
Optimization and Approximation ENS Lyon

Lecture 10
Lecturer: Alantha Newman December 6, 2016

1 Semidefinite Programming and Graph Partitioning

In previous lectures, we saw how linear programs can be deployed to design approximation algorithms
for various NP-hard optimization problems. In this lecture, we will introduce a more general class of
relaxations, vector programs, which allow for variables to be vectors instead of scalars. In particular,
vector programs are a relaxation for problems that can be formulated as strict quadratic programs.

Definition 1 (Quadratic program). A quadratic program (QP) is an optimization problem whose ob-
jective function is quadratic in terms of integer valued variables, subject to quadratic constraints. If in
addition a quadratic program has all its monomials degree 0 or 2, then it is a strict quadratic program.

As we will show later, vector programs are equivalent to semidefinite programs, which can be viewed
as a generalization of linear programs. We can solve semidefinite programs by the ellipsoid algorithm
up to an arbitrary small additive error ε, in time polynomial in the input size and log(1/ε).

We will illustrate the concept of semidefinite programming by examining some graph partitioning
problems. We start with the well-known maximum cut problem.

1.1 Maximum Cut

Given an undirected graph G = (V,E), the goal of the maximum cut problem (max-cut) is to find a
partition of the vertices, (S, S̄), that maximizes the number of edges crossing the cut, i.e. edges with
one endpoint in S and the other endpoint in S̄. We denote the number of edges crossing the maximum
cut by OPTmax-cut. Max-cut is known to be NP-Hard, so our goal is to find a good polynomial time
approximation algorithm for it. Note that |E| is an upper bound on OPTmax-cut. Thus, we can achieve
a 1

2 -approximation for max-cut simply by placing each vertex in S or S̄ with probability 1/2.
The maximum cut problem can be formulated as a quadratic program:

max
∑
ij∈E

(
xi(1− xj) + xj(1− xi)

)
(1)

s.t xi ∈{0, 1} ∀i ∈ V,

where a variable xi → 1 if vertex i is in set S, and xi → 0 if vertex i is in set S̄. Note that an edge with
both ends in the same set will not contribute to the objective function.

If we relax the integer constraint in this QP, we have the following formulation:

max
∑
ij∈E

(
xi(1− xj) + xj(1− xi)

)
(2)

s.t xi ∈ [0, 1] ∀i ∈ V.

If we can solve this relaxed version optimally, we will still be able to find a maximum cut. Consider the
solution for the relaxed QP, OPTrel. For any vertex h ∈ V , with fractional value assigned to xh, we can
rewrite the objective function (1) as follows. Let δ(h) denote all edges adjacent to vertex h.

∑
ij∈E\δ(h)

(xi(1− xj) + xj(1− xi)) + xh

A︷ ︸︸ ︷∑
j:hj∈δ(h)

(1− xj) +(1− xh)

B︷ ︸︸ ︷∑
j:hj∈δ(h)

xj .

Then if A ≥ B, we round xh to one, otherwise we round it to zero. Let’s denote by OPTrd the solution
we get after rounding OPTrel. Note that OPTrel ≤ OPTrd, so by solving the relaxed QP for max-cut

1

and rounding the solution, we obtain an integral solution that is at least as good as OPTrel, which
is at least as good as the true optimal value OPTmax-cut. We can deduce from this that solving this
particular relaxed version is also NP-hard, since it boils down to solving exactly the NP-hard maximum
cut problem in polynomial time. So relaxing the integrality constraint does not help here. Instead, we’ll
relax max-cut to a semidefinite program.

Definition 2 (Semidefinite program (SDP)). A semidefinite program is a convex optimization problem
whose objective function is linear in terms of its variables xij and which is subject to linear constraints
over the variables, with the additional constraint that the symmetric matrix X = [xij] should be positive
semidefinite.

We recall the definition of positive semidefinite matrix:

Definition 3. A symmetric matrix X ∈ Rn×n is positive semidefinite (X � 0) iff for all y ∈ Rn,
yTXy ≥ 0.

