
A Shortest Path-based Approach to the Multileaf
Collimator Sequencing Problem

Hadrien Cambazard, Eoin O’Mahony, and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
{h.cambazard|e.omahony|b.osullivan}@4c.ucc.ie

Abstract. The multileaf collimator sequencing problem is an important compo-
nent in effective cancer treatment delivery. The problem can be formulated as
finding a decomposition of an integer matrix into a weighted sequence of binary
matrices whose rows satisfy a consecutive ones property. Minimising the cardi-
nality of the decomposition is an important objective and has been shown to be
strongly NP-Hard, even for a matrix restricted to a single row. We show that in
this latter case it can be solved efficiently as a shortest path problem, giving a sim-
ple proof that the one line problem is fixed-parameter tractable in the maximum
intensity. This result was obtained recently by [9] with a complex construction.
We develop new linear and constraint programming models exploiting this idea.
Our approaches significantly improve the best known for the problem, bringing
real-world sized problem instances within reach of complete methods.

1 Introduction

Radiation therapy is a treatment modality that uses ionising radiation in the treatment
of patients diagnosed with cancer (and occasionally benign disease). Radiation therapy
represents one of the main treatments against cancer, with an estimated 60% of cancer
patients requiring radiation therapy as a component of their treatment. The aim of radia-
tion therapy is to deliver a precisely measured dose of radiation to a well-defined tumour
volume whilst sparing the surrounding normal tissue, achieving an optimum therapeu-
tic ratio. Recent progress in technology and computing science have allowed significant
improvement in the planning and delivery of all radiation therapy techniques.

Our primary objective is to apply recent advances in constraint programming to mul-
tileaf collimator sequencing in intensity-modulated radiotherapy (IMRT). At the core of
advanced radiotherapy treatments are hard combinatorial optimisation problems, which
are typically computationally intractable (Section 2 and 3). The contributions of this
paper rely on the insight that the multileaf collimator sequencing problem restricted to
a single row can be solved as a shortest path problem. A similar but more general result
was obtained recently by [9]. We give a simple proof that the single row problem is
fixed-parameter tractable in the maximum intensity of the row (Section 4) and exploit
this insight to develop novel linear and constraint programming models (Section 5).
These approaches significantly out-perform the best known for the problem, and bring
real-world sized instances within reach of complete methods (Section 6).

Fig. 1. An example IMRT treatment plan (Courtesy of the Advanced Oncology Center, Inc.).

2 Intensity-Modulated Radiotherapy

IMRT is an advanced mode of high-precision radiotherapy that utilises computer con-
trolled x-ray accelerators to deliver precise radiation doses to a malignant tumour, or
specific areas within the tumour. A treatment plan is devised for an individual patient
based on the three-dimensional (3D) shape of the patient’s tumour. Figure 1 presents an
example IMRT treatment plan, clearly showing the location of the tumour in the centre
of the image, the positions from which the tumour will be irradiated, and the dosage
to be delivered from each position. The treatment plan is carefully developed based on
3D computed tomography images of the patient, in conjunction with computerised dose
calculations to determine the dose intensity pattern that will best conform to the tumour
shape. There are three optimisation problems relevant to this treatment. Firstly, the ge-
ometry problem considers the best positions for the beam head from which to irradiate.
Secondly, the intensity problem is concerned with computing the exact levels of radia-
tion to use in each area of the tumour. Thirdly, the realisation problem, tackled in this
paper, deals with the delivery of the intensities computed in the intensity problem.

Combinatorial optimisation methods in cancer treatment planning have been re-
ported as early as the 1960s [3]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [8]. Most researchers consider the
sequencing of multileaf collimators (Figure 2(a)). The typical formulation of this prob-
lem considers the dosage plan from a particular position as an integer matrix, in which
each integer corresponds to the amount of radiation that must be delivered to a partic-
ular region of the tumour. The requisite dosage is built up by focusing the radiation
beam using a multileaf collimator, which comprises a double set of metal leaves that
close from the outside inwards. Therefore, the collimator constrains the possible set of
shapes that can be treated at a particular time. To achieve a desired dosage, a sequence
of settings of the multileaf collimator must be used. One such sequence is presented in
Figure 2(b). The desired dosage is presented on the left, and it is delivered through a
sequence of three settings of the multileaf collimator, which are represented by three

(a) A multileaf collimator. (b) A multileaf sequencing problem.

