Basic Packing of Arborescences

Olivier Durand de Gevigney
joint work with Viet Hang Nguyen and Zoltán Szigeti

Laboratoire G-SCOP
INP-Grenoble UJF, France

November 7, 2012
Let $G = (V, E)$ be an undirected graph and k be an integer. G is called k-partition connected if, for every partition \mathcal{P} of V, $e(\mathcal{P}) \geq k(|P| - 1)$.

Theorem Tutte Nash-Williams (1961)

There exists a packing of k spanning trees in G if and only if G is k-partition connected.

Theorem Edmonds (1973)

There exists a packing of k-arborescences in D if and only if D is k-rooted connected at r.

Theorem Frank (1978)

There exists a k-rooted connected orientation of G if and only if G is k-partition connected.
Let $G = (V, E)$ be an undirected graph and k be an integer. G is called k-partition connected if, for every partition \mathcal{P} of V, $e(\mathcal{P}) \geq k(|P| - 1)$.

Theorem Tutte Nash-Williams (1961)

There exists a packing of k spanning trees in G\
\iff G is k-partition connected.

Let $D = (V, A)$ be a directed graph, $r \in V$ and k be an integer. D is called k-rooted connected at r if, for every non-trivial subset X of $V - r$, $\rho_D(X) \geq k$.

Theorem Edmonds (1973)

There exists a packing of $k r$-aborescences in D\
\iff D is k-rooted connected at r.
Let $G = (V, E)$ be an undirected graph and k be an integer. G is called k-partition connected if, for every partition \mathcal{P} of V, $e(\mathcal{P}) \geq k(|P| - 1)$.

<table>
<thead>
<tr>
<th>Theorem Tutte Nash-Williams (1961)</th>
</tr>
</thead>
</table>
| There exists a packing of k spanning trees in G
$\iff G$ is k-partition connected. |

Let $D = (V, A)$ be a directed graph, $r \in V$ and k be an integer. D is called k-rooted connected at r if, for every non-trivial subset X of $V - r$, $\rho_D(X) \geq k$.

<table>
<thead>
<tr>
<th>Theorem Edmonds (1973)</th>
</tr>
</thead>
</table>
| There exists a packing of k r-aborescences in D
$\iff D$ is k-rooted connected at r. |

<table>
<thead>
<tr>
<th>Theorem Frank (1978)</th>
</tr>
</thead>
</table>
| There exists a k-rooted connected orientation of G
$\iff G$ is k-partition connected. |
A matroid is a pair $\mathcal{M} = (S, r_M)$ where S is a set and r_M is a non-negative integer valued set-function defined on S such that for all $U, T \subseteq S$

- $r_M(U) \leq r_M(T)$ if $U \subseteq T$,
- $r_M(U) \leq |U|$,
- $r_M(U \cup T) + r_M(U \cap T) \leq r_M(U) + r_M(T)$ (submodularity).

A set $U \subseteq S$ is called independent if $r_M(U) = |U|$.

A base if it is independent and of maximal rank.

For $U \subseteq S$ we define $\text{Span}(U) = \{ s \in S; r_M(U \cup \{s\}) = r_M(U) \}$.

Example
A matroid is a pair $\mathcal{M} = (S, r_\mathcal{M})$ where S is set and $r_\mathcal{M}$ is a non-negative integer valued set-function defined on S such that for all $U, T \subseteq S$

- $r_\mathcal{M}(U) \leq r_\mathcal{M}(T)$ if $U \subseteq T$,
- $r_\mathcal{M}(U) \leq |U|$,
- $r_\mathcal{M}(U \cup T) + r_\mathcal{M}(U \cap T) \leq r_\mathcal{M}(U) + r_\mathcal{M}(T)$ (submodularity).

A set $U \subseteq S$ is called

- independent if $r_\mathcal{M}(U) = |U|$,
- a base if it is independent and of maximal rank.
A matroid is a pair $\mathcal{M} = (S, r_\mathcal{M})$ where S is a set and $r_\mathcal{M}$ is a non-negative integer valued set-function defined on S such that for all $U, T \subseteq S$

- $r_\mathcal{M}(U) \leq r_\mathcal{M}(T)$ if $U \subseteq T$,
- $r_\mathcal{M}(U) \leq |U|$,
- $r_\mathcal{M}(U \cup T) + r_\mathcal{M}(U \cap T) \leq r_\mathcal{M}(U) + r_\mathcal{M}(T)$ (submodularity).