Theorem 4. If X ∈ Rn×n is a symmetric matrix, then the following are equivalent:

1. X is positive semidefinite.
2. All eigenvalues of X are non negative.
3. ∃V ∈ Rm×n, m ≤ n, s.t X = V TV .

(Note that we are abusing notation here by using V to refer to a matrix, rather than the previously
defined vertex set V of a graph G. However, this notation will be useful since we will eventually use
the vector corresponding to a column of V to represent a vertex in G.) Since we can compute the
eigendecomposition of a symmetric matrix X = QΛQT in polynomial time, we can test for positive
definiteness in polynomial time. However, the decomposition V TV is not polynomial time computable,
since taking the square root of the diagonal matrix Λ can lead to irrational values. We can get an
arbitrarily good approximation of this decomposition, so we can assume we have the exact decomposition
in polynomial time, given that this inaccuracy can be included in the approximation factor.

By replacing the variable xij in an SDP by the inner product of the two vectors vi and vj in the
decomposition X = V TV corresponding to entry xij , we obtain an equivalent vector program:

max
∑
i,j

cijxij

s.t
∑
i,j

aijkxij = bk

xij = xji

X � 0

⇐⇒

max
∑
i,j

cij(vi · vj)

s.t
∑
i,j

aijk(vi · vj) = bk

vi ∈ Rn

The maximum cut problem admits a strict quadratic program formulation, which can be relaxed to a
vector program:

max
∑
ij∈E

1− vi · vj
2

s.t vi ∈ {−1, 1}
=⇒

max
∑
ij∈E

1− vi · vj
2

s.t vi · vi = 1

vi ∈ Rn

1.2 Random Hyperplane Rounding

Given a solution {vi| ∀i ∈ V } to the vector program of max-cut with value OPTv, we round our solution
as follows:

2

• Pick a vector g uniformly at random from the unit sphere Sn−1.

• For all i ∈ V :

{
g · vi ≥ 0 ⇒ i→ S,

g · vi < 0 ⇒ i→ S̄.

This rounding procedure is called random hyperplane rounding.

Theorem 5. There exists a polynomial time algorithm that achieves a 0.878-approximation of the max-
imum cut with high probability.

To prove Theorem 5, we first show that there exists a method to generate a vector g uniformly at
random from the unit sphere Sn−1.

Lemma 6. Let r = (r1, r2, . . . , rn) be random variables such that ri ∈ N (0, 1), i.e. each entry is
chosen according to the normal distribution with mean 0 and variance 1. Let d =

√∑n
i=1 r

2
i and let

g = (r1/d, r2/d, . . . , rn/d). Then g is uniformly distributed on the unit sphere Sn−1.

Proof. Since each of the random variables r1, r2, . . . , rn is chosen according to the normal distribution
N (0, 1), the probability density function of r is:

Pr(r1, r2, . . . , rn) =

n∏
i=1

1√
2π
e−

r2i
2

=
1

(2π)
n
2
e−

∑n
i=1 r

2
i

2 =
1

(2π)
n
2
e−

d2

2 .

We see that the probability density function only depends on the length of the vector. Therefore all
vectors of the same length have an equal probability of being chosen. Thus, the normalized vector g will
be uniformly distributed on the unit sphere Sn−1.

We state (but do not prove) the following useful fact related to the distribution of a weighted sum
of normally distributed random variables.

Fact 7. Let Xi ∼ N (µi, σ
2
i) denote a normally distributed random variable with mean µi and variance

σ2
i . Suppose X1, X2, . . . , Xm are independent random variables. Then:

m∑
i=1

aiXi ∼ N

(
m∑
i=1

aiµi,

m∑
i=1

(aiσi)
2

)
.

Let r = (r1, r2, . . . , rn), where ri ∈ N (0, 1). The following two lemmas provide useful facts about the
projection of r to lower dimensions. Let u ∈ Rn denote a unit vector.

