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Abstract

In this paper, we present an original approach (CPRTA for ”Constraint Program-
ming for solving Real-Time Allocation”) based on constraint programming to solve
an allocation problem of hard real-time tasks. This problem consists in assigning
periodic tasks to distributed processors in the context of fixed priority preemptive
scheduling. CPRTA is built on dynamic constraint programming together with a
learning method to find a feasible processor allocation under constraints. Two new
approaches are proposed for solving these kinds of problems which produce in their
current version as acceptable performances as classical algorithms do. Some exper-
imental results are given to show it. Moreover, CPRTA exhibits very interesting
properties. It is complete — i.e., if a problem has no solution — the algorithm is
able to prove it ; it is non-parametric — i.e., it does not require specific initializa-
tions — thus allowing a large diversity of models to be easily considered. Finally,
thanks to its capacity to explain failures, it offers attractive perspectives for guiding
the architectural design process.
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1 Introduction

Real-time systems have applications in many industrial areas: telecommuni-
cation systems, automotive, aircraft, robotics, etc. Today’s applications are
becoming more and more complex, as much in their software part (an increas-
ing number of concurrent tasks with various interaction schemes), as in their
execution platform (many distributed processing units interconnected through
specialized network(s)), and in their numerous functional and non-functional
requirements too (timing, resource, power, etc. constraints). One of the main
issues in the architectural design of such complex distributed applications is
to define an allocation of tasks onto processors so as to meet all the specified
requirements. In general, it is a difficult constraint satisfaction problem. Even
if it has to be solved off-line most of the time, it needs efficient and adaptable
search techniques which are able to be integrated into a more global design
process. Furthermore, it is desirable that those techniques return relevant in-
formation intended to help the designer who is faced with architectural choices.
The ”binary” result, in particular, (has a feasible allocation been found?: yes
and here it is, or no, and that’s all) which is usually returned by the search
algorithm is not satisfactory in failure situations. The designer would expect
some explanations justifying the failure and enabling him to revisit his de-
sign. Therefore, more sophisticated search techniques that would be able to
collect some knowledge about the problem they solve are required. Here are
the general objectives of the work we are conducting.

More precisely, the problem we are concerned with consists in assigning a
set of periodic, preemptive tasks to distributed processors in the context of
fixed priority scheduling, to respect schedulability but also to account for
requirements related to memory capacity, co-residence, redundancy, and so
on. We assume that the characteristics of tasks (execution time, priority, etc.)
and the ones of the physical architecture (processors and network) are all
known a priori 1 .

Assigning a set of hard preemptive real-time tasks in a distributed system
under allocation and resource constraints is known to be an NP-Hard prob-
lem [31]. Up to now, it has been massively tackled with heuristic methods
[48,43], simulated annealing [56,10] and genetic algorithms [20,47]. Recently,
Szymanek et al. [52] and especially Ekelin [17] have used constraint program-
ming to produce an assignment and a pre-runtime scheduling of distributed
systems under optimization criteria. Even if their context is different from
ours, their results have shown the ability of such an innovative approach to
solve an allocation problem for embedded systems and have encouraged us to
go further.

1 Only static real-time systems are here considered.
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In this paper, two approaches are considered. The first one introduces a
global constraint 2 and an ad hoc algorithm, i.e., a filtering algorithm, to
tackle schedulability. This algorithm is a custom-written filtering algorithm
designed in order to take into account and to exploit the structure of the
schedulability constraints. The second investigated approach uses the com-
plementary strengths of constraint programming and optimization methods
from operational research like numerous hybridation schemes [55,26,24,9]. It
is a decomposition-based method (related to logic Benders-based decompo-
sition [25]) which separates the allocation problem from the scheduling one:
the allocation problem is solved by means of dynamic constraint programming
tools, whereas the scheduling problem is treated with specific real-time schedu-
lability analysis. The main idea is to ”learn” from the schedulability analysis
to re-model the allocation problem so as to reduce the search space. In that
sense, we can compare this approach to a form of learning from mistakes.
Lastly we underline that a fundamental property of these methods is their
completeness: when a problem has no solution, it is able to prove it (contrary
to heuristic methods that are unable to decide).

The remainder of this paper is organized as follows. In section 2, we describe
the problem. Section 4 introduces shortly the constraint programming before
translate the problem as a constraint satisfaction one in Section 5. Aftermen-
tioned, the two approaches are then described: Section 6 is concerned with the
global constraint and Section 7 is dedicated to the logical Benders decompo-
sition. Some experimental results are presented in Section 8. Section 9 shows
how it is possible to set up a failure analysis able to aid the designer to review
his plans. It is a first attempt that proves its feasibility but it will need to go
deeper. The paper ends with concluding remarks in Section 10.

2 The problem description

2.1 The real-time system architecture

The hard real-time system we consider can be modeled by a software archi-
tecture: the set of tasks, and a hardware architecture: the execution platform
for the tasks, as represented in Fig. 1.

By hardware architecture we mean a set P = {p1, . . . , pk, . . . , pm} of m pro-
cessors with fixed memory capacity mk and identical processing speed. Each
processor schedules tasks assigned to it with a fixed priority strategy. It is

2 A constraint is said global when it is a conjunction of a set of constraints.
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a simple rule: a static priority is given to each task and at run-time, the
ready task with the highest priority is put in the running state, preempting
eventually a lower priority task. Those processors are fully connected through
a communication medium with a bandwidth δ. In this paper, we look at a
communication medium called a CAN bus which is currently used in a wide
spectrum of real-time embedded systems. However any other communication
network could be considered as far as its timing behaviour (including its pro-
tocol rules) is predictable. Thus the first experiments we have conducted ad-
dressed a token ring network.

CAN (Controller Area Network) [11] is both a protocol and physical network.
CAN works as a broadcast bus meaning that all connected nodes will be able
to read all messages sent on the bus. Each message has a unique identifier
which is also used as the message priority. On each node waiting messages are
queued. The bus makes sure that when a new message gets selected to trans-
fer, the message with the highest priority, waiting on any connected node, will
get transmitted first. When at least one bit of a message has started to be
transfered it can’t get preempted even though higher priority messages arrive.
As a result, the CAN’s behaviour will be seen subsequently as the one of a
non preemptive fixed priority message scheduling.

p1 p2

p3 p4 m4

m1 m2

m3

τ1

τ2 τ3

τ4

τ5

τ6

τi : (Ti, Ci, prioi, µi)
cij : (dij , prioij)

c12

c24

c13

c34

c56
δbandwidth

Fig. 1. An example of hardware (left) and software (right) architecture.

The software architecture is modeled as a valued, oriented and acyclic graph
(T , C). The set of nodes T = {τ1, ..., τn} represents the tasks. A task in turn is a
set of instructions which must be executed sequentially in the same processor.
The set of edges C ⊆ T × T refers to the data sent between tasks.

A task τi is defined through timing characteristics and resource needs: its pe-
riod Ti (as a task is periodically activated ; the date of its first activation is
free), its worst-case execution time without preemption Ci and its memory
need µi. A priority prioi is given to each task. Task τj has priority over τi

if and only if prioi < prioj. Edges cij = (τi, τj) ∈ C are weighted with the
amount of exchanged data dij together with a priority value prioij (useful in
the CAN context) 3 . In this model, we assume that communicating tasks have

3 Task priorities are assumed to be all different. The same assumption is made on
message priorities
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(b) tasks are allocated on 
different processors

(a) tasks are allocated on the 
same processor

τi τj

Mij

cij

τi τi τjτj

Fig. 2. Depending of the task allocation, a message exists or not.

the same activation period. But we don’t consider any precedence constraint
between them: they are periodically activated in an independent way, and they
read input data and write output data at the beginning and the end of their
execution.

