillains): Dains wn hasaride 7 l lases disjoinses $\stackrel{k_{\text {Remarqua }}}{\Rightarrow} R(r(S)-r(X)) \leq|S \backslash x| \quad \forall x \subseteq S$ Remarqua : suffit pour fer eóés,
Corolbane (Washurliains): G parle G posside a arbres courants dinjo inses \forall Lartition Pde somuets $\exists \geq(e-1)|P|$ arêtes enthe les desses de 3 .
He valari arenja, cow glafions ars

Tour d’horizon VI : submodular (examples)

minus deficit, $\mathrm{d}(\mathrm{X})$, total information of a set of events, ... minus number of components of a set of edges, vector rank, ...

MIN CUT
 MAX CUT

Input : $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{w}: \mathrm{E} \rightarrow[0,1]$
Task: maximize
$c(\mathrm{~V}, \mathrm{~L})+\mathrm{w}(\mathrm{L}): \mathrm{L} \subseteq \mathrm{E}$
Supermodular

$$
3 / 4
$$

$$
1 / 4
$$

Particular submodular function minimization solved efficiently by Anglès d'Auriac, Iglói, Preissmann, S. (2001)

Tutte's theorem
5. Tute's Heorern, Edmords'algorthw

Exco 1 :
UPTv of G-v
$M_{v} \cup M_{v}$
Esco 2: contiens rase,
Kany: $\tau(G) \leqslant \tau(G-u)+1=\nu(G-u)+1=\nu(G)$
Esco 3:

Exo 4i:
üin sotwhets noh - concerls
$=$ uesc $q(x)-|x|$
\geq hio : $\circlearrowleft \bigcirc \underbrace{}_{\geq 2 \text { nou-cour }}$
$=\quad-S_{i} \nu(G-u)<\nu(G):$
Le woubre de somuets noh-con a auguenté de tapprimartw:
X_{u} Tulte-sef de G-u 00000
$x_{u} \cup\{u\}-\cdots 1 /$ de G
$-\operatorname{si} \nu(G-i)=2(G-v)=2(G)$

Edmonds' algorithm
thorithme

2. Si deux sounnats jaws sont adjevcall
[C]) a.) entre 2 co unf afferentes V
©ै b.) uñwe co-ifoscinte Exo 3 CONTRACT, GOTO 1.
3. S'il u'y a jas d'areétes entre soculess gans FiNl, et song $X:=$ ecsseulle de socurets ingens
Thun: X esf un ensenlle de Tu\% be conflage est unsciumin (tout a quiost dans les soumets pais forcme les coujescutes injenis)

Method of variables: bipartite matching

6/A rethode des verralles ccasse RD
Un antre alyorthere:

$$
\begin{aligned}
& G=(A, B, E) \text { eiparsi, }|A|=|B| \\
& M=\left(\begin{array}{ll}
x_{i j} \text { if } & i j \in E, O \text { sibot. }
\end{array}\right) \\
& M=\left(\begin{array}{ll}
x_{i j} & O \\
0 & \operatorname{def}(M): \text { Neycoine } \\
\operatorname{de} B!\text { teches }
\end{array}\right.
\end{aligned}
$$

Ecrie, tons les termes: Lap solstituer ef calculer lor,

$$
\operatorname{deg}(\operatorname{det}(M)) \leqslant n-1
$$

- Pent-on déchnce qclose si la sulstifution est $\neq 0$?
- Combrien de sulstitution font -ie seur êde yur que $\neq 0,2^{2}$ (ypour wur jolycörhe de 1 varcelid) $(d+1)^{2}$
$\operatorname{det}(M) \neq 0 \Leftrightarrow$ Frerfectimatb

The probabilities precisely
demme (scherant, Zirree)
q folynôme unltivariabley o 俦
$S \subseteq \mathbb{N}$ (valeurs oे substifer)
$x_{1} . .$. verialles aléaforve parr, doix indé uniformes dacss S. it Hors Pr $\left(q\left(x_{1} \ldots x_{R}\right)=0\right) \stackrel{C^{\text {xegg }}}{|\mathcal{S}|}$
Pour des polyiôrues d'wn senl variale si $|S| \subseteq$ degré $>$ degré
Penve: Par esce uple x_{n} a whe ruissance dout le oeff (unjelynöme) est $\neq 0$.
Sout μ levens graid expelart de y_{n} tour lequel c'est crai: soit $Q\left(x_{1}, \ldots\left(x_{n-1}\right)\right.$ le coeff. tes daniso de $x_{1}\left(\cdots,-1 Y_{n-1}\right.$ ef de X_{n} Jout i dert.