Lemma 8. The projection of r onto unit vector u is normally distributed with mean 0 and variance 1.

Proof. Let r′ = r ·u denote the projection of r onto u. Fact 7 immediately implies that r′ =
∑n
i=1 ui ·ri ∼

N (0, 1).

Lemma 9. The projections of r onto unit vectors e1 and e2 are independent iff e1 and e2 are orthogonal.

Proof. Let r1 and r2 denote the projections of r onto e1 and e2, respectively. By Fact 7, r1 and r2 are
both normally distributed random variables with mean 0 and variance 1. In this case, it is sufficient
to prove that the covariance of r1 and r2 is zero, which is the case if E[r1r2] = 0. If e1 and e2 are
orthogonal, then:

E[r1r2] = E[(eᵀ1r)(r
ᵀe2)] = eᵀ1E[rrᵀ]e2 = eᵀ1e2 = 0,

implying that r1 and r2 are independent. If r1 and r2 are independent, then E[r1r2] = E[r1]E[r2] = 0,
which implies that eᵀ1e2 = 0.

3

Lemma 10. Let r′ be the projection of r onto a 2-dimensional plane, then r′

‖r′‖ is uniformly distributed
on a unit circle in the plane.

Proof. Consider the 2-dimensional plane defined by unit vectors e1 and e2 and let r1 and r2 denote the
projections of r onto e1 and e2, respectively. Then r′ = (r1, r2).

By Lemma 8, each projection (i.e. r1 and r2) has mean 0 and variance 1, and by Lemma 9, the two
projections are independent random variables. Thus, r1 and r2 are independent normally distributed
random variables, and we can apply Lemma 6 to conclude that r′

||r′|| is uniformly distributed on the unit
circle.

Lemma 11. The probability that edge ij is cut is arccos(vi·vj)
π =

θij
π , where θij is the angle between

vectors vi and vj.

Proof. Project vector r onto the plane containing vi and vj . It is easy to see that edge ij is cut iff r falls
within the area formed by the vectors perpendicular to vi and vj , which has area equal to 2θij

2π .

Lemma 12. For x ∈ [−1, 1], one can show that: arccos(x)
π ≥ 0.878

(
1−x
2

)
.

Now we can compute the expected weight of the edges crossing the cut produced by random hyper-
plane rounding.

E[Weight of cut] = E[
∑
ij∈E

Pr(edge ij is cut)]

=
∑
ij∈E

θij
π

(by Lemma 11)

=
∑
ij∈E

arccos(vi · vj)
π

≥ 0.878
∑
ij∈E

1− (vi · vj)
2

(by Lemma 12)

= 0.878 OPTv
≥ 0.878 OPTmax-cut

Given this expected value, one can show the existence of an algorithm that achieves a 0.878-
approximation of the maximum cut in polynomial time, with high probability. This concludes the
proof of Theorem 5.

Finally, we give an example to show that this approximation factor is almost tight. Consider a 5-cycle
graph. OPTmax-cut = 4, while the optimal solution for the SDP is placing the 5 vector in a 2-dimensional
plane with an angle 2π

5 between each two vectors. The approximation factor achieved in this case is
0.884.

1.3 Correlation Clustering

In the correlation clustering problem, we are given an undirected graph G = (V,E) with edge weights
w+
ij and w−ij , which denote how similar or dissimilar, respectively, the endpoints of an edge are. (In our

analysis we’ll assume that each edge has only one of these two types of weights, but the approximation
algorithm will still work in general.) Our goal is to partition the vertex set into clusters of similar
vertices. In other words, we aim to maximize the following objective function:

max
∑

i,j are in the same cluster

w+
ij +

∑
i,j are in different clusters

w−ij .

4

We denote the optimal value by OPTcc.