The underlying communication model is inspired from OSEK-COM specifica-
tions [39]. OSEK-COM is an uniform communication environment for automo-
tive control unit application software. It defines common software communica-
tion interface and behaviour for internal communications (within an electronic
control unit) and external ones (between networked vehicle nodes) which is
independent of the communication protocol used. It is the following. Tasks
that are located on the same processor communicate through local memory
sharing. Such a local communication cost is assumed to be zero. On the other
hand, when two communicating tasks are assigned to two distinct processors,
the data exchange needs the transmission of a message on the network. Here
we are interested with the periodic transmission mode of OSEK-COM. In this
mode data production and message transmission aren’t synchronised: a pro-
ducer task writes its output data into a local unqueued buffer from where a
periodic protocol service reads it and sends it into a message. The building of
protocol data units considered here is very simple: each data dij that has to
be sent from a producer task τi to a consumer task τj in a distant way gives
rise to its proper message Mij. Moreover in this paper, for a sake of simplic-
ity, the asynchronous receiving mode is preferred. It means that the release
of a consumer task τj is strictly periodic and unrelated with the Mij message
arrival: when a node receives a message from the bus, its protocol records its
data into a local unqueued buffer from where it can be read by the task τj. In
[23] an extension of this work to a synchronous receiving mode is proposed in
which a message reception notification activates the consumer task.

As a result, depending on the task allocation, an edge cij of the software
architecture may give rise to two different equivalent schemes as illustrated in
Fig. 2. In Fig. 2(b), Mij inherits its period Ti from τi and its priority prioij

from cij.

Therefore from a scheduling point of view, messages on the bus are very similar
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to tasks on a processor. Like for tasks, each message Mij is ”activated” every
Ti units of time ; its (bus) priority is prioij ; and it has a transmission time
Cij (the time it takes to transfer the message on the bus. See Section 2.2.3 for
its computation).

2.2 The allocation problem

An allocation is a mapping A : T → P such that:

τi 7→ A(τi) = pk (1)

The allocation problem consists in finding the mapping A which respects the
whole set of constraints described in the immediate below.

2.2.1 Resource constraints

Three kinds of constraints are considered 4 :

• Memory capacity: The memory use of a processor pk cannot not exceed
its capacity (mk):

∀k = 1..m,
∑

A(τi)=pk

µi ≤ mk (2)

• Utilization factor: The utilization factor of a processor cannot exceed its
processing capacity. The following inequality is a necessary schedulability
condition:

∀k = 1..m,
∑

A(τi)=pk

Ci

Ti

≤ 1 (3)

• Network use: To avoid overload, the messages carried along the network
per unit of time cannot exceed the network capacity:

∑
cij = (τi, τj)

A(τi) 6= A(τj)

sij

Ti

≤ δ (4)

where sij stands for the message size ; it is a function of dij depending of the
message structure (see below the Section 2.2.3 about the message worst-case
response time for its computation).

4 Precise units aren’t specified but obviously they have to be consistent with the
given expressions
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2.2.2 Allocation constraints

Allocation constraints are due to the system architecture. We distinguish three
kinds of constraints.

• Residence: a task may need a specific hardware or software resource which
is only available on specific processors (e.g. a task monitoring a sensor has
to run on a processor connected to the input peripheral). This constraint is
expressed as a couple (τi, α) where τi ∈ T is a task and α ⊆ P is the set of
available host processors for the task. A given allocation A must respect:

A(τi) ∈ α (5)

• Co-residence: This constraint enforces several tasks to be assigned to the
same processor (they share a common resource). Such a constraint is defined
by a set of tasks β ⊆ T and any allocation A has to fulfil:

∀(τi, τj) ∈ β2, A(τi) = A(τj) (6)

• Exclusion: Some tasks may be replicated for some fault-tolerance objec-
tives and therefore cannot be assigned to the same processor. It corresponds
to a set γ ⊆ T of tasks which cannot be placed together. An allocation A
must satisfy:

∀(τi, τj) ∈ γ2, A(τi) 6= A(τj) (7)

2.2.3 Timing constraints

They are expressed by the means of relative deadlines for the tasks and mes-
sages. A timing constraint enforces the duration between the activation date
of any instance of the task τi and its completion time to be bounded by its rel-
ative deadline Di. Depending on the task allocation, such timing constraints
may concern the instanciated messages too. For tasks as well as messages,
their relative deadline is hereafter assumed equal to their activation period.

A widely chosen approach for the schedulability analysis of a task and message
set S is based on the following necessary and sufficient condition [32]: S is
schedulable if and only if, for each task and message of S, its worst-case
response time is less or equal to its relative deadline. Thus it leads us to
compute worst-case response times for the tasks on the processors and for
the messages on the bus. According to the features of the considered task
and message models, as well as the processor and bus scheduling algorithms,
a classical computation can be used and its main results are given in the
immediate following.

Task worst-case response time. For independent and periodic tasks with
a preemptive fixed priority scheduling algorithm, it has been proved that the
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worst-case execution scenario for a task τi happens when it is released simul-
taneously with all the tasks which have a priority higher than prioi. When Di

is (less or) equal to Ti, the worst-case response time for τi is given by [32]:

Ri = Ci +
∑

τj∈hpi(A)

⌈
Ri

Tj

⌉
Cj (8)

where dxe is the smallest integer ≥ x and hpi(A) is the set of tasks with
a priority higher than prioi and located on the processor A(τi) for a given
allocation A. The summation gives the number of times tasks with higher
priority will execute before τi has completed. The worst-case response time Ri

can be easily solved by looking for the fix-point of Eq. (8) in an iterative way.

Message worst-case response time. As mentioned earlier, message schedul-
ing on the CAN bus can be viewed as a non-preemptive fixed priority schedul-
ing strategy. Thus when doing a worst-case response time equation for a mes-
sage, Eq. (8) has to be reused with some modifications. First it has to be
changed so that a message can only be preempted during its first transmitted
bit instead of its whole execution time. Second a blocking time, i.e. the largest
time the message might be blocked by a lower priority message, must be added.
The resulting worst-case response time equation for the CAN message Mij is
[57]:

Rij = Cij + Lij (9)

with

Lij =
∑

M ′∈hpij(A)

⌈
Lij + τbit

T ′

⌉
C ′ + max

M ′∈lpij(A)
{C ′ − τbit} (10)

where hpij(A) (respectively lpij(A)) is the set of messages derived from the
allocation A with a priority higher (respectively lower) than prioij ; τbit is the
transmission time for one bit (τbit is in relation with the bus bandwidth δ,
τbit (second) = 1

δ (bit per second)
) ; C ′ is the worst-case transmission time for the

message M ′.

Here as well the computation of Eq. (10) can be solved iteratively.

To calculate the worst-case transmission time Cij of a message, Eq. (11) is
used [57]:

Cij = sijτbit (11)

with

sij =

⌊
34 + 8dij

5

⌋
+ 47 + 8dij (12)

It shows that the message size is not given directly from the data size dij (in
bytes) and the frame overhead of 47 bits (identifier, CRC, etc.). It has to take
into account the possible overhead caused by the bit stuffing process of CAN
controllers.
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From now, an allocation A is said to be valid if it satisfies allocation and
resource constraints. It is schedulable if it satisfies timing constraints. Finally,
a solution to our problem is a valid and schedulable allocation of the tasks.

3 Related work

A mapping of a real-time system includes assigning (allocation) each task to
a processor and ordering (scheduling) the execution of the tasks on each one
such that all functional and temporal constraints of the system are respected.
In the literature, mapping problems are studied extensively and a classification
is difficult because of various natures of problems.

[7,17] give a classification for mapping problem. A problem is specified accord-
ing to the hardware model (multiprocessor, distributed, homogeneous, etc.),
the software model (periodic tasks, deadline, precedence relations, etc.), the
constraints (memory, allocation constraints, etc.) and the objective functions
(minimise execution and communication costs, load balancing, etc.). However,
to have a complete description of a problem, it is necessary to consider the
implementation too. To implemented an allocation various strategies could
be used. Yeckle and Rivera propose in [61] a taxonomy of implementation of
mapping strategies. They begin to distinguish static and dynamic mapping.

For a dynamic mapping, the allocating or/and the scheduling are done in-line.
In this case, a mechanism has to make decisions to choose during the exe-
cution of the application the allocating and the scheduling. Different classes
of mechanisms exist: distributed and non-distributed. Distributed allocation
means that the mechanism is physically distributed through processors. Con-
trary, a non-distributed allocation has a centralised mechanism that decide
mapping and scheduling for all the system.

