
A Constraint Programming Approach for the Traveling
Purchaser Problem

Hadrien Cambazard, Bernard Penz

G-SCOP
Université de Grenoble / Grenoble-INP / UJF-Grenoble 1 / CNRS

{hadrien.cambazard|bernard.penz}@grenoble-inp.fr

Abstract. We present a novel approach to the Traveling Purchaser Problem
(TPP), based on constraint programming and Lagrangean relaxation. The TPP
is a generalization of the Traveling Salesman Problem involved in many real-
world applications. Given a set of markets providing products at different prices
and a list of products to be purchased, the problem is to determine the route min-
imizing the sum of the traveling and purchasing costs. We propose in this paper
an efficient approach when the number of markets visited in an optimal solution
is low. We believe that the real-world applications of this problem often assume
a bounded number of visits when they involve a physical routing. It is an actual
requirement from our industrial partner which is developing a web application
to help their customers’ shopping planning. The approach is tested on academic
benchmarks. It proves to be competitive with a state of the art branch-and-cut al-
gorithm and can provide in some cases new optimal solutions for instances with
up to 250 markets and 200 products.

1 Introduction and industrial context

The Traveling Purchaser Problem (TPP) introduced by Ramesh [18], is a generalization
of the Traveling Salesman Problem (TSP) and occurs in many real-world applications
related to routing, wharehousing and scheduling [23]. Given a hometown for the trav-
eler, a set of markets providing products at different prices and a list of products to be
purchased, the problem is to determine the route minimizing the sum of the traveling
and purchasing costs. The TPP was brought to our attention by a startup (“Le Bon Côté
des Choses”)1 developing a web application to help their customers’ shopping plan-
ning. A customer enters his location, a list of products, a maximum number of markets
to visit in the application and is told the most profitable shopping plan. The original
question faced by the startup was therefore a TPP with a side constraint bounding the
number of markets in the route.

Such an application requires very short response times and a heuristic was previ-
ously designed to cope with this requirement. It constructs a feasible solution by greed-
ily adding markets, then attempts to improve it using a two-opt technique. The startup
is now in the process of gathering data and extending their approach with additional
features. Two main extensions (not revealed here for confidentiality reasons) currently

1 http://www.leboncotedeschoses.fr/

figure on top of their priorities. We note here that a classical extension of the TPP found
in the literature [15] is to consider a limited supply of products in each market. How-
ever, this feature is not considered by the startup for the moment since the stock levels
are not available online (unlike the catalogues of products). To handle the two exten-
sions mentioned, the initial heuristic must now be deeply restructured. The need for
flexibility in extending and maintaining the solver lead us to consider in parallel the
development of a constraint programming approach.

The purpose of this paper is to propose a new exact algorithm, based on Constraint
Programming (CP), for the TPP with a bounded number of visits in the tour. Our ap-
proach takes advantage of three key sub-problems of the TPP, and the propagation algo-
rithms are based on dynamic programming and Lagrangean relaxation. Due to the lack
of mature industrial benchmark at this stage, we tackle an academic benchmark and
compare to a state of the art exact algorithm [15]. Although the approach was initially
designed for a small number of visits, it proves to be surprisingly competitive when
applied in the unbounded case.

The rest of the paper is organized as follows. Section 2 precisely defines the Travel-
ing Purchaser Problem and briefly presents the literature, focusing on exact approaches.
Section 3 describes the constraint programming model. The details of the main con-
straints are given in the following sections (4, 5 and 6). The branching strategy is de-
tailed in section 7. Finally computational experiments are reported in section 8.

2 Problem definition and state of the art

Notations are similar to the ones of [15]. Let K = {p1, . . . , pm} be the set of products,
M = {v1, . . . , vn} the set of markets and Mk ⊆ M the set of markets where the
product pk is available. The problem is to determine the route starting from a depot
v0 (purchaser’s hometown), and minimizing the sum of the traveling and purchasing
costs to acquire the products of K. The price of product pk in market vi (vi ∈ Mk)
is zki and the traveling cost between two nodes vi and vj of V = {v0} ∪ M is cij
(we assume that the costs satisfy the triangular inequality). Moreover, each pk has to
be bought in a specific amount and this demand is denoted dk. In this paper, we deal
with the unrestricted TPP i.e the problem where the supply in each shop is unlimited.
The unrestricted TPP was extended in [15] by bounding the amount of pk available in
each market. In an optimal solution of the unrestricted TPP, all the demand of a product
pk is bought in a single shop. Therefore, we simplify our notations by introducing bki,
the cost for buying all the demand of pk in market vi: bki = dkzki. Finally, we add
a parameter, B, to bound the number of markets visited. This last constraint was also
considered in [11] and is often a reasonable assumption made in routing problems as
discussed in [5].

The TPP [18] is NP-hard in the strong sense since it generalizes two classical
strongly NP-hard problems: the Uncapacited Facility Location Problem (UFLP) and
the Traveling Salesman Problem (TSP) [8]. Any TSP can indeed be seen as a TPP
where each product (one per market) is available in only one market (so that all markets
have to be visited). The UFLP can also be seen as a TPP by mapping products to clients
and markets to facilities.