A set $U \subseteq S$ is called

- independent if $r_\mathcal{M}(U) = |U|$
- a base if it is independent and of maximal rank.

For $U \subseteq S$ we define

$$\text{Span}(U) = \{s \in S; r_\mathcal{M}(U \cup \{s\}) = r_\mathcal{M}(U)\}$$
A matroid is a pair $\mathcal{M} = (S, r_\mathcal{M})$ where S is set and $r_\mathcal{M}$ is a non-negative integer valued set-function defined on S such that for all $U, T \subseteq S$

- $r_\mathcal{M}(U) \leq r_\mathcal{M}(T)$ if $U \subseteq T$,
- $r_\mathcal{M}(U) \leq |U|$,
- $r_\mathcal{M}(U \cup T) + r_\mathcal{M}(U \cap T) \leq r_\mathcal{M}(U) + r_\mathcal{M}(T)$ (submodularity).

A set $U \subseteq S$ is called
- independent if $r_\mathcal{M}(U) = |U|$
- a base if it is independent and of maximal rank.

For $U \subseteq S$ we define

$$Span(U) = \{s \in S; r_\mathcal{M}(U \cup \{s\}) = r_\mathcal{M}(U)\}$$

Example

S is the set of columns of a matrix

$r_\mathcal{M}(U)$ is the rank of the subspace spanned by the vectors in U

U is independent \iff the vectors of U are linearly independent.
A **matroid** is a pair $\mathcal{M} = (S, r_\mathcal{M})$ where S is a set and $r_\mathcal{M}$ is a non-negative integer valued set-function defined on S such that for all $U, T \subseteq S$

- $r_\mathcal{M}(U) \leq r_\mathcal{M}(T)$ if $U \subseteq T$,
- $r_\mathcal{M}(U) \leq |U|$,
- $r_\mathcal{M}(U \cup T) + r_\mathcal{M}(U \cap T) \leq r_\mathcal{M}(U) + r_\mathcal{M}(T)$ (submodularity).

A set $U \subseteq S$ is called

- **independent** if $r_\mathcal{M}(U) = |U|$
- a **base** if it is independent and of maximal rank.

For $U \subseteq S$ we define

$$Span(U) = \{s \in S; r_\mathcal{M}(U \cup \{s\}) = r_\mathcal{M}(U)\}$$

Example

S is the edge set of a graph

$r_\mathcal{M}(U)$ is the size of a maximal forest contained in U

U is independent \Leftrightarrow U contains no cycle

If the graph is connected a base is spanning tree.
A matroid-based rooted-graph is a quadruple \((G, S, \pi, \mathcal{M})\) where
A matroid-based rooted-graph is a quadruple \((G, S, \pi, \mathcal{M})\) where:

- \(G = (V, E)\) is an undirected graph,
A matroid-based rooted-graph is a quadruple \((G, S, \pi, M)\) where:

- \(G = (V, E)\) is an undirected graph,
- \(S\) is a set and \(\pi : S \to V\) is a placement,
A matroid-based rooted-graph is a quadruple \((G, S, \pi, \mathcal{M})\) where:

- \(G = (V, E)\) is an undirected graph,
- \(S\) is a set and \(\pi : S \rightarrow V\) is a placement,
- \(\mathcal{M}\) is a matroid on \(S\).
A packing of trees $(T_s)_{s \in S}$ in G is called \mathcal{M}-basic if

$$\pi(s) \in V(T_s) \text{ for all } s \in S,$$

$$\{s \in S; v \in V(T_s)\} \text{ is a base of } \mathcal{M} \text{ for all } v \in V.$$

Notation: $S_X = \pi^{-1}(X)$ for $X \subseteq V$.

A placement π is called \mathcal{M}-indepedent if S_v is independent for all $v \in V$.