Fig. 2. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 2(b) has been adapted from [1].

matrices. Each matrix is exposed for a specific amount of time, corresponding to the
weight associated with the matrix, thus delivering the requisite dosage.

Formally, this problem can be formulated as the decomposition of an integer matrix
into a weighted sum of 0/1 matrices, in which each row has the “consecutive ones
property” [2, 6]. The state-of-the-art approach is based on constraint programming [1].

3 Formulation of the Multileaf Collimator Sequencing Problem

We present a direct formulation of the multileaf collimator sequencing problem. Let
I represent the dosage intensity matrix to be delivered. We represent this as an m ×
n (rows × columns) matrix of non-negative integers. We assume that the maximum
dosage that is delivered to any region of the tumour is M units of radiation. Therefore,
we set Iij ≤M, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

To ensure that each step in the treatment sequence corresponds to a valid setting
of the multileaf collimator, we represent each step using a 0/1 matrix over which we
specify a row-wise consecutive ones property (C1). Informally, the property requires
that if any ones appear in a row, they appear together in a single block. A C1 matrix is
a binary matrix in which every row satisfies the consecutive ones property. Formally, x
is an m× n C1 matrix if and only if for any line i, 1 ≤ a < b < c ≤ n,

xia = 1 ∧ xic = 1→ xib = 1. (1)

A solution to the problem is a sequence of C1 matrices, Ω, in which each xk is asso-
ciated with a positive integer bk such that: I =

∑
k∈Ω(bk · xk). Let B and K be the

sum of coefficients bk and the number of matrices xk used in the decomposition of I ,
respectively. Then B =

∑
k∈Ω bk and K = |Ω|. B is referred to as the total beam-on

time of the plan and K is its cardinality. The typical problem is to minimise B or K
independently (known as the decomposition time and decomposition cardinality prob-
lem, respectively) or a combination of both. The minimisation of B alone is known to
be linear [2, 6], while minimizing K alone is strongly NP-Hard [2]. We will tackle the

formulation preferred by practitioners, and mostly used in the literature so far, which is
to minimise B first and then K (see Figure 2(b)). The problem is the following: given
the optimal value B∗ of B, find a treatment plan that minimises K, i.e.

Minimise(K) such that∑
k∈Ω bk = B∗

I =
∑
k∈Ω bkxk

∀k ∈ Ω, xk is a C1 matrix.

We now briefly explain howB∗ can be found. The minimum sum of weights needed
to have a C1 decomposition of a (single) row matrix [I1, . . . , In] can be computed as:

n−1∑
i=0

max(Ii+1 − Ii, 0) (2)

assuming I0 = 0 [2, 6]. The expression Ii+1 − Ii represents the supplementary sum of
weights needed for Ii+1, the remainder being reused without breaking the consecutive
ones property. We provide a small example to help understand Equation 2.

Example 1 (Computing the Minimum Sum of Weights). Consider a dosage plan I =
[3, 2, 0, 3]. The minimum sum of weights computed according to the previous formula
would be 3 + 0 + 0 + 3 = 6. The weights used to achieve the first value 3 could be
reused for the following 2, but all weights already used before the 0 cannot be re-used
for the last 3, since all the corresponding row matrices must have a 0 in this position to
satisfy the C1 property. Then, three more unit of weights are needed to make the last 3,
giving a decomposition I = (1, 0, 0, 0) + 2 · (1, 1, 0, 0) + 3 · (0, 0, 0, 1). N

The B∗ corresponding to the whole matrix is the maximum of the B∗ values amongst
the m rows of the matrix. A number of CP models for the multileaf collimator sequenc-
ing problem have been proposed in the literature. We briefly present these below.

3.1 The Direct Model

For a fixed K, the problem specification given above can be almost directly encoded
with a variable per coefficient of the decomposition and a variable per cell of the matri-
ces in the decomposition, as follows:

V ariables : ∀k ≤ K bk ∈ {1, . . . , M}
∀k ≤ K, i ≤ m, j ≤ n, xkij ∈ {0, 1}

DM1 :
P
k≤K bk = B∗

DM2 : b1 ≥ b2, . . . ≥ bk
DM3 : ∀k ≤ K, i ≤ m, CONSECUTIVEONES({xki1, . . . , xkin})
DM4 : ∀i ≤ m, j ≤ n

P
k≤K bk × xkij = Iij

The CONSECUTIVEONES constraint (DM3) can be implemented using a contiguity
constraint [10] or the REGULAR global constraint [12] with a straightforward deter-
ministic finite automaton. ConstraintDM2 eliminates symmetries amongst the weights.
A number of symmetries amongst the xk variables remain. We quote here the example
given in [1] to highlight this important drawback of the Direct Model.