The Traveling Purchaser problem has been largely studied during the last two deca-
des. Numerous heuristics were developed, starting with [10, 17] and more recently by
[21]. The first exact algorithm based on a lexicographic search was proposed by [18] and
was able to solve optimally problems up to 12 markets and 10 products. A branch and
bound algorithm was designed later on by [23]. They used a bound based on the simple
plant location problem and managed to solve efficiently problems with 20 markets and
50 products. Laporte et al. [15] developed an efficient branch-and-cut algorithm for the
undirected TPP. Riera-Ledesma and Salazar-Gonzalez proposed to extend the previous
branch-and-cut algorithm to solve the asymmetric case [20]. To our knowledge, this is
the best known exact algorithm for the TPP, designed to handle both cases of unlimited
and limited supply. It seems reasonable since branch-and-cut is the state of art method
for tackling TSP and the best known exact algorithms for facility locations problems
are based on linear programming. In Laporte et al. [15], valid inequalities are identified
based on the cycle (generalization of the TSP where only a subset of vertices must be
visited) and the set-covering polytopes. The branch-and-cut algorithm generates four
types of constraints (four separation procedures) but also variables (pricing procedure)
to keep the size of the model reasonable. Finally it uses a primal heuristic at each node
(including a 2-opt mechanism for the TSP) to improve the upper bound. It is able to
solve optimally instances up to 250 markets and 200 products.

3 CP model

Our constraint programming approach is built on three core sub-problems at the heart of
the TPP: the Traveling Salesman Problem (TSP), the P-Median problem and the Hitting
Set problem. It strongly relies on the fact that the number of visited markets is bounded
(by B) so that the following observations make sense:

– whether all products can be bought in less than B markets is a minimum Hitting
Set problem (one set per product pk containing the markets where pk is available);

– finding the cheapest way to buy all products in less than B markets is a P-Median
problem where each facility is a market, each client is a product and the cost of
connecting a client to a facility is the cost of buying the corresponding product in
the given market;

– once the markets visited are known, we are left with a TSP problem on the corre-
sponding set of markets.

We will derive propagation mechanisms taking advantage of these three core sub-
problems and achieve a strong level of consistency. One key idea of our model is to
exclude the routing problem (TSP) from the search space by performing exponential
time propagation in B i.e by encapsulating the TSP inside a constraint.

Variables. We use the variables Ct ≥ 0 and Cs ≥ 0 to respectively denote the total
traveling and shopping cost. Variables Csk ≥ 0 represent the cost of buying each prod-
uct pk. Boolean variables yi ∈ {0, 1} indicates whether market vi is visited in the tour
of the purchaser. The finite domain variables sk ∈ {i|vi ∈ Mk} give the market where
product k is bought. Finally Nvisit ∈ {1, . . . , B} represents the number of markets
visited in the tour.

Model. The model is written as follows:

Minimize Ct+ Cs

(1) Cs =
∑m
k=1 Csk

(2) Csk = ELEMENT([bk1, . . . , bki, . . . , bkn], sk) (∀ pk ∈ K)
(3) OCCURRENCE(i, [s1, . . . , sm]) ≥ 1⇔ yi = 1 (∀ vi ∈M)
(4) Nvisit =

∑
vi∈M yi

(5) NVALUE([s1, . . . , sm], Nvisit)
(6) TSP([y1, . . . , yn], Ct,Nvisit, {cij |vi, vj ∈M})
(7) PMEDIAN([y1, . . . , yn], [s1, . . . , sm], Cs,Nvisit,

{bki|pk ∈ K, vi ∈M})
sk ∈ {i|vi ∈Mk} (∀ pk ∈ K)
Csk ≥ 0 (∀ pk ∈ K)
yi ∈ {0, 1} (∀ vi ∈M)
Ct ≥ 0, Cs ≥ 0

The domains of the variables sk, yi and Nvisit are finite enumerated domains (each
value is maintained in the domain representation) whereasCs, Csk, Ct are represented
only by their lower and upper bounds. In the following we denote by D(x) the domain
of variable x and by x (resp. x) the lower (resp. upper) bound of x so that x takes a
value from D(x) = [x, . . . , x].

Constraints. Constraints (2) relate the shopping cost of a product to the market where
it is bought. It states that Csk = bksk . The ELEMENT constraint allows to index a
table of values by an integer variable. The lower bound of Csk is thus maintained
as the minimum price of product pk among all currently possible markets: Csk =
minvi|i∈D(sk) bki.

Constraints (3) are channeling constraints linking yi and sk variables. Note that at
least one product must be bought in a visited market. Our solver does not support this
constraint directly but it can be easily decomposed or implemented directly.

Constraint (4) links the number of visits (Nvisit) to the yi variables.
Constraint (5) is a redundant constraint enforcing the number of visits to be equal to

the number of different values of the sk variables (Nvisit = |{sk|1 ≤ k ≤ m}|). Our
solver only provides ATMOSTNVALUE whose focus is on the lower bound ofNvisit: the
minimum number of markets that must be visited to get all products i.e is the aforemen-
tioned Hitting Set problem. Typically, this constraint efficiently detects an unfeasible
problem where B is too restrictive compared to the domains of the sk (for example
in case of rare products). This constraint is NP-hard and is propagated with a greedy
algorithm [3].

Constraint (6) is a dedicated global constraint enforcing Ct to be equal to the opti-
mal tour visiting all the markets i such as yi = 1. SM denotes the set of sure markets
i.e SM = {vi | yi = 1}. The scope of (6) encompasses Nvisit because it can be used
to derive a stronger lower bound on Ct. Indeed, Nvisit might be greater than |SM | in
which case the problem of propagating the constraint is known as the k-TSP: find the

optimal tour visiting k (in our case Nvisit) cities out of the set of original cities (in our
case the set of markets associated to yi variables not yet fixed to 0).

Constraint (7) is redundant with constraints (1) and (2) together. It propagates a
lower bound of Cs by solving the corresponding P-Median problem by Lagrangian
relaxation.