The graph G is called \mathcal{M}-partition connected if, for all partition P of V,

$$e(P) \geq \sum X \in P \left(r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \right).$$

Theorem Katoh, Tanigawa 2012

Let (G, S, π, \mathcal{M}) be a matroid-based rooted-graph. (G, S, π, \mathcal{M}) contains a \mathcal{M}-basic packing of trees \iff π is \mathcal{M}-independent and G is \mathcal{M}-partition connected.
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s) \in V(T_s)\) for all \(s \in S\),

\begin{equation}
\pi(s) \in V(T_s) \text{ for all } s \in S,
\end{equation}

\textbf{Notation:} \(S \times = \pi^{-1}(X)\) for \(X \subseteq V\).

\textbf{A placement \(\pi\) is called \(\mathcal{M}\)-independent if} \(S_v\) is independent for all \(v \in V\).

\textbf{The graph} \(G\) \textbf{is called} \(\mathcal{M}\)-partition connected if, for all partition \(P\) of \(V\),

\begin{equation}
e(P) \geq \sum_{X \in P} (r_M(S) - r_M(S_X)),
\end{equation}

\textbf{Theorem Katoh, Tanigawa 2012}

\textbf{Let} \((G, S, \pi, \mathcal{M})\) \textbf{be a matroid-based rooted-graph.} \((G, S, \pi, \mathcal{M})\) \textbf{contains a} \(\mathcal{M}\)-basic packing of trees \(\iff\) \(\pi\) is \(\mathcal{M}\)-independent and \(G\) is \(\mathcal{M}\)-partition connected.
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\text{-basic}\) if

- \(\pi(s) \in V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(v \in V\).
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s) \in V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(v \in V\).
A packing of trees $(T_s)_{s \in S}$ in G is called \mathcal{M}-basic if

1. $\pi(s) \in V(T_s)$ for all $s \in S$,
2. $\{s \in S; v \in V(T_s)\}$ is a base of \mathcal{M} for all $v \in V$.

Notation: $S_X = \pi^{-1}(X)$ for $X \subseteq V$.
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

\[
\begin{align*}
\text{\textbullet} \quad & \pi(s) \in V(T_s) \text{ for all } s \in S, \\
\text{\textbullet} \quad & \{s \in S; v \in V(T_s)\} \text{ is a base of } \mathcal{M} \text{ for all } v \in V.
\end{align*}
\]

Notation: \(S_X = \pi^{-1}(X)\) for \(X \subseteq V\).

A placement \(\pi\) is called \(\mathcal{M}\)-indepedent if \(S_v\) is independent for all \(v \in V\).
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s) \in V(T_s)\) for all \(s \in S\),
- \(\{s \in S; \nu \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(\nu \in V\).

Notation: \(S_X = \pi^{-1}(X)\) for \(X \subseteq V\).

A placement \(\pi\) is called \(\mathcal{M}\)-indepedent if \(S_\nu\) is independent for all \(\nu \in V\).

The graph \(G\) is called \(\mathcal{M}\)-partition connected if, for all partition \(\mathcal{P}\) of \(V\),

\[
e(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_\mathcal{M}(S) - r_\mathcal{M}(S_X)).
\]
A packing of trees \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s) \in V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(v \in V\).

Notation: \(S_X = \pi^{-1}(X)\) for \(X \subseteq V\).

A placement \(\pi\) is called \(\mathcal{M}\)-independent if \(S_v\) is independent for all \(v \in V\).

The graph \(G\) is called \(\mathcal{M}\)-partition connected if, for all partition \(\mathcal{P}\) of \(V\),

\[
e(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_\mathcal{M}(S) - r_\mathcal{M}(S_X)).
\]

Theorem Katoh, Tanigawa 2012

Let \((G, S, \pi, \mathcal{M})\) be a matroid-based rooted-graph.

\((G, S, \pi, \mathcal{M})\) contains a \(\mathcal{M}\)-basic packing of trees
\(\iff\) \(\pi\) is \(\mathcal{M}\)-independent and \(G\) is \(\mathcal{M}\)-partition connected.
A matroid-based rooted-digraph is a quadruple \((D, S, \pi, M)\) where
A matroid-based rooted-digraph is a quadruple \((D, S, \pi, M)\) where

- \(D = (V, A)\) is a directed graph,
A matroid-based rooted-digraph is a quadruple \((D, S, \pi, \mathcal{M})\) where

- \(D = (V, A)\) is a directed graph,
- \(S\) is a set and \(\pi : S \rightarrow V\) is a placement,
A matroid-based rooted-digraph is a quadruple \((D, S, \pi, \mathcal{M})\) where:

