
Knowledge Compilation for Itemset Mining1

Hadrien Cambazard and Tarik Hadzic and Barry O’Sullivan 2

Abstract. We present a novel approach to itemset mining whereby
the set of all itemsets are compiled into a compact form, closely
related to binary decision diagrams. While there were previous at-
tempts to utilize decision diagrams for storing the set of frequent
itemsets this is the first approach that does not rely on backtrack
search to generate such a set. Our empirical evaluation demonstrates
that our approach is complementary to current approaches.

1 INTRODUCTION

Mining frequent itemsets is a central problem in data mining. Given
a database defined as a set of transactions, each of which is defined
by a set of items (see Figure 1), the task is to find all sets of items
(patterns) that are considered frequent. An itemset is frequent if it oc-
curs at least a specified number of times in the database. We propose
a novel approach that casts itemset mining as a knowledge compi-
lation task. Our compilation-based approach supports a number of
powerful queries that involve reasoning about the set of all frequent
itemsets in time polynomial in the size of the compiled representa-
tion (which might be exponentially large in the worst case). Counting
frequent items is one such query. The technical advance is to compile
the set of all itemsets into a special form of binary decision diagram
(BDD) [1], augmented with counting variables, so that all itemsets
of the same frequency are represented by BDD paths that end in the
same counting node. This representation is similar to the one used
in [5] to compress the database as opposed to the itemsets. It was later
abandoned by the same authors in [3]. The novelty of our approach
is that it differs fundamentally from earlier attempts to incorporate
knowledge compilation into itemset mining since it does not rely on
search at all, but only proceeds by manipulation of BDDs. Therefore,
any BDD manipulation package, such as [4], can be easily used with
our approach as an itemset mining system.

2 FORMALISM

Itemset Mining. Let I = {I1, I2, . . . , In} be a set of n items andD
be a database of m transactions denoted {T1, T2, . . . , Tm}, in which
each transaction Ti is defined as a subset of items, Ti ⊆ I. A set
X of items is called an itemset (or a pattern) and the transaction set
of X in the database, denoted T (X), is the subset of transactions
in which the itemset occurs as a subset. The support of X , denoted
σ(X), is the number of such transactions |T (X)|. An itemset is said
to be frequent with respect to a given threshold θ if it occurs in at
least θ transactions, i.e. σ(X) ≥ θ.

1 Supported by Science Foundation Ireland (Grant Numbers 05/IN/I886 and
05/IN.1/I886 TIDA 09).

2 Cork Constraint Computation Centre, University College Cork, Ireland.
{h.cambazard,t.hadzic,b.osullivan}@4c.ucc.ie

An example transaction database containing three transactions de-
fined in terms of three items, {I1, I2, I3}, is shown in Figure 1. The
transactions are T1 = {I1, I2, I3}, T2 = {I1, I3}, T3 = {I2, I3}
(left). A frequency table, giving for each itemset X its transaction
set and its support is shown on the right.

T1 : I1, I2, I3
T2 : I1, I3
T3 : I2, I3

X T (X) σ(X)
∅ {T1, T2, T3} 3

{I1} {T1, T2} 2
{I2} {T1, T3} 2
{I3} {T1, T2, T3} 3

{I1, I2} {T1} 1
{I1, I3} {T1, T2} 2
{I2, I3} {T1, T3} 2

{I1, I2, I3} {T1} 1

Figure 1. An example transaction database.

Binary Decision Diagrams. Binary decision diagrams (BDDs) [1]
are rooted directed acyclic graphs G = (V,E) that represent the
set of assignments over a set of Boolean variables, {x1, . . . , xn}.
A BDD has a root node, denoted r, and two terminal nodes 1 and
0 indicating true and false, respectively. Every nonterminal node is
labeled with one of the Boolean variables xi and has two outgoing
edges, which encode assignments xi = 0 and xi = 1. BDDs are
normally ordered unless stated otherwise – variables labeling nodes
in a path from the root to the terminal are always in the same order,
e.g. x1 ≺ . . . ≺ xn. If an edge ”skips” a variable xi, then both
xi = 0 and xi = 1 are supported. This encoding associates every
path from the root to terminal with a partial assignment.