The three core constraints (5), (6) and (7) are presented in details in the next three
sections but we outline now a few elements of this model.

Firstly, note that the exact route followed by the purchaser is not explicitly repre-
sented in the model but is present as a support of Ct in the TSP global constraint. This
has two main drawbacks for a user: the solution is not readily available in the vari-
ables and side constraints on the tour are difficult to add. Typically, side constraints to
enforce a partial order for visiting the markets or a maximum distance (a resource con-
straint), must be defined as new parameters of the TSP constraint. The model can also
be extended to explicitly represent the route similarly to [5].

Secondly, observe that once the markets are known, it is only a matter of buying
each product at the cheapest price among all the markets in the tour so that the sk
variables can be excluded from the search space. Dominance and search strategy are
described in section 7.

Finally, the NVALUE and PMEDIAN constraints are redundant. They help strength-
ening the connection with the TSP sub-problem by increasing Nvisit which in turn
helps the TSP constraint to derive a sharper Ct. Similarly, NVALUE and TSP contribute
to the decrease of Nvisit which helps the PMEDIAN to derive a sharper Cs. The use of
P-Median is similar to [23] whose bound is based the Simple Plant Location Problem.
Our approach is different since the two bounds obtained for Cs and Ct can be added
to give the global lower bound. The PMEDIAN provides a very strong filtering but at a
high cost. Since it is redundant it can be easily removed from the model when very fast
response times are needed for low B.

4 The TSP global constraint

We start the description of the TSP global constraint by recalling its scope:

TSP([y1, . . . , yn], Ct,Nvisit, {cij |vi, vj ∈M})

It is a dedicated global constraint enforcingCt to be equal to the optimal tour visiting all
the selected markets (a market i such that yi = 1). We recall that SM = {vi | yi = 1} is
the set of currently sure markets and denote PM = {vi |yiunknown} the set of potential
markets that can still be included in the tour. We recall that |SM | is assumed to be
bounded by a small constant B. Efficient approaches for solving small TSPs are based
on dynamic programming or constraint programming [5]. Solving the optimal TSP by
dynamic programming can be done in O(B2 × 2B) [13]. The recursive formulation of
the TSP is easily written with f∗(S, x), the value of the optimal path starting from the
hometown of the traveler, visiting all cities/markets in S and finishing in city x (x ∈ S):

f∗(S, x) = min
y∈S

(f∗(S − {x}, y) + d(y, x))

We denote by optSM the value of the optimal tour of the sure markets i.e optSM =
f∗(SM, v0). Dynamic programming can be used to compute efficiently the optimal tour
for instances with around 15 cities. It still fits in memory for 21-22 cities but requires
several seconds.

Lower bound of Ct. The lower bound of Ct can be updated to optSM since the costs
satisfy the triangular inequality (adding markets in the set SM can not introduce short-
cuts and thus only increase the traveling cost). This lower bound can be refined by
taking into account Nvisit. A minimum of k = Nvisit − |SM | number of additional
markets must be part of the final tour. We describe a simple lower bound of this quan-
tity. Let ci(a, b, c) be the increase of cost for inserting market a between b and c so that
ci(a, b, c) = dba + dac − dbc and ci(a, S) the best insertion cost of a in the set of mar-
kets S : ci(a, S) = minb,c∈S×S|b6=c,a6=b,a6=c ci(a, b, c). Let < σ1, . . . , σ|PM | > be the
sequence of markets in PM sorted by increasing ci(a, SM ∪PM) i.e the best insertion
cost in the set SM ∪ PM . We use the following rule for updating Ct :

Ct = optSM +

k∑
i=1

ci(σi, SM ∪ PM)

The bound is summing the value of the optimal tour on the sure markets and the k
best insertion costs. Alternatively the propagation of this constraint is exactly a k-TSP
problem with a number of mandatory cities. Good approximation algorithms exist for
this problem based on a primal-dual scheme initially described in [9]. A more recent
paper [1] presents such a scheme with the presence of mandatory cities. A classical
linear formulation with an exponential number of constraints (the sub-tour constraints)
of the k-TSP is given. Its dual has an exponential number of variables but a feasible
solution can be obtained greedily without considering all the variables explicitly and
provides a lower bound. We experimented with this approach, but the bounds obtained
are very weak and only improve the previous bound when k is very large (small |SM |
and large Nvisit). Note finally that the k-MST (minimum spanning tree where only k
nodes have to be spanned) is also NP-hard [7].

Upper bound ofNvisit. A simple upper bound ofNvisit can be derived from the previ-
ous reasonings. Let kmax be the smallest integer such that optSM+

∑kmax
i=1 ci(σi, SM∪

PM) > Ct, we have:
Nvisit = |SM |+ kmax− 1

Filtering of unreachable markets. All markets vi ∈ PM such that optSM+ci(vi, SM) >
Ct can be eliminated from the tour by setting yi to 0.

Scaling up with B. To ensure that the constraint can still be applied when |SM | is
not bounded, the classical Held and Karp bound [14] based on Lagrangian relaxation
can be used instead of dynamic programming. This bound is often extremely close to
the optimal value especially for small TSPs and can turn out to be faster than dynamic
programming.

Implementation. The propagator of the constraint is finally implemented as follows. At
any update of a domain (mainly Ct) a contradiction might be raised if it leads to an
inconsistency (typically by overloading Ct) immediately interrupting the propagation:

– Compute a minimum spanning tree of SM and update Ct accordingly.
– If |SM | < 15, use dynamic programming to solve optimally the corresponding TSP

and get optSM . Otherwise, set optSM to the value of the Held and Karp bound.
Update Ct accordingly.