- \(D = (V, A)\) is a directed graph,
- \(S\) is a set and \(\pi : S \to V\) is a placement,
- \(\mathcal{M}\) is a matroid on \(S\).
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(M\)-basic if

\[\pi(s) \text{ is the root of } V(T_s) \text{ for all } s \in S, \]

\[\{ s \in S; v \in V(T_s) \} \text{ is a base of } M \text{ for all } v \in V. \]

The directed graph \(D\) is called \(M\)-connected if, for all subset \(X\) of \(V\),

\[\rho_D(X) \geq r_M(S) - r_M(S \setminus X). \]

Theorem DdG, Nguyen, Szigeti 2012

Let \((D, S, \pi, M)\) be a matroid-based rooted-digraph. \((D, S, \pi, M)\) contains a \(M\)-basic packing of arborescences \(\iff \pi\) is \(M\)-independent and \(D\) is \(M\)-connected.
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(M\)-basic if

- \(\pi(s)\) is the root of \(V(T_s)\) for all \(s \in S\),
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s)\) is the root of \(V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(v \in V\).
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(M\)-basic if

- \(\pi(s)\) is the root of \(V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(M\) for all \(v \in V\).
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(\mathcal{M}\)-basic if

- \(\pi(s)\) is the root of \(V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(\mathcal{M}\) for all \(v \in V\).

The directed graph \(D\) is called \(\mathcal{M}\)-connected if, for all subset \(X\) of \(V\),

\[
\rho_D(X) \geq r_\mathcal{M}(S) - r_\mathcal{M}(S_X).
\]
A packing of arborescences \((T_s)_{s \in S}\) in \(G\) is called \(M\)-basic if

- \(\pi(s)\) is the root of \(V(T_s)\) for all \(s \in S\),
- \(\{s \in S; v \in V(T_s)\}\) is a base of \(M\) for all \(v \in V\).

The directed graph \(D\) is called \(M\)-connected if, for all subset \(X\) of \(V\),

\[
\rho_D(X) \geq r_M(S) - r_M(S_X).
\]

Theorem DdG, Nguyen, Szigeti 2012

Let \((D, S, \pi, M)\) be a matroid-based rooted-digraph.

\((D, S, \pi, M)\) contains a \(M\)-basic packing of arborescences

\(\iff\) \(\pi\) is \(M\)-independent and \(D\) is \(M\)-connected.
Theorem Frank 1980

Let $G = (V, E)$ be a graph and h an intersecting supermodular non-increasing set-function defined on V.

There exists an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

$\iff e(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for all partition \mathcal{P} of V.

Corollary

Let (G, S, π, M) be a matroid-based rooted-graph.

There exists an orientation D of G s. t. (D, S, π, M) is M-connected

$\iff (G, S, \pi, M)$ is M-partition connected.
Theorem Frank 1980

Let $G = (V, E)$ be a graph and h an intersecting supermodular non-increasing set-function defined on V.

There exists an orientation D of G s. t. $\rho_D(X) \geq h(X) \quad \forall \emptyset \neq X \subset V$

$\iff e(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for all partition \mathcal{P} of V.

Theorem Frank 1978

There exists a *k*-rooted connected orientation of G

$\iff G$ is k-partition connected.
Theorem Frank 1980

Let $G = (V, E)$ be a graph and h an intersecting supermodular non-increasing set-function defined on V.

There exists an orientation D of G s.t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

$\iff e(P) \geq \sum_{X \in P} h(X)$ for all partition P of V.

Theorem Frank 1978

There exists a k-rooted connected orientation of G

$\iff G$ is k-partition connected.

Choosing $h(X) = r_M(S) - r_M(S_X)$ for all $\emptyset \neq X \subset V$.

Corollary

Let (G, S, π, M) be a matroid-based rooted-graph.

There exists an orientation D of G s.t. (D, S, π, M) is M-connected

$\iff (G, S, \pi, M)$ is M-partition connected.
Theorem Frank 1980

Let $G = (V, E)$ be a graph and h an intersecting supermodular non-increasing set-function defined on V.

There exists an orientation D of G s.t. $\rho_D(X) \geq h(X) \quad \forall \emptyset \neq X \subset V$

$\iff e(P) \geq \sum_{X \in P} h(X)$ for all partition P of V.