For a static mapping, the allocating and the scheduling are assumed to be
known before the start of the application and never change. All task of a job is
executed always on the same processor. For static mapping, various scheduling
policies exist: cycle scheduling, fixed priority, dynamic priority, round-robin,
etc. All parameters for scheduling must be fixed before the execution of the
application.

Many research efforts in the literature concentrate on mapping real-time appli-
cations and numerous search techniques have been studied. Since the problem
of allocating tasks is generally NP-hard, some form of enumerative methods
or approximation using heuristics needs to be developed for this problem: The
graph theoretic techniques [51,34,19]; The branch-and-bound [37,41,40,46,59];
The genetic algorithm [36,5,47,2,35,21,38,22]; The clustering [4,1,33]; The steep-
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est descent (or Hill climbing) [36,58]; The tabu search [42,58]; The simulated
annealing [56,12,36,15,16,18,58]; The neuronal network [50,2]; Some dedicated
heuristics [48,18,29,60,3].

The major ways in which our work differs from the works cited above are:

(1) Our research focuses on fixed priority scheduler scheduler and not to
produce an off-line schedulin [].

(2) Our objective is to validate an application (find a solution) and not op-
timise a function as the workload balancing [54,2], the number of used
processors [38] or the response time of tasks [41,2]. Our approach can
integrate easily an optimisation function, but we don’t consider this case
from reason of simplicity.

(3) Our method does not depend of some classes of constraints but it is a
general scheme from solving mapping problem.

Research efforts in [56,12,37,48,4,46,22] do consider task assignments with
fixed priority scheduler. Allocation and scheduling are usually considered as
two independent stages. In many works, the scheduling policy is a priori
known, as in [56,12,37,48,4,22]. These approachs mainly focus on the allo-
cation process. In [46] Richard et al. propose a method that simultaneously
allocates tasks to processors and assigns priorities to tasks and messages. In
our approach, we treat allocation as an issue separate from that of scheduling.
Priority assignment is globally performed before allocation. Rate monotonic
or deadline monotonic algorithm can be used, however, our approach does not
consider a specific scheduling policy.

We based our research on the model in [56] with few differences as the commu-
nication protocol and the schedulability test. In [56,12] the mapping problem
is solved by simulated annealing. However, simulated annealing is very sensi-
tive to its initial parameters, i.e., temperature, cooling and the termination
criterion. It is very difficult to find parameters which fit well for all appli-
cations. Moreover, the objective function depends of different constraint and
must be redefined if new constraints are added.

In the research effort [37,46], a branch-and-bound search algorithm was used
for the mapping problem. Contrary to [46], in [37] a large variety of constraints
are assumed, e.g. group of tasks, memory capacity. Branch-and-bound is an
optimal search algorithm but the main its drawback is that there is no uni-
versal bounding algorithm. Therefore, the branching and bounding algorithms
that are specially designed for each mapping problem. Moreover, the efficiency
of the method depends on the effectiveness of the branching and bounding al-
gorithms used: bad choices could lead to repeated branching, without any
pruning, until the subregions become very small. In that case the method
would be reduced to an exhaustive enumeration of the domain, which is of-
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ten impractically large. So it is very difficult to consider efficiently new con-
straints in these algorithms contrary to constraint programming where search
algorithms are individually done for each constraint before to be combined.

In [22] the mapping problem is tackled with genetic algorithm. As simulated
annealing, genetic algorithms suffers from the sensitivity to variations of pa-
rameters, i.e., the population size, the number of crossing-over points, the
selection criterion, the termination criterion and the mutation probability.
Moreover, as branch-and-bound the efficiency of the method depends strongly
on the crossing-over algorithm and it is difficult to adapt to new models.

In [48] a dedicated heuristic is proposed to solve a mapping problem for dis-
tributed system with allocation and resource constraints and the empty-slots
method, i.e., time is considered to be slotted and the duration of one slot is
taken as unit of time. As for other methods the heuristic gives some good
results but it is really dedicated for only one kind of problem and it is difficult
to adapt it with other classes of problems.

In [4] Altenbernd and Hansson propose a new clustering algorithm. A cluster-
ing algorithm merges a number of tasks to reduce teh size of the task graph
and so the allocation heuristic processes mush faster. Experimental results are
very significant and clustering seems a smart way for reduce the search space
for large problems. However, clustering suffers from the risk of not finding any
feasible assignment, but the clustering is out line of our work.

Our approach proposes to use a recent solving method: the constraint pro-
gramming (see Section 4 for more details on constraint programming). The
main advantage of constraints programming is that general rules are mechan-
ically performed during the search. Thus each constraint can be considered as
independent problem. A model could be simply extend by merging these dif-
ferent constraints. Few works exists about mapping problem with constraint
programming [49,52,53,17]. Schild and Würtz [49] assumes a off-line schedul-
ing problem for distributed real-time systems with precedence constraint. The
techniques that proved to be the most successful is special global constraint
and elaborate search heuristic from Operations Research. In [52,53], Szymanek
and Kuchcinski focus on the problem of tasks and messages assignment and
off-line scheduling under memory constraints. In [53], a novel approach is used
to decide which tasks should be assigned to the same resource. Contrary to
clustering, this method does not tasks into a new task, but specifies which
tasks need to be executed on the same processor. This method seems improved
linear clustering when multi-resource are present. Ekelin in [17] does an impor-
tant work about mapping problems with multi-constraints and multi-objective
functions. This work propose different methods from constraint programming
to find an allocation and a off-line scheduling for distributed systems. The
fact that Ekelin searches an off-line scheduling makes the problem of mapping
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very different with our work. The main problem with in-line scheduling is that
it is not possible to simply express the schedulability test as an efficient con-
straint for constraint programming solver. For an off-line scheduling, the cycle
window of scheduling is viewed as a discrete interval and could be naturally
express by some classical constraints.

4 A short introduction to constraint programming

Constraint programming (cp) techniques have been widely used to solve a
large range of combinatorial problems. They have been proved quite effective
in a wide range of applications (from planning and scheduling to finance –
portfolio optimization – through biology) thanks to their main advantages:
declarativity (the variables, domains, constraints description), genericity (it
is not a problem dependent technique) and adaptability (to unexpected side
constraints).

A constraint satisfaction problem (csp) consists of a set V of variables defined
by a corresponding set D of possible values (the so-called domain) and a set
C of constraints. A solution to the problem is an assignment of a value in D to
each variable in V such that all constraints are satisfied. For example, consider
a 3-uple of variables {x1, x2, x3}, their domains D1 = D2 = D3 = {1, 2, 3} and
two constraints C1 : x1 > x2 and C2 : x1 = x3. A solution of this csp is x1 = 2,
x2 = 1 and x3 = 2.

The solutions to a csp can be found by searching systematically through the
possible assignments of values to variables. The variables are labelled sequen-
tially and as soon as all the variables relevant to a constraint are instantiated,
the validity of the constraint is checked. If any of the constraints is violated,
backtracking is performed to the most recently instantiated variable that still
has values available.

However, cp offers more accurate methods to solve a csp. One of them is
based on removing inconsistent values from variables’ domains till a solution
is got. Consider the previous example: the value 1 could be removed from D1,
because C1 cannot be respected if x1 = 1. Several consistency techniques exist
and they are combined to solve a csp. For example, when a value is removed
from variables’ domains, it could be propagated through other constraints. In
the previous example, after removing 1 from D1, 1 could be removed from D3

because of C2.

This mechanism coupled with a backtracking scheme allows the search space
to be explored in a complete way. For a deeper introduction to cp, we refer
to [6].
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In this paper, the search is performed by the Maintaining Arc-Consistency al-
gorithm (mac). mac is nowadays considered as one of the best algorithms for
solving a csp. Moreover, a specific mac algorithm has been used, based on the
use of explanations. Explanations consist of a set of constraints, and record
enough information to justify any decision of the solver such as a reduction
of domain or a contradiction. Dynamic addition/retraction of constraints are
possible when explanations are maintained [?]. For example, the addition of
a constraint at a leaf of the search-tree will not lead to a standard backtrack-
ing from that leaf (which could be very inefficient, as a wrong choice may
have existed at the beginning of the search because the constraint was not
known at that time). Instead, the solver will jump to a node appearing in
the explanation and which is therefore responsible for the contradiction raised
by the new constraint. More complex and more efficient techniques exist to
perform intelligent repair of the solution after the addition or retraction of a
constraint [28].