– Compute ci(x, SM∪PM) for all x ∈ PM . UpdateCt to optSM+
∑k
i=1 ci(σi, SM∪

PM) as explained above along with Nvisit.
– If PM = ∅ we need to solve the TSP optimally to instantiate Ct. This has already

been done if |SM | < 15. Otherwise, an exact TSP solver is called. We use for this
purpose a CP model designed on top of the Held and Karp bound such as the one
of [5] and also inspired by [2].

5 The PMEDIAN global constraint

The idea of using Lagrangean relaxation for P-Median problem in order to perform
variables fixings (as a pre-processing) and reduce the size of a linear programming
model was proposed in [4]. We intend to go a step further and design a PMEDIAN
global constraint to achieve propagation during search. We recall its scope :

PMEDIAN([y1, . . . , yn], [s1, . . . , sm], Cs,Nvisit, {bki|pk ∈ K, vi ∈M})

The lower bound of Cs obtained from the propagation of the ELEMENT constraints
does not take advantage of the limitation enforced by Nvisit. Computing a sharp lower
bound on Cs by using the information from Nvisit is an NP-hard problem, it is exactly
a P-Median problem where p can be set to Nvisit (visiting more markets is always
cheaper so using the upper bound of Nvisit ensures a lower bound). The classical for-
mulation is the following:

Minimize Cs =
∑n
i=1

∑m
k=1 bkixki

(1)
∑n
i=1 xki = 1 (∀ pk ∈ K)

(2)
∑n
i=1 yi = Nvisit

(3) xki − yi ≤ 0 (∀ vi ∈M,pk ∈ K)
(4) xki ∈ {0, 1} (∀ vi ∈M,pk ∈ K)
(5) yi ∈ {0, 1} (∀ vi ∈M)

A traditional technique to compute a lower bound Cs is to use Lagrangian relax-
ation [16]. Lagrangian relaxation [25] is a technique that moves the “complicating con-
straints” into the objective function with a multiplier, λ ∈ R, to penalize their violation.
For a given value of λ, the resulting problem is the Lagrangian sub-problem and, in the
context of minimization, provides a lower bound on the objective of the original prob-
lem. The Lagrangian dual is to find the set of multipliers that provide the best possible
lower bound.

A lower bound Cs can be computed by relaxation of the assignment constraints (1)
[16]. Relaxations based on constraints (3) (see [6]) or both constraints (1) and (2) (see
[12]) are also possible. The latter seems to be a “standard” relaxation for P-Median.
We chose to relax (1) since keeping constraints (2) does not make the sub-problem
much harder (it only adds a log factor) and seems in practice to greatly improve the
convergence. Thus our Lagrangian sub-problem is (λ is unrestricted in sign since we
are relaxing an equality constraint) :

Minimize wλ(x, y) =
∑n
i=1

∑m
k=1 bkixki +

∑m
k=1(λk(1−

∑n
i=1 xki))

=
∑n
i=1

∑m
k=1(bki − λk)xki +

∑m
k=1 λk

subject to (2)− (5)
λk ∈ R (∀ pk ∈ K)

The objective function basically amounts to minimizing
∑n
i=1

∑m
k=1(bki − λk)xki

and the Lagrangian dual is: maxλ(minx,y wλ(x, y)). The Lagrangian sub-problem can
be solved directly by inspection:

– For each market vi, we evaluate the change of the objective function when setting
yi to 1 by computing

α(i) =

m∑
k=1

min(bki − λk, 0)

– The optimal solution is made of the Nvisit markets with smallest α(i). More for-
mally, let <δ1, . . . , δm> be the sequence of markets sorted by increasing value of
alpha so that α(δ1) ≤ α(δ2) ≤ . . . ≤ α(δm). We have

w∗λ(x, y) =

m∑
k=1

λk +

Nvisit∑
i=1

α(δi)

Solving the sub-problem therefore takes O(nm + nlog(n)) if we solve the second
steps by sorting. Note that relaxing constraint (2) would not change the quality of the
bound of the relaxation since both have the integrality property (so the global bound
is the one of the linear relaxation of formulation (2)). It would make the sub-problem
easier but we find that it significantly increases the number of iterations in practice and
does not pay off.

Solving the Lagrangian Dual. We followed the classical approach and used the subgra-
dient method. The algorithm iteratively solves wλ for different values of λ, initialised
to 0 at the first iteration. The values of λ are updated by following the direction of a
supergradient of w at the current value λ for a given step length µ.
A supergradient is given by the violation of the assignment constraints so that:

λt+1
k = λtk + µt(1−

n∑
i=1

xki)

The step lengths have to be chosen to guarantee convergence. In particular µt must
converge toward 0 and not too quickly. We used µt = µ0 × εt with ε < 1 (ε = 0.99)
and µ0 = 105. We refer the reader to [25] for more details.