$$
\begin{aligned}
& \operatorname{Pr}\left(q\left(x_{1} \ldots, x_{a}\right)=0\right) \leq \operatorname{Pr}\left(Q\left(x_{1}, x_{1}=0\right)\right. \\
& +\operatorname{Pr}\left(\operatorname{qu}_{2}\left(x_{1} \ldots, x_{e}\right)=0 \mid Q\left(x_{1} \ldots-\ldots x_{1}\right)\right. \\
& \leq \frac{d-\mu}{|\delta|}+\frac{\mu}{|\delta|}=\frac{d}{|\delta|}
\end{aligned}
$$

Method of variables: nonbipartite
of G wot hifertite

$$
\left(\begin{array}{cc}
x_{i j^{\prime}} & i j^{\prime} \in E \\
-x_{i j} & 0
\end{array}\right)=i M_{(6)}
$$

srew symmatic
Rérème (Twle) G las a perfectim.

$$
\Leftrightarrow \operatorname{det}(M(G)) \neq 0
$$

Pourquai c'est noins dive que dens le crs linforti?

$$
\left(\begin{array}{ll}
O & M \\
-M & O
\end{array}\right) \quad \operatorname{det}(M(G))=-\operatorname{det}\left(M^{2}\right)
$$

Preuve: $\operatorname{det}(M(G))=$

$$
\begin{aligned}
& =P f(M(G))^{2} \sigma i \\
& \rho f(A)=\sum_{M=\left\{i_{1} j_{1} \ldots, 1\right.} \operatorname{fg}(M) a_{i j_{j} \ldots} \ldots j_{i \frac{i j j_{0}}{2}}
\end{aligned}
$$

Muiv 1882, 1906
Dess, Wengel 1995 Quenor 4.24

ALGORTTHME: $G=(U, E)$
1.) $\operatorname{Sayf} S=\left\{1, \ldots, 2_{\omega}\right\}$
2.) Sout $X_{i j}$ daisc alécutaus ciolípenớank dans S.
3.) Calculer le détervisart

$$
\begin{aligned}
& \text { si } \neq 0 \quad \exists \text { rerfect wert of } \\
& \text { si }=0 \text { \#ircor } \leq \frac{1}{2}
\end{aligned}
$$

Pour dimimer e^{\prime} erreur, que fonde? Coudir tho gracel $\mid \delta /$?
Refeter flusieurs foris?
coumeren de fais si oublaventse

$$
|s| \geq \frac{n}{\varepsilon}
$$

wiens: $|S|=2 n$ réefer $\log _{2} \frac{1}{\varepsilon}$
Classe PTJ
\sum alpleres $L \subseteq \Sigma^{*}$
Def: $L \in N P \Leftrightarrow \mathcal{S}^{Z}$ Reline: $\Sigma^{*} \times \Sigma^{*} \rightarrow\{0$, calculable en bertelys rèehgiarict

$$
x_{x \in C}: R(x ; y)=0 \forall y \in z_{i \in L^{x}}^{x} \Sigma^{x}
$$

RP, max matchings

\[

\]

$$
x \notin L: \quad R(x, y)=0 \quad \forall y \in \Sigma^{*}
$$

$$
\begin{aligned}
x \in L: \exists y \in Z^{*}: R(x, y)=1 \\
\text { ghisee corficiog }
\end{aligned}
$$

gheree cortifieat

$$
\begin{aligned}
& L \in R P \Leftrightarrow \quad-{ }^{\prime \prime}-x \rightarrow X_{x_{1}} \\
& -{ }^{\prime \prime} \\
& x \in L: \quad\left\{y \in \Sigma^{x^{\prime}}: R(x, y)=1\right\} \geq \frac{\left|x_{x}\right|}{2}
\end{aligned}
$$

lecurcoup de certificets!
$R P \approx P$
couplye hijerrfi (wetc delotprose) conplyge nowligearts (Ednotdo)

Directions from bird's eyes ...

We have seen :

Directed optimization : bipartite matching, max spanning tree or matroid independent, matroid intersection

Undirected optimization: non-bipartite matchings, undirected distances, Chinese Postman Problem

Approximation Algorithms : 2-approx for bin packing, 2-Approx of max cut, $3 / 2$ approx of TSP, $1-1 / \mathrm{e}$ approximation of submod max with bounded size

Generic methods: method of variables, derandomization, improving paths (« test-sets ») , complexity analysis, polyhedral method, separation-optimization, ellipsoid method

Polyhedra : (bipartite) matching polytope, matroid independent set polytope

Complexity : P, NP, RP, good characterization, NP-hard, NP-complete