3 THE COMPILATION APPROACH
Our basic approach is to compile the set of all itemsets into a compact
representation so that for each threshold θ we can distinguish the set
of items whose support is at least θ. We introduce n Boolean vari-
ables x1, . . . , xn, one for each item. Assignment xj = 1 indicates
that the item Ij is in the itemset. Hence, an assignment to x1, . . . , xn

represents an itemset I(x1, . . . , xn) = {Ij | xj = 1, j = 1, . . . , n}.

Figure 2. MTBDD for the support function σ. Each path corresponds to a
set of itemsets and its terminal node represents the corresponding support.

x1

x2 x2

1 2 3

Table 1. Comparing the general compilation scheme “BDD all θ” with a restricted one, “BDD 1%” and LCM count

Instance BDD all θ BDD 1% LCM count 1%
n m msucc BDD size Time θ msucc BDD size Time Time

Zoo-1 36 101 101 6750 0m 0.06s 1 101 1386 0m 0.28s 0m 0.1s
Vote 48 435 435 258158 0m 24s 4 435 39992 0m 11.5s 0m 0.3s
Tic-tac-toe 27 958 958 30863 0m 12s 10 958 5505 0m 14.3s 0m 0.1s
*Splice-1 287 3190 161 19247569 16m 20s 32 161 19246773 23m 33s 0m 19.8s
Soybean 50 630 630 50451 0m 8s 6 630 9694 0m 6.6s 0m 0.1s
Primary-tumor 31 336 336 46569 0m 2s 3 336 5934 0m 0.9s 0m 0.1s
Mushroom 119 8124 8124 136413 8m 5s 81 8124 23947 8m 48.6s 0m 0.3s
*Kr-vs-kp 73 3196 1321 15856014 109m 7s 32 3196 19017648 251m 28s 12m 55.6s
*Hypothyroid 88 3247 2121 13516004 146m 15s 32 3247 1052365 57m 38.1s 18m 3.2s
Hepatitis 68 137 137 1583304 0m 44s 1 137 184727 0m 6.7s 0m 12.2s
*Heart-cleveland 95 296 229 21279153 23m 59s 3 296 1405948 29m 35s 9m 24.1s
*German-credit 112 1000 505 19260913 54m 12s 10 646 19539742 108m 36s 3m 3.3s
*Australian-credit 125 653 292 na 20m 33s 7 380 20073775 45m 0s 45m 19.7s
Audiology 148 216 216 3185830 0m 44s 2 216 26265 0m 1.97s > 10 hours
Anneal 93 812 812 931935 3m 40s 8 812 23164 0m 14.11s 0m 4.9s

We also introduce m Boolean variables t1, . . . , tm, one for each
transaction. An assignment to t1, . . . , tm represents a set of trans-
actions T (t1, . . . , tm) = {Tj | tj = 1, j = 1, . . . ,m}. Finally, we
introduce m constraints C1, . . . , Cm, one for each transaction Ti:

Ci : ti ⇔
∧

Ij 6∈Ti

¬xj , i = 1, . . . ,m

where ti is a shorthand for ti = 1 and ¬xj means xj = 0. The
constraint Ci ensures that a transaction Ti is in a transaction set
exactly when none of the items outside the transaction (Ij 6∈ Ti)
are in the itemset. It is not hard to see that any assignment to
(x1, . . . , xn, t1, . . . , tm) that satisfies all constraints C1, . . . , Cm,
denoted as (x1, . . . , xn, t1, . . . , tm) |= C1 ∧ . . . ∧ Cm, repre-
sents an itemset I(x1, . . . , xn) and its corresponding transaction set
T (t1, . . . , tm).