Filtering. If a value is proven inconsistent in at least one Lagrangian sub-problem then
it is inconsistent in the original problem [22]. We therefore try to identify infeasible
values at each iteration of the algorithm. Let us consider a value i in the domain of sk
such that i 6∈ [δ1, . . . , δNvisit]. To establish the feasibility of i we replace δNvisit (the
least profitable market) by i and recompute the bound by enforcing the assignment xki
to 1. This is done immediately using the benefits computed previously and value i is
pruned if:

w∗λ(x, y)− α(δNvisit) + α(δi) + max(bki − λk, 0) > Cs

We can notice that bki − λk is already counted in α(δi) if it is negative thus the term
max(bki−λk, 0). This Lagrangian filtering is performed inO(nm). Note that infeasible
markets (yi that must be set to 0) are detected as a result of the previous filtering if all
products are removed from their domain. Such markets i would indeed satisfy:

w∗λ(x, y)− α(δNvisit) + α(δi) > Cs

A market i can be proved mandatory by considering the next most beneficial market
δNvisit+1. For all i ∈ [δ1, . . . , δNvisit], we can set yi to 1 if:

w∗λ(x, y) + α(δNvisit+1)− α(δi) > Cs

Finally, a simple lower bound of Nvisit can be derived from the previous reason-
ings. Let kmax be the largest integer such that

∑m
k=1 λk +

∑i=kmax
i=1 α(δi) > Cs, we

have:
Nvisit = kmax+ 1

Implementation. We report here a number of observations that we believe are important
when implementing the global constraint.

Optimal values of the dual variables λ are stored after resolution at a given node
and restored upon backtracking. When going down in the tree the optimal λ found at
the father node are used to initialize the new λ. When going up, the optimal λ previously
found at this node are re-used to start the algorithm.

It is also important to stop the algorithm as soon as the lower bound becomes greater
than Cs. This can save many calls to the sub-problem.

All previous reasonings have to be adjusted to take into account the current domains
of the y and s variables. This quickly reduces the size of the sub-problem as one moves
down in the search tree.

Two pre-conditions are used to avoid starting the costly computations of the re-
laxation. They provide necessary conditions for any improvement of Cs by the use of
Lagrangean relaxation compared to the bound given by the ELEMENT constraints. The
first one is very cheap to compute and very simple:

Nvisit < |{vi|yi 6= 0}|

The second one is based on the greedy resolution of the following Hitting Set problem.
A set is associated to each market vi and contains the products pk that can be bought in
vi at their current overall best possible price given by Csk. If a hitting set of cardinality
less than Nvisit exists then it is a support of the current lower bound of Cs. In this
case, we know the bound will not increase by solving the relaxation. The set provides
a solution where each product can be bought at its minimum cost. In any of these two
cases we do not call the relaxation since it would not lead to any improvement of Cs
(note that filtering on y and sk can be lost nonetheless, but this is marginal compared to
increasing Cs).

6 The ATMOSTNVALUE global constraint: Hitting Set

This constraint is NP-hard and is propagated with a greedy algorithm described in [3].
Bessiere and al. [3] also shows that the best bound for this constraint is the linear relax-
ation of the Linear Programming formulation of the problem. The formulation is based
on variables yi to know whether value i (market vi) is included in the set:

Minimize
∑n
i=1 yi

(1)
∑
i∈Mk

yi ≥ 1 (∀ pk ∈ K)
(2) yi ∈ {0, 1} (∀ vi ∈M)

Similarly to the P-Median problem, we can use Lagrangian relaxation to obtain the
bound of this linear program by relaxing the covering constraints (1):

Minimize wλ(x, y) =
∑n
i=1 yi +

∑m
k=1(λk(1−

∑
i∈Mk

yi))
=

∑n
i=1 yi(1−

∑
k|i∈Mk

λk) +
∑m
k=1 λk

yi ∈ {0, 1} (∀ vi ∈M)
λk ≥ 0 (∀ pk ∈ K)

The objective function basically amounts at minimizing
∑n
i=1 yi(1−

∑
k|i∈Mk

λk).
The Lagrangian sub-problem can again be solved directly by inspection similarly to
section 5. This approach could be used to strengthen the propagation of our ATMOST-
NVALUE constraint without the need of a simplex algorithm. We intend to do so in the
future and only use it in this current paper to get an initial lower bound of Nvisit.

7 Dominance and branching

We end the description of the CP model with an observation about dominance and the
search strategy.

Dominance. A simple form of dominance can be added to enforce buying the products
in the cheapest market of the tour. Let’s consider a product pk, when a market t is added
to the tour (when yt is set to one), all values j ∈ sk such that j 6= t and bkj ≥ bkt can
be removed from the domain of sk by dominance. The reasoning is implemented in a
dedicated constraint and stated for each product pk.

Search. Our branching strategy proceeds in two steps, it branches first on Nvisit and
then operates on the yi variables. Once all yi are instantiated, the dominance ensures
that all sk variables are also grounded and a solution is reached. Let h∗ refers to the
lower bound of Nvisit obtained by solving the minimum Hitting Set problem by La-
grangean relaxation described in section 6. Four branches start from the root node, con-
straining Nvisit to be within the following intervals (from the left branch to the right
branch) : [h∗, h∗+1], [h∗+2, 15], [16, 25], [26,m]. The rational behind this branching is
to ensure that good upper bounds involving small number of markets are obtained early
in the search (this can be seen as a form of iterative deepening) and before facing large
TSP problems. The hope is that we will be able to rule them out without having to solve
them explicitly once good upper bounds are known. The values 15 and 25 are chosen
simply because they correspond to the limit of efficient solving of the TSP by dynamic
programming and our CP complete solver respectively. The branching continues on the
yi variables using Impact Based Search [19].