Example 2 (Symmetries of the Direct Model). Consider part of a decomposition with
two identical weights of value 2. The two following decompositions are symmetrical.

2
(

1 1 1
1 1 1

)
+ 2

(
0 1 0
0 1 0

)
= 2

(
1 1 1
1 1 0

)
+ 2

(
0 1 0
0 1 1

)
The values in the right bottom corners of the matrices can be swapped without changing
the solution since the weights are identical. N

Symmetries due to identical weights can be partially avoided by dynamically adding
lexicographic constraints on the rows and columns (once the weights are known in the
search) but that would not be enough. Rows and columns remain lexicographically
ordered in this example. The next model was proposed in [1] to address this issue.

3.2 The Counter Model
The Counter Model is based on Nb variables representing the number occurrences of
weight b in the decomposition. Qbij variables refine this information by counting the
number of times a weight b contributes to the sum of Iij . The model is stated as follows:

Objective : Minimise(K) such that:
V ariables : ∀b ≤M Nb ∈ {0, . . . , B∗}

∀i ≤ m, j ≤ n, b ≤M Qb
ij ∈ {0, . . . , M}

CM1 : ∀i ≤ m, j ≤ n
PM
b=1 b×Qb

ij = Iij
CM2 :

PM
b=1 b×Nb = B∗

CM3 :
PM
b=1 Nb = K

CM4 : ∀b ≤M, i ≤ m, SUMOFINCREMENTS({Qb
i1, . . . , Q

b
in}, Nb)

Constraint CM1 ensures that each element of I is properly decomposed. CM2 and
CM3 relate the Nb variables to B∗ and K. The model makes use of an ad-hoc global
constraint to enforce the C1 property of this decomposition expressed in term of occur-
rences of each weight. It is the SUMOFINCREMENTS [4], defined by:

SUMOFINCREMENTS({V1, . . . , Vn}, U) ≡
n−1X
i=0

max(Vi+1 − Vi, 0) ≤ U with V0 = 0 (3)

A C1 decomposition of I can be derived from a C1 decomposition of Qb for each b.
The key intuition behind this model is that it is sufficient to find an unweighted decom-
position (only with weights of 1) of each Qb instead of looking for a decomposition of
I (see [1]). Keep in mind that Qb is the matrix defining the number of times a weight
equal to b is used to decompose each element of I , thus a weighted decomposition of
Qb would result in identical matrices. The cardinality would, therefore, be reduced by
merging the corresponding matrices and increasing the weight. Thus all matrices have
to be different and the decomposition of Qb is necessarily unweighted in an optimal
solution.

As explained earlier in Section 3, the expression
∑n
i=1max(Vi+1−Vi, 0) is a con-

venient way to compute the minimum sum of weights needed for a C1 decomposition
of a row. Obviously, if we seek an unweighted decomposition, the formula returns the
minimum number of weights needed. Therefore, this formula can be used as a lower
bound for Nb to ensure the C1 property (constraint CM4).

4 The Single Row Problem as a Shortest Path

As mentioned previously, finding the minimum total beam-on time, B, for a given in-
tensity matrix can be solved in linear time. However, minimising the cardinality of the
multileaf collimator sequence is NP-hard [5]. More recently, it has been shown that
even when restricting the problem to a single row of the intensity matrix, minimising
the cardinality is strongly NP-Hard [2]. This result was refined by [9] who showed that
not only is the single row problem polynomial when the maximum intensity is bounded,
but also the complete problem. In this section we show a simple construction represent-
ing the single row problem as a shortest path. This gives a simple proof that the single
row problem is fixed-parameter tractable (FPT) in the maximum element in the row I .
Although [9] achieves a better complexity, we will develop very efficient algorithms
based on our construction outperforming the results of [9] in practice. In general, a
problem is FPT with respect to a parameter k if there exists an algorithm for it that
has running time O(f(k) · nO(1)), where n is the size of the problem and f(k) is an
arbitrary function depending only on k. This result will be the keystone to designing
very efficient linear and CP models in the remainder of this paper.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = 〈I1, . . . , In〉, a positive integer K.
Question: Find a decomposition of I into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the
decomposition that sum to every element Ii of the row. In other words, the decompo-
sition must contain an integer partition of every intensity. To represent these integer
partitions the following notation will be used: P (a) is the set of partitions of integer
a, p ∈ P (a) is a particular partition of a, and |p| its number of integer summands
in p. We denote by occ(p, v), the number of occurrences of value v in p. For ex-
ample, P (5) = {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, and if
p = 〈3, 1, 1〉 then |p| = 3 and occ(p, 1) = 2.