Our contribution is an approach that, starting with the constraint
model above, constructs a BDD for the support function σ, such
that σ(x1, . . . , xn) = |{(t1, . . . , tm) | (x1, . . . , xn, t1, . . . , tm) |=
C1 ∧ . . . ∧ Cm}|. Such a BDD effectively encodes a multi-terminal
binary decision diagram (MTBDD), where each terminal node cor-
responds to an itemset count. An MTBDD for our example is shown
in Figure 2. We construct it using only standard BDD operations,
such as conjunction and existential quantification, which are nor-
mally supported by BDD packages such as [4]. More details about
the approach can be found in the extended version of this paper.3

4 EXPERIMENTS
We evaluated our approach on the 15 datamining instances used
in [2].4 The experiments ran as a single thread on a Dual Quad
Core Xeon CPU, 2.66GHz with 12MB of L2 cache per processor
and 16GB of RAM overall, running Linux 2.6.25 x64. The baseline
used for comparison is the state of the art itemsets miner LCM [6].
We will refer to LCM count as the version of LCM that only counts
the number of itemsets without storing them.

Table 1 reports the results. The number of items n and number of
transactions m of each instance are indicated. The column “BDD all
θ” reports results for computing count BDDs. Column msucc shows
the number of transactions that were conjoined successfully. Column

3 http://4c.ucc.ie/˜thadzic/publications/Itemset.pdf
4 http://www.cs.kuleuven.ac.be/˜dtai/CP4IM/datasets/

BDD size reports the number of BDD nodes in the resulting BDD (in
case of unsuccessful termination, this was the size of BDD at the last
successful iteration). The second compilation scheme, “BDD 1%”,
attempts to build a BDD restricted to a given threshold of 1% by
merging all counting nodes for frequencies greater than θ, and prun-
ing itemsets with count 0 in the final BDD. Finally the last column
reports the time needed by LCM count for the same threshold of 1%.

The results are positive: 9 out of 15 instances can be solved for all
thresholds at once by the general compilation approach. The method
fails for memory reasons on 6 instances (indicated with a *) of which
3 can be handled when restricting the compilation to a threshold of
1%. LCM count is only comparable to the restricted scheme “BDD
1%” and proves to be much faster in general. However it fails on
Audiology which appears to be easy even for the complete compila-
tion (44s). It highlights that the compilation method can complement
traditional approaches based on search and can handle instances that
are at the moment out of reach of backtracking based methods.

5 CONCLUSIONS
Pattern discovery is typically an iterative task where queries are re-
fined depending on the answers to previous queries. It is therefore im-
portant to develop techniques for incremental mining. The compila-
tion approach presented in this paper addresses this issue by propos-
ing a compact form to allow efficient queries regarding any threshold
of the frequency.

REFERENCES
[1] Randal E. Bryant, ‘Graph-Based Algorithms for Boolean Function Ma-

nipulation’, IEEE Transactions on Computers, 35, 677–691, (1986).
[2] Luc De Raedt, Tias Guns, and Siegfried Nijssen, ‘Constraint program-

ming for itemset mining’, in KDD ’08: Proceeding of ACM SIGKDD,
pp. 204–212, New York, NY, USA, (2008). ACM.

[3] Shin ichi Minato, Takeaki Uno, and Hiroki Arimura, ‘Lcm over zbdds:
Fast generation of very large-scale frequent itemsets using a compact
graph-based representation’, in PAKDD, pp. 234–246, (2008).

[4] J. Lind-Nielsen, ‘BuDDy - A Binary Decision Diagram Package’.
http://sourceforge.net/projects/buddy, 2001.

[5] Shin-Ichi Minato and Hiroki Arimura, ‘Frequent pattern mining and
knowledge indexing based on zero-suppressed bdds’, 152–169, (2007).

[6] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura, ‘Lcm ver.3: col-
laboration of array, bitmap and prefix tree for frequent itemset mining’,
in OSDM ’05: Proceedings of the 1st international workshop on open
source data mining, pp. 77–86, New York, NY, USA, (2005). ACM.