8 Experimental results

Benchmark. Our approach is tested on the benchmark generated by [15]. We are us-
ing their “class 3” instances where the n markets are generated randomly in the plan
(x and y coordinates are taken with a uniform distribution in [0, 1000] × [0, 1000]),
each product is available in a number of markets randomly chosen in [1, n] and prod-
uct prices are generated in [1, 500] with a uniform discrete distribution. 5 instances are
generated for each n ∈ {50, 100, 150, 200, 250} and m ∈ {50, 100, 150, 200} lead-
ing to 100 instances in total (20 instances for each value of n) and each instance is
identified by n.m.z where z ∈ [1, 5]. We chose this benchmark because the number of
markets visited in the optimal solutions are relatively small (up to 28 markets among
the known optima) and because it was the hardest benchmark (with unlimited supply)
for the branch-and-cut2.

Set-up. The experiments ran as a single thread on a Dual Quad Core Xeon CPU,
2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, running
Linux 2.6.25 x64. A time limit of 2 hours was used for each run.

Algorithms. We evaluate two algorithms: CP refers to the algorithm without the redun-
dant PMEDIAN constraint whereas CP+PM is the version including it. In both case, we
start by computing the lower bound ofNvisit as explained in section 6. We also apply a
heuristic at the root node before starting the search to get an upper bound (we recall that

2 The benchmark and the detailed results of [15] can be found online:
http://webpages.ull.es/users/jriera/TPP.htm

[15] uses a similar heuristic at each node). It builds a feasible solution and improves it
by inserting, removing or swapping markets in the pool of visited markets until a local
optimum is reached. Its performances are indicated in Table 1 with the average gap to
the best known value (in percentage), the number of optimal values identified (column
#Opt) and its CPU times.

Table 1. Performances of the heuristic applied at the root node for the 100 instances.

Time (s)
Average gap to opt (%) #Opt Avg Median Min Max

10,8 14 2,15 1,3 0 13,03

Results. The aim of these experiments is threefold:

Firstly, we show the interest of the PMEDIAN global constraint in Table 2. It reports
CPU times (average and median computed only on instances that did not reach the time
limit) for each value of n (20 instances in each sub-class), the number of problems
where an algorithm fails to prove optimality (reported in column #F) and the average
number of backtracks (column Avg Back). CP+PM is clearly more efficient. It fails to
prove optimality on 10 instances whereas CP fails on 18 instances.

Table 2. Results of the three approaches on each class of problem (20 instances per class)

n Branch-and-Cut CP+PM CP
Time (s) Time (s) Time (s)

Avg Median #F Avg (s) Median (s) #F Avg Back Avg (s) Median (s) #F Avg Back
50 23,9 17,5 0 7,1 3,9 0 574,4 11,9 2,7 0 1162,4
100 299,8 295,0 0 187,3 16,3 2 34327,6 214,2 7,0 3 57579,9
150 1734,5 1515,5 0 997,7 231,9 0 41563,6 778,7 110,3 4 108435,5
200 4983,2 3275,0 2 518,5 89,1 6 83670,8 1329,3 43,3 7 201362,0
250 9720,2 10211,0 9 728,2 266,9 2 53741,6 1057,5 357,0 4 145697,2

Secondly, we compare the results with the algorithm of [15]. The branch and cut
was run with a timelimit of 5 hours (18000 seconds) on a very old machine (Pentium
500 Mhz with CPLEX 6.0) and the code is not available anymore. Therefore, we do
not perform a direct comparison with the CPU times reported for [15] in Tables 2 and
4. They are indicative and only serve to draw general trends. Table 4 gives detailed
results for each instance (N and Obj are respectively the number of visits and the value
of the objective function in the best solution found). In any case, the branch and cut
is more robust since it can handle efficiently large TSP problems. CP+PM fails on 10
instances whose optimal number of visits is between 19 and 28 (instance 200.100.5).
Surprisingly, it can find solutions including up to 25 markets (150.200.3) and prove their
optimality. It also shows a very good complementarity to the branch-and-cut (see for

example 250.50.5 where it needs less than 1s when the branch and cut nearly reaches
the five hours). Overall it improves 10 solutions (in bold in the table) and manage to
close 8 instances among the 11 that were still open.

Thirdly, Table 3 shows the results obtained when bounding B to 5 and 10. 80 in-
stances are proved infeasible for B = 5 and 9 for B = 10. All instances are solved to
optimality and CP+PM clearly outperforms CP. It shows that the approach can be very
effective for low B. The CPU times reported include the proof of optimality which is
irrelevant in the industrial case. We plan to analyze the quality of the solution found
within 1s of time limit and the time to obtain the best solution without time limit to get
more insights on the possibility of using this algorithm in the industrial case.

Table 3. Cpu times of the two algorithms (CP and CP+PM) on the 100 instances of the benchmark
and for B ∈ {5, 10}

CP+PM (B = 5) CP (B = 5) CP+PM (B = 10) CP (B = 10)
NbInfeasible 80 80 9 9
Avg Time (s) 0,68 1,22 17,31 122,37
Median Time (s) 0,50 0,48 3,96 1,99
StDev on Time (s) 0,83 4,48 29,23 674,00
Min Time (s) 0,06 0,06 0,14 0,07
Max Time (s) 5,55 43,88 156,83 5496,67

9 Conclusions and future works

We proposed a new exact algorithm based on Constraint Programming for the Trav-
eling Purchaser Problem. The TSP and PMEDIAN global constraints are introduced to
efficiently handle two core structures of the TPP and rely on Lagrangean relaxation.
The proposed algorithm is designed for problems involving a bounded number of vis-
ited markets (around 5 in the industrial application) but is robust enough to be applied
on academic benchmark in the unbounded case. It proves to be very complementary to
the state of the art exact algorithm and manages to close 8 instances out the 11 open on
this particular benchmark.