Observe that the DC problem can be formulated as a shortest path problem in a
weighted directed acyclic graph, G, which we refer to a partition graph. A partition
graph G of a row matrix I = 〈I1, . . . , In〉 is a layered graph with n + 2 layers, the
nodes of each layer i corresponding to the set of integer partitions of the row matrix
element Ii. A source and sink nodes, denoted p0 and pn+1 respectively, are associated
with the empty partition ∅ for sake of simplicity. Two adjacent layers form a complete
bipartite graph and the cost added to an edge, pi → pj , between two partitions, pi and pj
represents the number of additional weights that need to be added to the decomposition
to satisfy the C1 property when decomposing the two consecutive elements with the
corresponding partitions. The cost of each edge pi → pj in the partition graph is:

c(pi, pj) =
∑M
b=1 c(b, pi, pj) (4)

where c(b, pi, pj) = max(occ(b, pj) − occ(b, pi), 0). A shortest path in the partition
graph answers DC.

Example 3 (A Partition Graph). Consider a single row intensity matrix I = [3, 2, 3, 1].
The partition graph for this row problem is presented in Figure 3. Excluding the source

and sink, there are four levels, one corresponding to each element of I . The costs asso-
ciated with the edges are computing using Equation 4. For example, the cost associated
with the edge between the partition 〈1, 1, 1〉 of element 3 of layer 1 and partition 〈2〉
of element 2 represents the extra weight that must be added to decompose element 2 if
〈1, 1, 1〉 is used for element 3. In other words, as one moves along a path in this graph
the partition chosen to decompose the element at layer i contains the only weights that
can be reused to decompose the element at layer i+ 1 because of the C1 property. N

3

2

3

1

{1,1,1}

{1,1}

0

{2}

1

{2,1} 1

0
{3}

2

1

{1,1,1}
1

{2,1}

1

{3}

1

3

1

1

{1}

0

0

1
sink

0
source

3

2

1

Fig. 3. A partition graph, showing transition weights, for the single row intensity matrix
I = [3, 2, 3, 1]. A shortest path is indicated in bold.

This formulation is only a refinement over the Counter Model which gives an easy
way to show that this algorithm is correct. Consider a row I of n elements and its
partition graph G. A path Π = 〈p0, . . . , pn+1〉 in G defines a decomposition of I
whose cardinality is the length of the path: K =

∑n
i=0 c(pi, pi+1). From this path

Π , we can build a solution to the Counter Model (without the beam-on time con-
straint CM2) by setting Nb =

∑n
i=0 c(b, pi, pi+1) and Qbi = occ(b, pi). Constraint

CM1 is satisfied as pi is an integer partition of Ii. Constraint CM2 is ignored as we
are in the case of the unconstrained cardinality. Constraint CM4 is satisfied because
Nb =

∑n
i=0 c(b, pi, pi+1) =

∑n
i=1max(Q

b
i+1 − Qbi , 0) which is the SUMOFINCRE-

MENTS constraint. Finally, one can check the cardinality of the path (constraint CM3)
by computing the sum of the Nb variables:

∑M
b=1Nb =

∑M
b=1

∑n
i=0 c(b, pi, pi+1) =∑n

i=0

∑M
b=1 c(b, pi, pi+1) =

∑n
i=1 c(pi, pi+1) = K. As a path encodes a solution to

the Counter Model, and the length of the path is exactly the cardinality, the shortest
path gives the optimal K and an answer to DC. We now consider the single row prob-
lem when constraining the beam-on time.

C1 DECOMPOSITION-CARDINALITY WITH TIME CONSTRAINT (DCT)
Instance: A row matrix of n integers, I = [I1, . . . , In], positive integers K
and B.
Question: Find a decomposition of I into at most K C1 row matrices such that
the sum of its weights is at most B.