Theorem Frank 1978

There exists a k-rooted connected orientation of G

$\iff G$ is k-partition connected.

Choosing $h(X) = r_\mathcal{M}(S) - r_\mathcal{M}(S_X)$ for all $\emptyset \neq X \subset V$.

Corollary

Let (G, S, π, \mathcal{M}) be a matroid-based rooted-graph.

There exists an orientation D of G s.t. (D, S, π, \mathcal{M}) is \mathcal{M}-connected

$\iff (G, S, \pi, \mathcal{M})$ is \mathcal{M}-partition connected.
Theorem Katoh, Tanigawa 2012

Let \((G, S, \pi, \mathcal{M})\) be a matroid-based rooted-graph.

\((G, S, \pi, \mathcal{M})\) contains a \(\mathcal{M}\)-basic packing of trees
\iff \(\pi\) is \(\mathcal{M}\)-independent and \(G\) is \(\mathcal{M}\)-partition connected.
Theorem Katoh, Tanigawa 2012

Let \((G, S, \pi, \mathcal{M})\) be a matroid-based rooted-graph.

\[(G, S, \pi, \mathcal{M})\) contains a \(\mathcal{M}\)-basic packing of trees \iff \pi\ is \(\mathcal{M}\)-independent and \(G\) is \(\mathcal{M}\)-partition connected.

Theorem DdG, Nguyen, Szigeti 2012

Let \((D, S, \pi, \mathcal{M})\) be a matroid-based rooted-digraph.

\[(D, S, \pi, \mathcal{M})\) contains a \(\mathcal{M}\)-basic packing of arborescences \iff \pi\ is \(\mathcal{M}\)-independent and \(D\) is \(\mathcal{M}\)-connected.
Theorem Katoh, Tanigawa 2012
Let \((G, S, \pi, \mathcal{M})\) be a matroid-based rooted-graph.

\[(G, S, \pi, \mathcal{M})\] contains a \(\mathcal{M}\)-basic packing of trees
\(\iff\) \(\pi\) is \(\mathcal{M}\)-independent and \(G\) is \(\mathcal{M}\)-partition connected .

Theorem DdG, Nguyen, Szegiti 2012
Let \((D, S, \pi, \mathcal{M})\) be a matroid-based rooted-digraph.

\[(D, S, \pi, \mathcal{M})\] contains a \(\mathcal{M}\)-basic packing of arborescences
\(\iff\) \(\pi\) is \(\mathcal{M}\)-independent and \(D\) is \(\mathcal{M}\)-connected .

Corollary of Frank Theorem
Let \((G, S, \pi, \mathcal{M})\) be a matroid-based rooted-graph.

There exists an orientation \(D\) of \(G\) s.t. \((G, S, \pi, \mathcal{M})\) is \(\mathcal{M}\)-connected
\(\iff\) \((G, S, \pi, \mathcal{M})\) is \(\mathcal{M}\)-partition connected .
Let uv be an arc and choose $s \in S_u$.

Define the matroid-based rooted digraph $(D', S', \pi', \mathcal{M}')$ where:

- $D' = D - uv$,
- $S' = S + s'$,
- s' is placed at v,
- s' is parallel to s in \mathcal{M}'.

If π' is independent and D' is \mathcal{M}'-connected then there exists (by induction) an \mathcal{M}'-basic packing in D'.
Let uv be an arc and choose $s \in S_u$.
Define the matroid-based rooted digraph $(D', S', \pi', \mathcal{M}')$ where
- $D' = D - uv$,
- $S' = S + s'$,
- s' is placed at v,
- s' is parallel to s in \mathcal{M}'.

If π' is independent and D' is \mathcal{M}'-connected then there exists (by induction) an \mathcal{M}'-basic packing in D'.

![Diagram](image-url)
Let \(uv \) be an arc and choose \(s \in S_u \).
Define the matroid-based rooted digraph \((D', S', \pi', \mathcal{M}') \) where

- \(D' = D - uv \),
- \(S' = S + s' \),
- \(s' \) is placed at \(v \),
- \(s' \) is parallel to \(s \) in \(\mathcal{M}' \).
Let uv be an arc and choose $s \in S_u$. Define the matroid-based rooted digraph $(D', S', \pi', \mathcal{M}')$ where:

- $D' = D - uv$,
- $S' = S + s'$,
- s' is placed at v,
- s' is parallel to s in \mathcal{M}'.