We intend to investigate further how propagation could be strengthened. Firstly, by
using Lagrangean relaxation to propagate and filter the ATMOSTNVALUE constraint.
Secondly by adding the ATLEASTNVALUE constraint which would propagate an upper
bound of Nvisit based on a maximum matching. We plan to investigate further how to
efficiently implement global constraints with Lagrangean relaxation. In particular the
work of [2] for the TSP and [4] for the P-Median are very good starting points. Finally
the use of a state of the art TSP solver might allow the approach to scale further and
overcome its current limitation.

Table 4. Details of the results on the class 3 instances of [15]

Instance Branch-and-cut CP+PM Instance Branch-and-cut CP+PM
name N Obj Time(s) N Obj Time(s) back name N Obj Time(s) N Obj Time(s) Back
50.50.1 8 1856 3 8 1856 0.54 16 50.50.2 8 1070 0 8 1070 0.48 33
50.50.3 9 1553 9 9 1553 0.41 192 50.50.4 6 1394 10 5 1394 0.08 8
50.50.5 2 1536 10 2 1536 0.09 5 50.100.1 12 2397 15 12 2397 4.31 289
50.100.2 11 2138 23 11 2138 4.39 562 50.100.3 10 1852 10 10 1852 0.43 8
50.100.4 15 3093 39 15 3093 4.73 917 50.100.5 12 2603 21 12 2603 1.77 159
50.150.1 15 2784 32 15 2784 16.7 1465 50.150.2 11 2137 12 11 2137 0.64 74
50.150.3 14 2308 49 14 2308 7.3 570 50.150.4 14 2524 15 14 2524 3.73 327
50.150.5 16 3150 53 16 3150 26.56 2411 50.200.1 19 3354 18 20 3354 28.28 1260
50.200.2 15 2397 17 15 2397 8.17 604 50.200.3 11 2319 62 11 2319 1.87 103
50.200.4 16 2858 27 16 2858 4.01 252 50.200.5 17 3575 53 17 3575 28.27 2232
100.50.1 9 1468 139 9 1468 1.17 316 100.50.2 7 971 66 7 971 1.67 306
100.50.3 10 1623 159 10 1623 0.92 206 100.50.4 10 1718 80 10 1718 1.68 349
100.50.5 11 2494 168 10 2494 1.31 695 100.100.1 16 2121 130 15 2121 8.74 1258
100.100.2 13 1906 405 13 1906 17.0 2926 100.100.3 13 1822 199 13 1822 15.28 1037
100.100.4 9 1649 55 9 1649 0.73 170 100.100.5 15 2925 758 14 2925 75.39 16289
100.150.1 14 2195 534 14 2195 132.73 11660 100.150.2 16 2806 423 16 2806 141.41 7148
100.150.3 18 2257 440 18 2257 98.84 7974 100.150.4 19 2625 234 18 2625 118.09 9820
100.150.5 18 3150 484 18 3150 390.29 21056 100.200.1 10 1883 166 10 1883 15.64 680
100.200.2 24 3077 369 24 3087 > 7200s 182021 100.200.3 23 2791 356 23 2791 2284.13 76395
100.200.4 19 3409 455 19 3409 > 7200s 342591 100.200.5 18 2732 376 17 2732 66.64 3655
150.50.1 12 1658 498 12 1658 7.58 335 150.50.2 7 1383 512 7 1383 0.27 25
150.50.3 7 821 516 7 821 1.22 308 150.50.4 10 1676 1612 10 1676 13.75 5045
150.50.5 12 1823 1647 12 1823 8.34 1408 150.100.1 17 1717 1243 17 1717 512.73 38148
150.100.2 11 1798 1419 11 1798 27.45 3259 150.100.3 16 1959 2304 15 1959 258.08 32622
150.100.4 14 1609 3408 14 1609 34.42 4179 150.100.5 14 1585 1216 14 1585 275.86 33068
150.150.1 19 1669 367 19 1669 117.76 4264 150.150.2 24 2526 1801 22 2526 2218.69 99598
150.150.3 19 2456 3092 19 2456 5037.65 245597 150.150.4 16 1761 1268 15 1761 205.76 11488
150.150.5 18 2355 3155 16 2355 1152.24 87066 150.200.1 19 1760 365 19 1760 331.94 8090
150.200.2 24 2312 1732 22 2312 1037.48 28630 150.200.3 25 2594 1317 25 2594 5677.0 122773
150.200.4 15 1889 3431 15 1889 154.14 17961 150.200.5 22 2472 3787 22 2472 2881.27 87408
200.50.1 13 1102 1644 12 1102 22.3 5631 200.50.2 6 607 337 6 607 0.45 23
200.50.3 6 530 550 6 530 0.5 71 200.50.4 9 908 849 9 908 0.63 158
200.50.5 11 1067 2248 11 1067 2.78 495 200.100.1 12 949 490 12 949 4.03 237
200.100.2 18 2271 8188 16 2271 381.32 39562 200.100.3 13 1611 2515 13 1611 37.36 4420
200.100.4 17 1799 4697 17 1799 176.97 18758 200.100.5 28 3161 8599 23 3178 > 7200s 310494
200.150.1 16 1730 1574 15 1730 140.87 16012 200.150.2 27 2745 15951 15 2790 > 7200s 212333
200.150.3 20 1861 2613 20 1861 682.82 17643 200.150.4 23 2460 18024 15 2441 > 7200s 238821
200.150.5 18 2079 11505 18 2079 446.03 48271 200.200.1 18 1736 3937 18 1736 578.88 21584
200.200.2 22 2352 10647 22 2359 > 7200s 156492 200.200.3 23 2505 7873 22 2505 > 7200s 179516
200.200.4 20 3314 18053 21 2344 4783.84 173311 200.200.5 23 2427 5481 23 2462 > 7200s 229584
250.50.1 6 533 556 6 533 0.98 145 250.50.2 10 1103 5451 10 1103 15.67 1316
250.50.3 12 1295 14030 12 1295 12.75 1349 250.50.4 13 1553 15487 12 1553 16.43 3377
250.50.5 5 1142 17399 5 1142 0.66 45 250.100.1 11 2447 18057 15 1301 257.56 30983
250.100.2 12 932 2771 12 932 17.22 382 250.100.3 17 1361 16376 17 1361 111.45 10874
250.100.4 16 1759 18029 16 1673 284.68 43921 250.100.5 14 1708 18059 15 1641 256.96 17568
250.150.1 15 1168 1453 15 1168 367.23 15596 250.150.2 22 2205 7999 22 2205 2036.28 169070
250.150.3 15 1582 10211 15 1582 276.17 11033 250.150.4 18 2636 18078 17 1836 1203.97 129473
250.150.5 15 2121 18074 18 1531 417.35 38506 250.200.1 20 1677 15189 20 1677 1455.16 61277
250.200.2 25 2787 18019 25 2856 > 7200s 149248 250.200.3 25 3555 18065 20 1924 5665.07 140904
250.200.4 17 2432 18045 15 2139 > 7200s 230347 250.200.5 18 2771 18071 17 1797 712.4 19417