To deal with this problem we extend the previous graph with a resource for every edge:

r(pi, pj) =
∑M
b=1 b× c(b, pi, pj). (5)

Finding a shortest path Π = 〈p0, . . . , pn+1〉 in the partition graph whose sum of
weights,

∑n
i=0 r(pi, pi+1), is at most B is a shortest path problem with resource con-

straints (SPPRC). The two-resource SPPRC is better known as the shortest path prob-
lem with time windows (SPPTW), which was studied initially by [11]. A single time
window [0, B] can be added to the sink node, capturing constraint CM2 of the Counter
Model. The problem is NP-Hard, but pseudo-polynomial algorithms do exist based on
dynamic programming. An algorithm of complexity O(n2B) is given in [11], where n
is the number of nodes of the graph.

Example 4 (Encoding DCT as a SPPTW). The new partition graph of I = [3, 2, 3, 1],
with a cost and resource consumption per edge is given Figure 4. N

3

2

3

1 [0, B]

{1,1,1}

{1,1}

0,0

{2}

1,2

{2,1} 1,1

0,0
{3}

2,2

1,2

{1,1,1}
1,1

{2,1}

1,2

{3}

1,3

3,3

1,1

1,3

{1}

0,0

0,0

1,1
sink

0,0
source

3,3

2,3

1,3

Fig. 4. Encoding an example DCT problem.

This formulation of the single row problem corresponds to a simple FPT result.

Theorem 1 (Fixed-Parameter Tractibility of the Single Row Problem). Finding an
optimal solution to the DC and DCT problems is fixed-parameter tractable in the size
of the maximum element of the single-row intensity matrix, I .

Proof. Let k be the maximum element of the row matrix I . The number of edges in the
partition graph is bounded by |P (k)|2 × n because the number of nodes of a layer i is
the number of integer partitions of the corresponding integer value Ii. In this acyclic
graph, solving a simple shortest path problem can be done in O(|P (k)|2 × n). The
time complexity can be written as O(nf(k)), where f(k) = |P (k)|2, showing that
DC is fixed-parameter tractable in k. Similarly for DCT, using the pseudo-polynomial
algorithm of [11] we get a complexity of O(n2|P (k)|2B). B can be bounded by nk
giving a time complexity of O(n3f(k)), with f(k) = k|P (k)|2. �

In [9] a more sophisticated construction for the shortest path is presented giving an
O(n) complexity for DCT whereas our representation as a SPPTW gives a complexity
in O(n3). In [4] a global constraint, called the SUMOFINCREMENTS was proposed for
maintaining the C1 property and a bounds consistency algorithm in O(n) was given.
An O(nd2) arc-consistency algorithm can be obtained based on finding shortest paths.

Corollary 1. Generalised Arc Consistency on the SUMOFINCREMENTS constraint can
be achieved in O(nd2) where n is the number of variables and d the maximum domain
size.

Proof. We recall that SUMOFINCREMENTS({V1, . . . , Vn}, U) is equivalent to the ex-
pression

∑n−1
j=0 max(Vj+1 − Vj , 0) ≤ U with V0 = 0. Consider a layered graph in

which each layer corresponds to a variable Vj and each node of layer j corresponds to
the values of D(Vj). The cost associated with two values a ∈ D(Vj) and b ∈ D(Vj+1)
is simply max(b− a, 0). Consider an instantiation of all the Vj variables. The value of
the expression

∑n−1
j=0 max(Vj+1 − Vj , 0) is obviously given by the cost of the corre-

sponding path. Ensuring that the SUMOFINCREMENTS is GAC can be easily done by
checking that the value of the shortest path in the layered graph is less than the upper
bound of U . The shortest path from the source to all nodes and from all nodes to the
sink can be obtained inO(e) where e is the number of edges of the layered graph. Thus,
the filtering process can be done in O(nd2) where d is the maximum domain size. �

5 Shortest Path-based Models

5.1 A Shortest Path Constraint Programming Model

We index, in lexicographic order, the integer partitions of each element Iij of the
intensity matrix, and use an integer variable Pij to denote which partition is used
to decompose element Iij . For example, P (5) = {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉
, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, so Pij = 4 means that the weights 3, 1 and 1 are used to
sum to this element in the decomposition. The domain of Pij , denoted D(Pij) thus
ranges from 1 to |P (Iij)|. We also have a variableNb giving the number of occurrences
of weight b in the decomposition, similar to the Counter Model presented earlier.