5 Translation of the allocation problem into a csp

The first thing one has to do when using cp to solve a problem is to word it
as a csp. In our case, it relies on a redundant formulation using three sets of
variables: x, y, w.

Let us first consider n integer-valued variables xi which are decision vari-
ables, each one corresponding to one task, and representing the processor
selected to process the task: ∀i ∈ {1..n}, xi ∈ {1, . . . ,m}. Then, boolean
variables yip indicate the presence of a task on a processor: ∀i ∈ {1..n},∀p ∈
{1..m}, yip ∈ {0, 1}. Finally, boolean variables wij are introduced to express
whether a pair of tasks exchanging data are located on the same processor
or not: ∀cij = (τi, τj) ∈ C, wij ∈ {0, 1}. Integrity constraints are used to en-
force the consistency of the redundant model. This redundant model has been
chosen to speed up the search and propagate algorithms.

Moreover, the constraints of our allocation problem have to be mapped on
this model. It appears that allocation and resource constraints can be directly
expressed with classical constraints of cp. Their translation into the csp are
given under here:

• Resource constraints
· Memory capacity: (cf. Eq. (2)) ∀p ∈ {1..m}, ∑

i∈{1..n} yipµi ≤ µp

· Utilization factor: (cf. Eq. (3)) Let lcm(T ) be the least common multiple
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of periods of the tasks 5 . The constraint can be written as follows:

∀p ∈ {1..m},
∑

i∈{1..n}

yip lcm(T )Ci

Ti

≤ lcm(T )

· Network use: (cf. Eq. (4)) The network capacity is bound by δ. There-
fore, the size of the set of messages carried on the network cannot exceed
this limit: ∑

i∈{1..n}j∈{1..n}

wij lcm(T )sij

Ti

≤ lcm(T )δ

• Allocation constraints
· Residence: (cf. Eq. (5)) it consists of forbidden values for x. A constraint

is added for each forbidden processor p of τi: xi 6= p
· Co-residence: (cf. Eq. (6)) ∀(τi, τj) ∈ β2, xi = xj

· Exclusion 6 : (cf. Eq. (7)) AllDifferent(xi|τi ∈ γ)

However, because of the schedulability analysis they require, timing con-
straints can not be translated as directly as the previous ones. Two approaches
have been studied to take into account timing constraints. For the first ap-
proach, timing constraints are taken into account at each variable assignment
the solver makes. It requires to conduct partial schedulability analyses and to
transform their results into new constraints on variables. This method is intro-
duced in Section 6. Inversely, the second approach consists in: breaking down
the allocation problem into two subproblems (one that deals with allocation
and resource constraints, the other one with timing constraints), and manag-
ing cooperation between them so as to find a valid and schedulable solution.
Section 7 is dedicated to this method.

6 A global constraint for schedulability

To tackle schedulability during the search, a classical approach is to integrate
it as a constraint of the cp model. For this purpose, some notations used
previously for an allocation are extended to a partial one:

Definition 6.1 A partial allocation is a mapping a : U ⊂ T → P such that:

τi ∈ U 7→ a(τi) = pk (13)

5 Utilization factor and network use are reformulated with the lcm of task periods
because our constraint solver cannot currently handle constraints with both real
coefficients and integer variables.
6 An AllDifferent constraint on a set V of variables ensures that all variables among
V are different.

14



Definition 6.2 We call a decision from a partial allocation a : U → P, a
partial allocation δ of a task set ∆ ( U . We denote the new allocation produced
as a′ = a + δ. It is such that a′ : U ⋃

∆ → P and ∀τi ∈ U , a′(τi) = a(τi),
∀τi ∈ ∆, a′(τi) = δ(τi)

We denote Ri(a) the worst-case response time of τi for a partial allocation
a. It is the worst-case response time that τi would exhibit if only those tasks
allocated in a are considered. hpi(a), respectively lpi(a) is the set of higher,
respectively lower, priority tasks than τi on the same processor than a(τi).

The cp solver proceeds step by step. At each step a decision is taken from a
partial allocation and a filtering algorithm is used — a filtering algorithm asso-
ciated with a constraint C is an algorithm which may remove some values that
are inconsistent with C; and that does not remove any consistent values [45]—
. Algorithm 1 shows the pseudo-code of the filtering algorithm for the global
constraint to tackle schedulability. It begins to check the schedulability of the
current allocation (line 1). It is easily done by computing worst-case response
time of only allocated tasks and present messages (property 11.1, Appendix
1). If the allocation found is schedulable the filtering algorithm removes values
that are inconsistent (lines from 2 to 13) by testing the schedulability for each
value of each remaining variable (line 7). Then, the pruning is propagated
within the constraint network until a fix point is reached (while loop).

Algorithm 1 Filtering algorithm for the schedulability global constraint after
a decision δ from a partial allocation a

Global constraint(a′ := a + δ)

1: flag := checkSchedulability(a′) {flag becomes true if a′ is schedulable}
2: while flag do
3: flag := false
4: for each task τi not allocated do
5: for each p in τi’s domain do
6: a′′ := a′ + δ1 with δ1(τi) := p
7: if ! checkSchedulability(a′′) then
8: Remove p from domain of τi {Propagate to other constraints}
9: flag := true

10: end if
11: end for
12: end for
13: end while

6.1 Filtering algorithm

The holy grail with a global constraint is to achieve generalized arc consistency
(GAC) which simply means a complete filtering algorithm so that any value
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that does not belong to a solution (for the subproblem considered within
the constraint scope and not the whole initial problem) is eliminated. This
involves providing polynomial necessary and sufficient conditions regarding
the existence of a solution for the constraint (according to current variables’
domains).

Property 6.1 Achieving generalized arc-consistency for the schedulability con-
straint is NP-Complete.

This can be easily understood by reducing the problem to a graph coloring
problem. Let H = (E1, . . . , Ec) be a hyper-graph (a family of parts of T such
that Ei  Ej) where each node is mapped to a task and each hyper-edge Ei

corresponds to a set of incompatible tasks according to schedulability. A nec-
essary and sufficient condition of schedulability is therefore to know whether
there exists a m-coloring of H (the color denotes the processor assigned to each
node) which is a known NP-Complete problem. It is therefore not possible to
compute in advance all incompatible subsets of tasks.

Our filtering algorithm is therefore based on a relaxation of the GAC. Schedu-
lability is checked for allocated tasks and messages only, and each value of
the domain of non allocated tasks (their possible processors) is checked by
schedulability analysis until no more tasks can be allocated. Indeed, pruning
some values of a task domain may instantiate it to a processor, leading this
processor to be impossible for other tasks and so on... This is a simple hypo-
thetical reasoning which can be understood as a singleton consistency from
a constraint point of view. This filtering can however miss powerful deduc-
tions. Consider a simple example of five tasks τi with {p1, p2} as domain such
that every triple (10 triples exist) are unschedulable together (Table 6.1 gives
an example). Assigning five tasks to two processors will force to place three
of them together which will raise a contradiction as any triple is forbidden.
However, such an inconsistent state will not be detected by our pragmatic
approach and a search tree will be built over three tasks among the five to
prove this inconsistency (see Figure 3). This approach is moreover already
very costly and we will now discuss the ways to speed it up.

τi τ1 τ2 τ3 τ4 τ5

Ti 20 10 15 15 4

Ci 12 2 5 7 2

prioi 1 2 3 4 5
Table 1
Tasks and messages characteristics
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Fig. 3. Tree-search for an allocation with the global constraint. Colored nodes are
nodes where the problem is inconsistent.