References

1. Sanjeev Arora and George Karakostas. A 2+epsilon approximation algorithm for the k-mst
problem. In David B. Shmoys, editor, SODA, pages 754–759. ACM/SIAM, 2000.

2. Pascal Benchimol, Jean-Charles Régin, Louis-Martin Rousseau, Michel Rueher, and
Willem-Jan van Hoeve. Improving the held and karp approach with constraint programming.
In Proceedings of the 7th international conference on Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’10, pages
40–44, Berlin, Heidelberg, 2010. Springer-Verlag.

3. Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.
Filtering algorithms for the nvalue constraint. Constraints, 11:271–293, December 2006.

4. Olivier Briant and Denis Naddef. The optimal diversity management problem. Operations
Research, 52(4):515–526, 2004.

5. Yves Caseau and François Laburthe. Solving small tsps with constraints. In ICLP, pages
316–330, 1997.

6. Nicos Christofides and John E. Beasley. A tree search algorithm for the p-median problem.
European Journal of Operational Research, 10(2):196 – 204, 1982.

7. Matteo Fischetti, Horst W. Hamacher, Kurt Jørnsten, and Francesco Maffioli. Weighted k-
cardinality trees: Complexity and polyhedral structure. Networks, 24(1):11–21, 1994.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

9. Michel Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24:296–317, 1992.

10. Bruce Golden, Larry Levy, and Roy Dahl. Two generalizations of the traveling salesman
problem. Omega, 9(4):439 – 441, 1981.

11. Luis Gouveia, Ana Paias, and Stefan Voı́. Models for a traveling purchaser problem with
additional side-constraints. ”Computers and Operations Research, 38:550–558, 2011.

12. Pierre Hanjoul and Dominique Peeters. A comparison of two dual-based procedures for
solving the p-median problem. European Journal of Operational Research, 20(3):387 –
396, 1985.

13. Michael Held and Richard M. Karp. A dynamic programming approach to sequencing prob-
lems. In Proceedings of the 1961 16th ACM national meeting, ACM ’61, pages 71.201–
71.204, New York, NY, USA, 1961. ACM.

14. Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees: Part ii. Mathematical Programming, 1:6–25, 1971.

15. Gilbert Laporte, Jorge Riera-Ledesma, and Juan-José Salazar-González. A branch-and-cut
algorithm for the undirected traveling purchaser problem. Operations Research, 51:940–951,
2003.

16. Subhash C. Narula, Ugonnaya I. Ogbu, and Haakon M. Samuelsson. An algorithm for the
p-median problem. Operations Research, 25(4):pp. 709–713, 1977.

17. Wen L. Pearn and R.C. Chien. Improved solutions for the traveling purchaser problem.
Computers and Operations Research, 25(11):879 – 885, 1998.

18. T. Ramesh. Travelling purchaser problem. Opsearch, 2(18):78 – 91, 1981.
19. Philippe Refalo. Impact-based search strategies for constraint programming. In Wallace

[24], pages 557–571.
20. Jorge Riera-Ledesma and Juan-Jose Salazar-Gonzalez. Solving the asymmetric traveling

purchaser problem. Annals of Operations Research, 144(1):83–97, 2006.
21. Jorge Riera-Ledesma and Juan José Salazar-González. A heuristic approach for the travelling

purchaser problem. European Journal of Operational Research, 162(1):142 – 152, 2005.
22. Meinolf Sellmann. Theoretical foundations of cp-based lagrangian relaxation. In Wallace

[24], pages 634–647.
23. Kashi N. Singh and Dirk L. van Oudheusden. A branch and bound algorithm for the traveling

purchaser problem. European Journal of Operational Research, 97(3):571 – 579, 1997.
24. Mark Wallace, editor. Principles and Practice of Constraint Programming - CP 2004, 10th

International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Pro-
ceedings, volume 3258 of Lecture Notes in Computer Science. Springer, 2004.

25. Laurence A. Wolsey. Integer programming. Wiley-Interscience series in discrete mathemat-
ics and optimization. Wiley, 1998.