Our CP model makes use of the SHORTESTPATH(G, {P1, . . . , Pn}, U) constraint,
which enforces U to be greater than the shortest path in a graph G. Our CP model
posts the SHORTESTPATH constraint over three different graphsG1(i),G2(i, b),G3(i),
which although topologically identical, are weighted using three different costs:

c1(pi, pj) =
∑M
b=1 c2(b, pi, pj)

c2(b, pi, pj) = max(occ(b, pj)− occ(b, pi), 0)
c3(pi, pj) =

∑M
b=1 b× c2(b, pi, pj)

(6)

Example 5 (Example of the Costs G1, G2, G3). Consider I = [3, 2, 3, 1]. The three
partition graphs are identical in structure, only the costs vary. G1, G2 for value b = 1
and G3 are shown in Figure 5, giving the three costs c1, c2, c3, respectively. N

Therefore, our CP model is summarised as follows:

Objective : Minimise(K) with K ∈ {0, . . . , B∗}
∀b ≤M Nb ∈ {0, . . . , B∗}
∀i ≤ m, j ≤ n, Pij ∈ {1, . . . , |P (Iij)|}

CP1 :
PM
b=1 b×Nb = B∗

CP2 :
PM
b=1 Nb = K

CP3 : ∀i ≤ m, SHORTESTPATH(G1(i), {Pi1, . . . , Pin}, K)
CP4 : ∀i ≤ m, b ≤M SHORTESTPATH(G2(i, b), {Pi1, . . . , Pin}, Nb)
CP5 : ∀i ≤ m, SHORTESTPATH(G3(i), {Pi1, . . . , Pin}, B∗)
CP6 : ∀i ≤ m, ∀j < m s.t Iij = Ii,j+1 Pij = Pi,j+1

3

2

3

1 [0, B]

{1,1,1}

{1,1}

0,0,0

{2}

1,0,2

{2,1} 1,1,1

0,0,0
{3}

2,2,2

1,0,2

{1,1,1}

1,1,1

{2,1}

1,0,2

{3}

1,0,3

3,3,3

1,1,1

1,0,3

{1}

0,0,0

0,0,0

1,1,1
sink

0,0,0
source

3,3,3

2,1,3

1,0,3

Fig. 5. Example of the three graph costs used in our CP model.

The C1 property of the decomposition is enforced by constraints CP4. The number
of weights of each kind, b, needed so that a C1 decomposition exists for each line i is
maintained as a shortest path inG2(b, i). As those shortest paths are computed indepen-
dently, maintaining a shortest path in G1(i) provides a lower bound on the cardinality
needed for the decomposition of each line i. This is the purpose of CP3, which acts as
a redundant constraint. Finally CP5 is a useful redundant shortest path constraint that
maintains the minimum value of B associated with each line, which can provide valu-
able pruning by strengthening CP1. CP6 breaks some symmetries by stating that the
same partition can be used for two consecutive identical elements in the same row. If
the two partitions were different, a solution could be obtained by using any of the two
partitions for the two elements. This could not violate the C1 property as the elements
are consecutive and any of those two partitions was also satisfying the C1 property.
Filtering the SHORTESTPATH Constraint. The shortest path constraint has already
been studied in Constraint Programming [7]. Here, the SHORTESTPATH constraint is
simple as the graph is layered and contains only non-negative costs. The constraint
SHORTESTPATH(G, {P1, . . . , Pn}, U) states that U is greater than the shortest path in
the partition graph defined by the domains of {P1, . . . , Pn} and the cost information
G. A layer i of the graph corresponds to variable Pi and the nodes of each layer to the
domain values of Pi. Our implementation of the constraint maintains for every node α
of layer i, the value of the current shortest path from the source, Sα←, and to the sink,
Sα→. These two integers are restorable upon backtracking.