6.2 Incrementality

To speed up the filtering of the global constraint for a partial allocation, it is
possible to use some knowledge from the previous partial allocation. This in-
crementality could be used two times in the filtering algorithm. Firstly, during
the schedulability test and, secondly, during the propagation by reducing the
number of values to check into variables’ domains.

6.2.1 Incrementality of the schedulability test

Consider a partial but schedulable —from now, we suppose that all other
constraints are met, and so the partial allocation is valid too— allocation a
and a decision from a that allocates only one task τi with a′(τi) = pk. Since
the scheduling of processors is made in an independent way, only those tasks
on pk may suffer from the allocation of τi. Moreover, all tasks in hpi(a

′) are
still schedulable —the worst-case response time equation (Eq. 8) ensures that
all tasks τj ∈ hpi(a

′) keep the same response time: Rj(a
′) = Rj(a)—.

Rule 1 When a task is allocated on a processor from a schedulable partial
allocation, schedulability has to be checked only for this task and the lower
priority ones on that processor.

This rule could be extended to a decision δ with #∆ > 1, where #X stands
for the cardinality of the set X. For the same reason, for each processor pk,
schedulability has to be checked only for the tasks τi ∈ ∆ such that a′(τi) = pk

and the tasks τj ∈ U such that a′(τj) = pk ∧ prioi ≥ prioj.

The same reasoning can be applied for message schedulability analysis.

Rule 2 When a task allocation from a schedulable partial allocation a gives
rise to one message instantiation Mab, message schedulability has to be checked
only for that message, the lower priority ones and the higher priority ones Mij
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such that Cab > maxM ′∈lpij(a){C ′}.

The Rule 2 can be extended to a decision which gives rise to many messages.
Let ∆∗ be the set of these new messages. After a decision δ, message schedu-
lability has to be checked only for Mab, the highest priority message of ∆∗,
the messages in lpab(a

′) and the higher priority messages Mij ∈ hpab(a) such
that maxM∈∆∗ C > maxM ′∈lpij(a){C ′}.

These rules can be implemented into the function CheckSchedulability(a′)
called at lines 1 and 7 in algorithm 1.

6.2.2 Incrementality of variable’s domain

By considering the previous partial allocation and the current decision, the
number of values in a variable’s domain that have to be checked to remove
inconsistency values (line 5 in the algorithm 1) can be reduced.

Let a be a partial allocation and δ a decision such that a′ = a + δ, ∆∗ = ∅
and τi /∈ U ⋃

∆. If a processor pk not used in δ, i.e., no task is assigned to it
in δ, and τi is schedulable on pk for a, then τi is still schedulable on pk for a′.

If ∆∗ 6= ∅, because of messages, we can’t conclude on the schedulability of the
system without checking it.

Rule 3 After a decision δ where ∆∗ = ∅, the non-allocated tasks’ domains
to check during filtering is reduced to the processor set where a task has been
added in δ.

Remark, for the implementation of this rule, processors where a task is allo-
cated during the propagation, must be take into account in turn.

6.3 Reducing further schedulability tests

Other rules can be introduced to reduce variables domain’s during propagation
by considering some dominance relationship between tasks. A rule can be
deduced from property 11.2 (see Appendix 1):

Rule 4 If, from a schedulable partial allocation, allocating τi to pk makes τi

unschedulable, then pk has to be removed from the domain of all tasks τj such
that prioj < prioi ∧ Cj ≥ Ci ∧ Tj ≤ Ti.

In the same way, the following rule can be stated from property 11.3 (see
Appendix 1):
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Rule 5 If, from a schedulable partial allocation, allocating τi to pk makes an
allocated task τb to be unschedulable, then pk has to be removed from the domain
of all tasks τj with prioj > priob ∧ Cj ≥ Ci ∧ Tj ≤ Ti.

At last, a trivial propagation rule can be added by considering message schedu-
lability:

Rule 6 If, from a schedulable partial allocation a, allocating a communicating
task τi makes a message unschedulable, then the domain of τi has to become⋃

τj
{a(τj)} where τj is an allocated task which exchanges data with τi.

These rules can be easily implemented in the algorithm 1 at the line 8.

7 Solving the problem with logic-based Benders decomposition

Oppositely to the global constraint strategy that includes the schedulability
into the search algorithm, the approach presented in this section is based on
the Benders decomposition and separates resource and allocation constraints
from schedulability ones.

7.1 Benders decomposition scheme

We only give the basic principles of this technique, for a deeper description
refer to [13]. Our approach is based on an extension of a Benders scheme.
A Benders decomposition [8] is a solving strategy of linear problems that
uses a partition of the problem among its variables: x, y. A master problem
considers only x, whereas a subproblem tries to complete the assignment on
y and produces a Benders cut added to the master. This cut is the central
element of the technique, it is usually a linear constraint on x inferred by the
dual of the subproblem. Benders decomposition can therefore be seen as a
form of learning from mistakes.

For a discrete satisfaction problem, the resolution of the dual consists in com-
puting the infeasibility proof of the subproblem (in this case, the dual is called
an inference dual) and determining under what conditions the proof remains
valid to infer valid cuts. The Benders cut can be seen in this context as an
explanation of failure which is learnt by the master. We refer here to a more
general Benders scheme called logic Benders decomposition [25] where any kind
of subproblems can be used as long as the inference dual of the subproblem
can be solved.

We propose an approach inspired from methods used to integrate constraint
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programming into a logic-based Benders decomposition [55,9]. The allocation
and resource constraints are considered on one side, and timing ones through
schedulability on the other (see Fig. 4). The master problem solved with cp
yields a valid allocation. The subproblem checks the schedulability of this
allocation, eventually finds out why it is unschedulable and designs a set of
constraints, named nogoods which rules out all the assignments which are
unschedulable for the same reason.

Master problem
(constraint programming)

Resource constraints
Allocation constraints

Subproblem
(schedulability analysis)

Timing constraints

Le
ar

ni
ng

valid allocation
unschedulable

nogoods

schedulable allocation

Fig. 4. Logic-based Benders decomposition to solve an allocation problem

7.2 Cooperation between master and subproblem

The subproblem considered here is to check whether a valid solution produced
by the master problem is schedulable or not. Schedulability analysis is used
(see section 2.2.3). We now consider a valid allocation (as the one the cp
solver may propose) in which some tasks are not schedulable. Our purpose is
to explain why this allocation is unschedulable, and to translate this into a
new constraint for the master problem.

Tasks. The explanation for the unschedulability of a task τi is the presence of
tasks with higher priority on the same processor that interfere with τi. For any
other allocation with τi and hpi(A) on the same processor, it is sure that τi will
still be detected unschedulable. So the master problem must be constrained
so that all solutions where τi and hpi(A) are together are not considered any
further. This constraint corresponds to a NotAllEqual 7 on x:

NotAllEqual (xj|τj ∈ Si(A) = hpi(A) ∪ {τi})

It is worth noticing that this constraint could be expressed as a linear combi-
nation of variables y. However, NotAllEqual(x1,x3,x4) excludes the solutions
that contain the tasks τ1, τ3, τ4 gathered on any processor.

7 A NotAllEqual on a set V of variables ensures that at least two variables among
V take distinct values.
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Fig. 5. Illustration of a schedulability analysis. The task τ4 does not meet its dead-
line. The subset {τ1, τ2, τ4} is identified to explain the unschedulability of the system.

But it is easy to see that this constraint is not totally relevant. For example,
in Fig. 5, τ4 that shares a processor with τ1,τ2 and τ3 misses its deadline.
Actually the set S4(A) = {τ1, τ2, τ3, τ4} explains the unschedulability but it
is not minimal in the sense that if we remove one task from it, the set is
still unschedulable. Here, the set S4(A)′ = {τ1, τ2, τ4} is sufficient to justify
the unschedulability. To explain the unschedulability of a task, there could be
more than one minimal task set, this is dependent of the order of enumeration
of hpi(A). In the example, {τ1, τt3, τ4} is also a minimal set. However, the
more constraints are, more slow the solver is, that why we consider just one
minimal set in explanation.