The correlation clustering problem also admits a simple 1
2 -approximation algorithm by picking the

best of the following two procedures:

1. Form one cluster: S = V .

2. Set each vertex to be in its own cluster.

Note that if the total sum of w+
ij in the graph is greater than the total sum of w−ij , choice 1 will guarantee

at least half OPTcc, otherwise choice 2 will.

The correlation clustering problem admits an exact formulation that can be relaxed to a vector
program:

max
∑
ij∈E

(
w+
ij(vi · vj) + w−ij(1− vi · vj)

)
s.t vi ∈ {e1, e2, · · · , en} ∀i ∈ V

=⇒

max
∑
ij∈E

(
w+
ij(vi · vj) + w−ij(1− vi · vj)

)
s.t vi · vi = 1

vi · vj ≥ 0

vi ∈ Rn

where ek denotes the unit vector with the kth entry set to one. In the exact formulation, vi is set to ek
if vertex i belongs to cluster k.

1.4 Rounding Algorithm for Correlation Clustering

Given a solution {vi| ∀i ∈ V } to the vector program of correlation clustering with value OPTv, we round
our solution as follows:

1. Pick two random vectors g and h s.t each entry in each vector is drawn from the standard normal
distribution N (0, 1).

2. Form four clusters as follows:

C1 = {i ∈ V : g · vi ≥ 0 and h · vi ≥ 0},
C2 = {i ∈ V : g · vi ≥ 0 and h · vi < 0},
C3 = {i ∈ V : g · vi < 0 and h · vi ≥ 0},
C4 = {i ∈ V : g · vi < 0 and h · vi < 0}.

Theorem 13. There exists a polynomial time algorithm that achieves a 3
4 -approximation of the corre-

lation clustering problem with high probability.

Proof. We start with a useful lemma:

Lemma 14. For x ∈ [0, 1], one can show that (1− arccos(x)
π)2

x ≥ 0.75 and 1−(1− arccos(x)
π)2

1−x ≥ 0.75.

Let xij be a random variable that takes the value one if i and j are in the same cluster. Note that
the probability that vi and vj are not separated by either g or h is (1− arccos(vi·vj)

π)2. Thus,

E[xij] = (1− arccos(vi · vj)
π

)2.

5

Now we can compute the expected weight of the clustering we obtain from solving the vector program
for correlation clustering and applying the random 2-hyperplane rounding.

E[Weight of clustering] = E[
∑
ij∈E

w+
ijxij + w−ij(1− xij)]

=
∑
ij∈E

w+
ij(1−

arccos(vi · vj)
π

)2 + w−ij(1− (1− arccos(vi · vj)
π

)2)

≥ 0.75
∑
ij∈E

w+
ij(vi · vj) + w−ij(1− vi · vj) (by Lemma 14)

= 0.75 OPTv
≥ 0.75 OPTcc.

Given this expected value, one can show the existence of an algorithm that achieves a 0.75-approximation
for the correlation clustering problem in polynomial time, with high probability.

References

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995.

[Swa04] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite program-
ming. In Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms,
pages 526–527, 2004.

[Vaz13] Vijay V. Vazirani. Approximation Algorithms. Springer, 2013.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

These lecture notes are mainly based on Chapter 6 of [WS11] and Chapter 26 of [Vaz13]. The al-
gorithm for the maximum cut is due to Goemans and Williamson [GW95] and is the first use of
semidefinite programming in approximation algorithms. The algorithm for correlation clustering is
due to Swamy [Swa04]. A similiar algorithm for correlation clustering with a slightly better approx-
imation guarantee can be found in [CGW05]. A previous version of these lecture notes scribed by
Marwa El Halabi was used in a course on approximation algorithms (Lecture 14) at EPFL (http:
//theory.epfl.ch/osven/courses/Approx13).

6

http://theory.epfl.ch/osven/courses/Approx13
http://theory.epfl.ch/osven/courses/Approx13

	Semidefinite Programming and Graph Partitioning
	Maximum Cut
	Random Hyperplane Rounding
	Correlation Clustering
	Rounding Algorithm for Correlation Clustering