If π' is independent and D' is \mathcal{M}'-connected then there exists (by induction) an \mathcal{M}'-basic packing in D'.

![Diagram of the rooted digraph](image-url)
Let uv be an arc and choose $s \in S_u$.
Define the matroid-based rooted digraph (D', S', π', M') where

- $D' = D - uv$,
- $S' = S + s'$,
- s' is placed at v,
- s' is parallel to s in M'.

If π' is independent and D' is M'-connected then there exists (by induction) an M'-basic packing in D'
Let uv be an arc and choose $s \in S_u$.
Define the matroid-based rooted digraph (D', S', π', M') where
- $D' = D - uv$,
- $S' = S + s'$,
- s' is placed at v,
- s' is parallel to s in M'.

If π' is independent and D' is M'-connected then there exists (by induction) an M'-basic packing in D' and an M-basic packing in D.
\(\pi' \) is independent \(\iff \) \(s \notin \text{Span}(S_v) \).

\(D' \) is NOT \(M' \)-connected \(\iff \) \(uv \) enters a vertex set \(X \) such that
\[
\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in \text{Span}(S_X).
\]
\[\pi' \text{ is independent } \iff s \notin \text{Span}(S_v). \]
\[D' \text{ is NOT } M'-\text{connected } \iff uv \text{ enters a vertex set } X \text{ such that } \]
\[\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in \text{Span}(S_X). \]

A vertex set \(X \) is **tight** is \(\rho_D(X) = r_M(S) - r_M(S_X) \).
A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).
An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).
\(\pi' \) is independent \(\iff \) \(s \notin \text{Span}(S_v) \).

\(D' \) is NOT \(\mathcal{M}' \)-connected \(\iff \) \(uv \) enters a vertex set \(X \) such that \(\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \) and \(s \in \text{Span}(S_X) \).

A vertex set \(X \) is **tight** is \(\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \).

A vertex set \(Y \) dominates a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).
\(\pi' \) is independent \(\iff s \notin \text{Span}(S_v) \).

\(D' \) is NOT \(\mathcal{M}' \)-connected \(\iff uv \) enters a vertex set \(X \) such that
\[
\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \quad \text{and} \quad s \in \text{Span}(S_X).
\]

A vertex set \(X \) is **tight** if \(\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \).

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).
\[\pi' \text{ is independent} \iff s \notin \text{Span}(S_v). \]
\[D' \text{ is NOT } M' \text{-connected} \iff uv \text{ enters a vertex set } X \text{ such that} \]
\[\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in \text{Span}(S_X). \]

A vertex set \(X \) is **tight** if \(\rho_D(X) = r_M(S) - r_M(S_X) \).

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(M \)-basic.
\[\pi' \text{ is independent } \iff s \notin \text{Span}(S_v). \]

\[D' \text{ is NOT } \mathcal{M}'\text{-connected } \iff uv \text{ enters a vertex set } X \text{ such that} \]

\[\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in \text{Span}(S_X). \]

A vertex set \(X \) is **tight** is \(\rho_D(X) = r_M(S) - r_M(S_X). \)

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y). \)

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M} \)-basic. So we may assume that there exists good arcs.
\(\pi' \) is independent \(\iff \) \(s \notin \text{Span}(S_v) \).

\(D' \) is NOT \(\mathcal{M}' \)-connected \(\iff \) \(uv \) enters a vertex set \(X \) such that
\[
\rho_{D}(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \text{ and } s \in \text{Span}(S_X).
\]

A vertex set \(X \) is **tight** is \(\rho_{D}(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \).

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M} \)-basic. So we may assume that there exists good arcs and that each good arc \(uv \) enters a tight set \(X \) that dominates \(u \).
\[\pi' \text{ is independent } \iff s \notin \text{Span}(S_v). \]

\[D' \text{ is NOT } \mathcal{M}'\text{-connected } \iff uv \text{ enters a vertex set } X \text{ such that} \]
\[\rho_{D}(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \text{ and } s \in \text{Span}(S_X). \]

A vertex set \(X\) is **tight** is \(\rho_{D}(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)\).