In order to derive more precise explanations (to achieve a more relevant learn-
ing), a conflict detection algorithm, namely QuickXplain [27] (see algorithm 2),
has been used to determine a minimal (w.r.t. inclusion) set of involved tasks
Si(A)′. A new function is defined, Ri(X), as the worst-case response time of
τi as if it was scheduled with those tasks belonging to the set X that have
priority over it:

Ri(X) = Ci +
∑

τj∈hpi(A)∩X

⌈
Ri(X)

Tj

⌉
Cj (14)

Messages. The reasoning is quite similar. If a message Mij is found un-
schedulable, it is because of the messages in hpij(A) and the longest message
in lpij(A). We denote Mij(A) their union together with {Mij}. The translation
of this information in term of constraint yields to:

∑
Mab∈Mij(A)

wab < #Mij(A)

It is equivalent to a NotAllEqual constraint on a set of messages since to be
met it requires that at least one message of Mij(A) ”disappear” (wab = 0).

Like for tasks, so as to reduce the set of involved messages, QuickXplain has
been implemented, using a similar adaptation of Eq. (9) and (10). It returns
a minimal set of messages Mij(A)′.
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Algorithm 2 Minimal task set

QuickXPlainTask(τi, A,Di)

1: X := ∅
2: σ1, ..., σ#hpi(A) {an enumeration of hpi(A). The enumeration order of

hpi(A) may have an effect on the content of the returned minimal task
set}

3: while Ri(X) ≤ Di do
4: k := 0
5: Y := X
6: while Ri(Y ) ≤ Di and k < #hpi(A) do
7: k := k + 1
8: Y := Y ∪ {σk} {according to the enumeration order}
9: end while

10: X := X ∪ {σk}
11: end while
12: return X ∪ {τi}

7.3 Applying the method to an example

An example to illustrate the theory is developed hereafter. It will show how the
cooperation between master- and sub-problems is performed. Table 2 shows
the characteristics of the considered hardware architecture (with 4 processors)
and Table 3 those of the software architecture (with 20 tasks). The entry ”x, y
→ j” for the task τi indicates an edge cij with Cij = x and prioij = y.

pi p0 p1 p2 p3

mi 102001 280295 360241 41617
Table 2
Processor characteristics

The problem is constrained by:

• residence constraints:
· CC1 : τ0 must be allocated to p0 or p1 or p2.
· CC2 : τ16 must be allocated to p1 or p2.
· CC3 : τ17 must be allocated to p0 or p3.

• co-residence constraint:
· CC4 : τ7, τ17 and τ19 must be on the same processor.

• exclusion constraints:
· CC5 : τ3, τ11 and τ12 must be on different processors.

To start the resolution process, the solver for the master problem finds a valid
solution in accordance with CC1, CC2, CC3, CC4 and CC5. How the cp solver
finds such a solution is here out of our purpose. The valid solution it returns
is:
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τi Ti Ci µi prioi Message

τ0 36000 2190 21243 1 600,1 → 13

τ1 2000 563 5855 6 500,3 → 8

τ2 3000 207 2152 15 600,7 → 7

τ3 8000 2187 21213 3

τ4 72000 17690 168055 7 300,4 → 9

τ5 4000 667 6670 8 800,5 → 19

τ6 12000 3662 36253 14

τ7 3000 269 2743 16

τ8 2000 231 2263 12 100,6 → 18

τ9 72000 6161 59761 9

τ10 12000 846 8206 4 200,2 → 15

τ11 36000 5836 60694 20

τ12 9000 2103 20399 10

τ13 36000 5535 54243 13

τ14 18000 3905 41002 18

τ15 12000 1412 14402 5

τ16 6000 1416 14301 17 700,8 → 17

τ17 6000 752 7369 19

τ18 2000 538 5487 11

τ19 4000 1281 12425 2
Table 3
Task and message characteristics

• processor p0: τ2, τ5, τ7, τ8, τ9, τ17, τ19.
• processor p1: τ4, τ6, τ12, τ13.
• processor p2: τ0, τ11, τ14, τ15, τ16.
• processor p3: τ1, τ3, τ10, τ18.

One deduces that messages are M0,13, M1,8, M4,9, M8,18, M10,15, and M16,17.

It is easy to check it is a valid solution by considering allocation and resource
constraints:

• µ2 + µ5 + µ7 + µ8 + µ9 + µ17 + µ19 = 93383 ≤ m0;
• µ4 + µ6 + µ12 + µ13 = 278950 ≤ m1;
• µ0 + µ11 + µ14 + µ15 + µ16 = 151642 ≤ m2;
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• µ1 + µ3 + µ10 + µ18 = 40761 ≤ m3;
• C2

T2
+ C5

T5
+ C7

T7
+ C8

T8
+ C9

T9
+ C17

T17
+ C19

T19
= 0.972 ≤ 1;

• C4

T4
+ C6

T6
+ C12

T12
+ C13

T13
= 0.938 ≤ 1;

• C0

T0
+ C11

T11
+ C14

T14
+ C15

T15
+ C16

T16
= 0.794 ≤ 1;

• C1

T1
+ C3

T3
+ C10

T10
+ C18

T18
= 0.894 ≤ 1.

• C0,13

T0
+ C1,8

T1
+ C4,9

T4
+ C8,18

T8
+ C10,15

T10
+ C16,17

T16
= 0.454 ≤ 1.

The subproblem checks now the schedulability of the valid solution. The
schedulability analysis proceeds in three steps.

First step: analysing the schedulability of tasks. The worst-case re-
sponse time for each task is obtained by application of Eq. (8) and it is
compared with its relative deadline. Here τ5, τ12, τ16 and τ19 are found un-
schedulable.

Second step: analysing the schedulability of messages. The worst-case
response time for each message is obtained by application of Eq. (9) and
Eq. (10) and it is compared with its relative deadline. Here M1,8 is found
unschedulable.

Third step: explaining why this allocation is not schedulable. The
unschedulability of τ5 is due to the interference of higher priority tasks on the
same processor: hp5 = {τ2, τ7, τ8, τ9, τ17}. By applying QuickXPlainTask
(see algorithm 2) with hp5 ordered by increasing index, we find S5(A)′ =
{τ5, τ9} as minimal set. Consequently, the explanation of the unschedulability
is translated into the new constraint:

CC6 : NotAllEqual{x5, x9}

In the same way, by applying QuickXPlainTask for τ12, we find:

CC7 : NotAllEqual{x6, x12, x13}

for τ16:
CC8 : NotAllEqual{x11, x16}

and for τ19:
CC9 : NotAllEqual{x9, x19}

For M1,8, we have:

M1,8(A) = {M0,13, M1,8, M4,9, M8,18, M16,17}.

QuickXPlain returns {M0,13, M1,8, M4,9, M16,17} as M1,8(A)′ the minimal set.
So an other constraint is created:

CC10 : w0,13 + w1,8 + w4,9 + w16,17 < 4
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These new constraints CC6, CC7, CC8, CC9 and CC10 are added to the master
problem. They define a new problem for which it has to search for a valid
solution and so on.

After 20 iterations between the master problem and the subproblem, this
allocation problem is proven without solution. This results from 78 constraints
learnt all along the solving process. This example has been solved using Œdipe
(see Section 8). On a computer with a G4 processor (800MHz), its computing
time was 10.3 seconds.

8 Experimental results

We have developed a dedicated tool named Œdipe [14] that implements our
solving approaches. The method with global constraint as Global-CPRTA and
theBenders decomposition method is denoted by Benders-CPRTA. It is based
on the Choco [30,?] cp system and Palm [28], an explanation-based cp sys-
tem.

For the allocation problem, no specific benchmarks are available as a point
of reference in the real-time community. Experiments are usually done on
didactic examples [56,?] or randomly generated configurations [43,?]. We opted
for this last solution. Our generator takes several parameters into account:

• n, m, mes: the number of tasks, processors (experiments have been done on
fixed sizes: n = 40 and m = 7) and edges;

• %global: the global utilization factor of processors;
• %mem: the memory over-capacity, i.e. the amount of additionnal memory

available on processors with respect to the memory needs of all tasks;
• %res: the percentage of tasks included in residence constraints;
• %co: the percentage of tasks included in co-residence constraints;
• %exc: the percentage of tasks included in exclusion constraints;
• %m: the size of a data is evaluated as a percentage of the period of the tasks

exchanging it.

Task periods and priorities are randomly generated. Worst-case execution
times are initially randomly chosen and evaluated again so as:

∑n
i=1 Ci/Ti =

m%global. The memory need of a task is proportional to its worst-case ex-
ecution time. Memory capacities are randomly generated while satisfying:∑m

k=1 mk = (1 + %mem)
∑n

i=1 µi. For a sake of simplicity, only linear data
communications between tasks are considered and the priority of an edge is
inherited from the task producing it.

The number of tasks involved in allocation constraints is given by the param-
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eters %res, %co, %exc. Tasks are randomly chosen and their number (involved
in co-residence and exclusion constraints) can be set through specific levels.
Several classes of problems have been defined depending on the difficulty of
both allocation and schedulability problems. The difficulty of schedulability is
evaluated using the global utilization factor %global which varies from 40 to 90
%. Allocation difficulty is based on the number of tasks included in residence,
co-residence and exclusion constraints (%res, %co, %exc). Moreover, the mem-
ory over-capacity, %mem has a significant impact (a very low capacity can lead
to solve a packing problem, sometimes very difficult). The presence of data
exchanges impacts on both problems and the difficulty has been characterized
by the ratios mes/n and %m. %m expresses the impact of data exchanges on
schedulability analysis by linking periods and message sizes.

Table 4 describes the parameters of each basic difficulty class. By combin-
ing them, categories of problems can be specified. For instance, a W-X-Y-Z
category corresponds to problems with a memory difficulty in class W, an allo-
cation difficulty in class X, a schedulability difficulty in class Y and a network
difficulty in class Z.

Memory Allocation Schedulability Message

%mem %res %co %exc %global mes/n %m

1 60 1 0 0 0 1 40 1 0 0

2 30 2 15 15 15 2 60 2 0.5 70

3 10 3 33 33 33 3 90 3 0.875 150
Table 4
Details on difficulty classes

8.1 Results

Table 5 summarizes some of the results of experiments with Benders-CPRTA
and Global-CPRTA. We do not give the results for all the intermediate classes
of problems (like 1-1-1-1, 2-1-1-1, etc.) because they are easily solved and
they does not exhibit a specific behaviour. %RES gives the number of problem
instances successfully solved (a schedulable solution has been found or it has
been proved that none exists) within the time limit of 10 minutes per instance.
%VAL gives the percentage of schedulable solutions found (thus %RES −%VAL

gives the percentage of inconsistent problems). CPU is the mean computation
time in seconds. ITER is the number of iterations between the master problem
and the subproblem for the Benders-CPRTA. NOG is the number of nogoods
inferred from the subproblem for the Benders-CPRTA. The data are obtained
in average (on instances solved within the required time) on 100 instances (40
tasks, 7 processors) per class of difficulty with a Pentium 4 (3.2 GHz).
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First, by examining the CPU column, we notice that Benders- and Global-
CPRTA still remain very efficient in spite of their seeming complexity. More-
over, for Benders-CPRTA as measured by ITER and NOG, the cooperation
between master- and sub-problems is quite significant and the learning is of
some importance.

The lines 1 to 5 in Table 5 show results for high difficulty classes without
communications between tasks. The results in lines 1 to 3 are very good.
They illustrate the basic ability of cp to consider memory and allocation con-
straints. Lines 4 and 5 display some performances that are going down when
the schedulability difficulty increases.

Indeed, for Benders-CPRTA the schedulability constraint set is empty at the
beginning of the search. Therefore, all the knowledge dealing with schedula-
bility has to be learnt from the subproblem. Furthermore, learning is only
effective when a valid solution is produced by the master problem solver and
as a consequence, it is not really integrated into the cp algorithm. Global-
CPRTA improves performances from this point of view, this approach inte-
grates schedulability analysis into the cp algorithm so as not ”to delay” its
taking into account, the line 5 shows that for consistent problems. However,
Benders-CPRTA is an average better than Global-CPRTA.

The lines 6 to 8 deal with allocation problems where tasks may communicate.
Once more, one can notice that when data exchanges increase (and thus mes-
sage exchanges on the bus too), the CPRTA performances decrease. Reasons
are the same as those of task schedulability: the more the messages are on the
bus, the more their scheduling becomes difficult. Moreover, we have observed
that nogoods inferred from message unschedulability are usually ”weaker” (the
search space cut is smaller) than the ones inferred from task unschedulability.
Learning is then less efficient for this kind of problems.

8.2 Comparison with simulated annealing

As to get comparative performances for CPRTA, a simulated annealing (SA)
algorithm, inspired from [56], has been implemented. In [56] the energy func-
tion takes into account residence, exclusion and memory constraints as well
as task deadline constraints. To be consistent with the CPRTA model, the
schedulability of messages on the CAN bus and co-residence constraints have
been integrated too. The implementation has been optimized so as to reduce
computation time of this energy function.

SA is a heuristic method. As a consequence, in our case, it can only conclude
on problems with a solution. In Table 6 only CPRTA results for such problems
are compared to SA. As seen on Table 6, except for problems for which CPRTA
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Benders-CPRTA Global-CPRTA

cat. %RES %VAL CPU ITER NOG %RES %VAL CPU

1 2-2-2-1 100.0 56.0 0.6 13.5 95.2 91.0 56.0 25.5

2 3-2-2-1 98.0 56.0 2.6 31.0 133.2 85.0 50.0 43.5

3 2-3-2-1 100.0 19.0 0.7 7.6 43.5 89.0 19.0 31.3

4 1-1-3-1 88.0 88.0 29.2 95.7 471.6 86.0 86.0 32.3

5 2-2-3-1 72.0 13.0 28.8 13.1 59.7 71.0 24.0 48.6

6 2-2-2-2 100.0 70.0 1.5 19.5 69.9 91.0 67.0 12.3

7 1-2-2-3 78.0 55.0 70.5 296.3 60.7 50.0 31.0 74.9

8 2-2-2-3 68.0 48.0 52.1 148.7 117.2 42.0 27.0 79.1
Table 5
Average results on 100 instances randomly generated into classes of problems

must be improved (see Section 8.1), CPRTA produces as satisfactory results as
SA does. Moreover, it should be pointed out that even if CPRTA is sometimes
less efficient than SA, CPRTA solves on average more problems than SA does
if we take into account problems without solution.

SA Benders Global

cat. %VAL CPU %VAL CPU %VAL CPU

2-2-2-1 56.0 2.8 56.0 1.0 56.0 8.1

3-2-2-1 58.0 22.3 56.0 4.3 50.0 35.5

2-3-2-1 17.0 35.2 19.0 2.6 19.0 4.0

1-1-3-1 99.0 3.1 88.0 29.2 86.0 32.3

2-2-3-1 20.0 76.4 13.0 157.7 24.0 41.5

2-2-2-2 68.0 14.7 70.0 1.6 67.0 47.3

1-2-2-3 64.0 63.7 55.0 100.4 31.0 99.5

2-2-2-3 63.0 44.1 48.0 73.5 27.0 86.0
Table 6
Comparison between CPRTA and SA

9 Explanations

In comparison with other search methods, using a constraint solver may help
”intrinsically” to answer some classical queries when a problem is proved with-
out solution such as: why does my problem have no solution? Usually, when
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the domain of a variable of a csp becomes empty (no value exists that will re-
spect all the constraints on that variable), basic cp systems notify the user that
there is no solution. Nevertheless, thanks to the versatility of the explanation-
based constraint approach we use, those relevant constraints, which explain
the failure, are made available in addition [28].