A vertex set \(Y\) **dominates** a vertex set \(X\) if \(S_X \subseteq \text{Span}(S_Y)\).

An arc \(uv\) is **good** if \(v\) does NOT dominate \(u\).

Claim

Every vertex \(v\) of a tight set \(X\) inducing no good arc dominates \(X\).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M}\)-basic. So we may assume that there exists good arcs and that each good arc \(uv\) enters a tight set \(X\) that dominates \(u\).

- Choose \((uv, X)\) with \(X\) minimal
\(\pi' \) is independent \iff \(s \notin \text{Span}(S_v) \).

\(D' \) is NOT \(\mathcal{M}' \)-connected \iff \(uv \) enters a vertex set \(X \) such that
\[
\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in \text{Span}(S_X).
\]

A vertex set \(X \) is tight if \(\rho_D(X) = r_M(S) - r_M(S_X) \).

A vertex set \(Y \) dominates a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is good if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M} \)-basic. So we may assume that there exists good arcs and that each good arc \(uv \) enters a tight set \(X \) that dominates \(u \).

- Choose \((uv, X)\) with \(X \) minimal
- \(X \) induces a good arc \(u'v' \)
\[
\pi' \text{ is independent } \iff s \notin Span(S_v).
\]
\[
D' \text{ is NOT } M'-\text{connected } \iff uv \text{ enters a vertex set } X \text{ such that }
\rho_D(X) = r_M(S) - r_M(S_X) \text{ and } s \in Span(S_X).
\]

A vertex set \(X\) is **tight** if \(\rho_D(X) = r_M(S) - r_M(S_X)\).
A vertex set \(Y\) **dominates** a vertex set \(X\) if \(S_X \subseteq Span(S_Y)\).
An arc \(uv\) is **good** if \(v\) does NOT dominate \(u\).

Claim

Every vertex \(v\) of a tight set \(X\) inducing no good arc dominates \(X\).

If there exists no good arc, the packing in which each arborescence has no arc is \(M\)-basic. So we may assume that there exists good arcs and that each good arc \(uv\) enters a tight set \(X\) that dominates \(u\).

- Choose \((uv, X)\) with \(X\) minimal
- \(X\) induces a good arc \(u'v'\)
- \(u'v'\) enters a tight set \(Y\) that dominates \(u'\)
\(\pi' \) is independent \iff \(s \not\in \text{Span}(S_v) \).

\(D' \) is NOT \(\mathcal{M}' \)-connected \iff \(uv \) enters a vertex set \(X \) such that
\[
\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \quad \text{and} \quad s \in \text{Span}(S_X).
\]

A vertex set \(X \) is **tight** if \(\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \).

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M} \)-basic. So we may assume that there exists good arcs and that each good arc \(uv \) enters a tight set \(X \) that dominates \(u \).

- Choose \((uv, X) \) with \(X \) minimal
- \(X \) induces a good arc \(u'v' \)
- \(u'v' \) enters a tight set \(Y \) that dominates \(u' \)
- \(u'v' \) enters the tight set \(Y \cap X \) that dominates \(u' \)
\[\pi' \text{ is independent } \iff s \notin \text{Span}(S_v). \]

\[D' \text{ is NOT } \mathcal{M}'\text{-connected } \iff uv \text{ enters a vertex set } X \text{ such that } \rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \text{ and } s \in \text{Span}(S_X). \]

A vertex set \(X \) is **tight** if \(\rho_D(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X) \).

A vertex set \(Y \) **dominates** a vertex set \(X \) if \(S_X \subseteq \text{Span}(S_Y) \).

An arc \(uv \) is **good** if \(v \) does NOT dominate \(u \).

Claim

Every vertex \(v \) of a tight set \(X \) inducing no good arc dominates \(X \).

If there exists no good arc, the packing in which each arborescence has no arc is \(\mathcal{M} \)-basic. So we may assume that there exists good arcs and that each good arc \(uv \) enters a tight set \(X \) that dominates \(u \).

- Choose \((uv, X) \) with \(X \) minimal
- \(X \) induces a good arc \(u'v' \)
- \(u'v' \) enters a tight set \(Y \) that dominates \(u' \)
- \(u'v' \) enters the tight set \(Y \cap X \) that dominates \(u' \)
- \((u'v', Y) \) contradicts the minimality of \(X \).
Thank you for your attention.