Thus, in the case of an allocation problem for which no solution has been
found, we analyse the set of constraints that is returned to explain the problem
inconsistency. There can be many reasons to explain inconsistency. At the
design level, we would like to be able to incriminate high level characteristics
of the system such as: allocation constraints, schedulability requirements of
tasks, processors or network limitation. However, two points of view, based
on the software or hardware architecture, can be adopted. We will first focus
on the characteristics of the software architecture by analysing how each task
is ”responsible” for the failure. We will give there some insight on the way
a critical task from the schedulability point of view can be identified. Each
failure of the search process due to schedulability is analysed and transformed
into a constraint criterion that encapsulates an accurate reason for this failure.
The study of those criteria may lead to the guilty tasks. The rationale of this
evaluation is based on the following remarks:

• The more a task appears within a nogood, the more this task has an impact
on the schedulability inconsistency.

• The level of propagation performed by a nogood (either NotAllEqual(xi) or∑
wij < B), i.e its impact within the proof is strongly related to its size (the

number of tasks it involves). ”Small” NotAllEqual have stronger impact.

In its general form, a constraint (learnt from a nogood) is defined by NotAllEqual(xi)
or

∑
wij < B (see Section 7.2). We denote NAE the set of constraints in the

NotAllEqual form and SUM the set of constraints in the second form. For a
task τi a constraint criterion Ci is evaluated:

Ci =
∑

c ∈ NAE

xi ∈ c

1

#c
+

∑
c ∈ SUM

∃j, wij ∈ c ∨ wji ∈ c

1

#c

This criterion considers the presence of a task in each constraint and its im-
pact. Bigger Ci is, bigger the impact of τi is on the inconsistency. By studying
tasks with high Ci and understanding why they have such an impact on the
inconsistency (e.g. low priority allocation, too large processor utilization), it is
possible to change some requirements (e.g. by adapting priorities, or choosing
a different version for a task with an other period) and so to obtain a solution
for the problem.

Table 7 gives Ci obtained on the example of the Section 7.3 with Œdipe [14].
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Task τ19 has the biggest Ci. This task has a low priority together with a high
processor utilization (C19/T19 = 0.32). By just changing its priority to the
highest one, and reusing CPRTA, we found a solution for this problem.

Notice that this process consists in analysing the final set of constraints with
a heuristic based on the information gathered during the search. This process
can be generalized to memory and allocation constraints by the use of a specific
search technique [44] even if explicit reasons for failure on memory or allocation
are not kept in memory in our current approach (contrary to schedulability
one).

τi Ci τi Ci τi Ci τi Ci

τ19 6.33 τ13 4.78 τ2 3.22 τ3 2.53

τ14 5.98 τ9 3.95 τ1 2.85 τ16 2.25

τ11 5.98 τ6 3.83 τ10 2.77 τ18 1.97

τ5 5.42 τ7 3.45 τ4 2.65 τ8 1.73

τ12 5.42 τ15 3.32 τ17 2.55 τ0 1.15
Table 7
Constraint criterions computed on example

10 Conclusion and future work

In this paper, we present an original and complete approach (CPRTA) to solve
a hard real-time allocation problem. To tackle this problem, two approaches
are proposed. For the first one, timing constraints have conducted to define
a global constraint. This method has been optimised to speed-up the search
by exploiting specific properties of schedulability analysis. For the second one,
a decomposition method which is built on a logic Benders scheme, is used.
The whole problem is split into a master problem handling allocation and
resource constraints and a subproblem for timing constraints. A rich inter-
action between master and sub-problems is performed with the computation
of minimal sets of unschedulable tasks and messages. It implements a learn-
ing technique in an effort to combine the various issues into a solution that
satisfies all constraints.

Experimental results show that these two methods produce an efficient way
to solve allocation problem. Thanks to the learning that produces significant
knowledge about schedulability, the CPRTA based on Benders decomposition
achieves better performance.

An other important specificity of CPRTA is its completeness, i.e., if a problem
has no solution, the search algorithm is able to prove it. In future works, our
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aim is to integrate into the design process an intelligent tool based on CPRTA
ables to return pertinent explanations justifying the failure.
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Appendix 1: schedulability analysis properties

Property 11.1 If a partial allocation a is unschedulable, then all decisions
from a produce an unschedulable allocation.

Proof : Consider Eq.8 that defines Ri(a), its computation is derived by

iteratively calculating formula R
(n)
i (a) = Ci +

∑
τj∈hpi(a)

⌈
R

(n−1)
i (a)

Tj

⌉
Cj with

R
(0)
i (a) = Ci +

∑
τj∈hpi(a) Cj.

Property is proved if for a task τi ∈ U , all decisions δ from a are such that
Ri(a

′) > Ti with a′ = a+ δ. It is easy to prove it by induction by pointing out
that hpi(a) ⊂ hpi(a

′).
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Induction basis. By definition R
(0)
i (a′) > R

(0)
i (a).

Induction step. Assume that R
(n)
i (a′) > R

(n)
i (a) is true. Therefore,

R
(n+1)
i (a′) >Ci +

∑
τj∈hpi(a′)

R
(n)
i (a)

Tj

 Cj

= Ci +
∑

τj∈hpi(a)

R
(n)
i (a)

Tj

 Cj +
∑

τj∈hpi(δ)

R
(n)
i (a)

Tj

 Cj

>R
(n+1)
i (a)

The same reasoning could be done for messages by considering Eq.11 and
Eq.12. For a messsage Mij we have hpij(a) ⊂ hpij(a

′) and lpij(a) ⊂ lpij(a
′) �

Property 11.2 Consider a schedulable partial allocation a and δ, a decision
from a that allocates only τi with δ(τi) = pk. If τi is unschedulable in a′ = a+δ,
then all decisions from a that allocate a task τj with prioj < prioi ∧ Cj ≥
Ci ∧ Tj ≤ Ti on pk produce unschedulable allocations.

Proof : Consider a partial allocation a and two other ones a′ and a′′ such
that a′ = a + δ1, a′′ = a + δ2, δ1(τi) = δ2(τj) = pk, Ri(a

′) > Ti and prioj <
prioi ∧ Cj ≥ Ci ∧ Tj ≤ Ti. We want to prove that Rj(a

′′) > Tj.

By definition of priorities, hpj(a
′′) ⊇ hpi(a

′).

The property will be proved by induction.

Induction basis. R
(0)
i (a′) = Ci +

∑
τ∈hpi(a′) C 6 Cj +

∑
τ∈hpj(a′′) C = R

(0)
j (a′′).

Induction step. Assume that R
(n)
j (a′′) > R

(n)
i (a′) is true. Therefore,

R
(n+1)
j (a′′) >Ci +

∑
τ∈hpj(a′′)

R
(n)
i (a′)

T

 C

= Ci +
∑

τ∈hpi(a′)

R
(n)
i (a′)

T

 C +
∑

τ∈hpj(a′′)−hpi(a′)

R
(n)
i (a′)

T

 C

>R
(n+1)
i (a′)

At the fix point, we have : Rj(a
′′) > Ri(a

′) > Ti > Tj �

Property 11.3 Consider a schedulable partial allocation a and δ, a decision
from a that allocates only τi with δ(τi) = pk and where τb is unschedulable due
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to τi, then all decisions from a that allocate a task τj with prioj > priob∧Cj ≥
Ci ∧ Tj ≤ Ti on pk produce unschedulable allocations.

Proof : Consider a partial allocation a, two other ones a′ and a′′ such that
a′ = a + δ1, a′′ = a + δ2, δ1(τi) = δ2(τj) = δ1(τb) = δ2(τb) = pk, Rb(a

′) > Tb

and prioj > priob ∧ Cj ≥ Ci ∧ Tj ≤ Ti. We want to prove that Rb(a
′′) > Tb.

By definition of priorities, hpb(a
′′)− {τj} = hpb(a

′)− {τi} = hpb.

The property will be proved by induction.

Induction basis. R
(0)
b (a′) = Cb +

∑
τ∈hpb

Cj + Ci 6 Cb +
∑

τ∈hpb
C + Cj =

R
′(0)
b (a′′).

Induction step. Assume that R
(n)
b (a′′) > R

(n)
b (a′) is true. Therefore,

R
(n+1)
b (a′′) >Cb +

∑
τ∈hpb

R
(n)
b (a′)

T

 C +

R
(n)
b (a′)

Ti

 Ci

>R
(n+1)
b (a′)

At the fix point, we have : Rb(a
′′) > Rb(a

′) > Tb �
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