If a value is pruned from a layer we proceed with forward (resp. backward) phases
to update the S← (resp. S→) values maintaining the simple following equations :

Sα← = minβ∈D(Pi−1)(S
β
← + c(β, α))

Sα→ = minβ∈D(Pi+1)(S
β
→ + c(α, β)) (7)

The constraint is partially incremental, so if none of the S← (resp. S→) values of the
nodes on layer i have been updated, the process stops and does not examine layer i+ 1
(resp. i − 1). At each update of a S← or S→, we prune the corresponding value if
S← + S→ is greater than the upper bound of U . The time complexity of the forward
and backward step including the pruning is O(e) where e is the number of edges in the
graph. Ssink← (or Ssource→) is used to update the lower bound of U . As the upper bound of
U is not updated, there is no need to reach a fixed point and arc-consistency is achieved
in O(e). Notice that this constraint could also be decomposed by introducing S← and

S→ as variables, stating Equations 7 as constraints as well as Sα← + Sα→ > U =⇒
Pi 6= α.

Example 6 (SHORTESTPATH using G1). Consider I = [3, 2, 3, 1] and U = 3. The
graph underlying SHORTESTPATH(G1, {P1, . . . , P4}, U) is shown in Figure 6. The two
restorable integers S← and S→ are given for each node in brackets. A node filled in
grey has been pruned because the sum of its two shortest paths is greater than 3. Values
{1, 1, 1}, {1, 1} and {1, 1, 1} are pruned respectively from P1, P2 and P3. N

3

2

3

1

(3,1)

{1,1,1}

(3,1)

{1,1}

0

(2,1)

{2}

1

(2,1)

{2,1}

1

0(1,2)

{3}

2

1

(4,0)

{1,1,1}
1

(3,0)

{2,1}

1

(3,1)

{3}

1

3

1

1

(3,0)

{1}

0

0

1

[3,0]

sink

0
[0,3]

source

3

2

1

Fig. 6. The SHORTESTPATH using Cost G1.

Note that our CP model is exponential in space as the implementation of the SHORT-
ESTPATH constraint maintains information for each integer partition of the elements of
the matrix. Therefore, the model strongly relies on the fact that the maximum intensity
in the matrix is bounded in practice and instances with small intensities remain open.
Search. The branching strategy first assign theK variable in a bottom-up fashion (from
its lower bound to its upper bound) until a feasible solution is found (the first feasible
solution found is thus an optimal one). The branching then considers the Nb variables
and proceeds with ‘minimum domain first’ variable ordering and lexicographic value
ordering (from the lower bound to the upper bound of each Nb). Once the Nb vari-
ables are known, the problem is split into m independent sub-problems (one per row).
Those problems are solved independently by branching on the P variables, again us-
ing minimum domain variable ordering and lexicographic value ordering. The rows are
examined in decreasing value of their beam on-time, similar to [1]. Branching on P is
mandatory, since the shortest paths on G2(i, b) are maintained independently for each
b. At this stage we are facing a multi-resource constrained shortest path problem as we
have a limit Nb of each resource b as well as a limit K on the shortest path in G1.

5.2 A Shortest Path Linear Programming Model

A simple shortest path formulation in Linear Programming (LP) is unimodular, guar-
anteeing that the continuous relaxation provides an integral solution. We investigated if

encoding the previous model based on shortest path in LP could lead to a strong lower
bound for the whole problem. The linear model simply introduces a boolean variable
for each possible integer partition of each element Iij of the intensity matrix.

∀b ≤M Nb ∈ {0, . . . , B∗}
∀i ≤ m, j ≤ n, p ≤ |P (Iij)| xijp ∈ {0, 1}

Again,Nb denotes the number of occurrences of value b in the decomposition ofB∗,
whereas xijp indicates whether partition p is used or not to sum to Iij . The consecutive
ones property is enforced as a shortest path problem on each line in the partition graphs
G1,G2 andG3. The nodes of those graphs are mapped to the xijp variables and the costs
are computed using Equations 6. xi,0,0 and xi,n+1,0 are two nodes acting as the source
and sink of the graph of line i, respectively. A linear model called SP (i) encoding the
shortest path problem for each line i uses one variable per edge:

∀j ≤ n, pα ≤ |P (Iij)|, pβ ≤ |P (Ii,j+1)| yi,j,pα,pβ ∈ {0, 1}.

The variables yi,j,pα,pβ indicate whether or not the edge between partition pα of
layer j and partition pβ of layer j + 1 is used in the solution of line i. The three short-
est path constraints introduced in the CP model can be encoded using a simple linear
model for shortest path by stating the flow conservation at each node. The following
constraints encode the flow conservation, the three costs of the paths and channels the
edge variables to the nodes variables, respectively.

∀j ≤ n, pα ≤ |P (Iij)|,
P
pβ≤|P (Ii,j−1)| yi,j−1,pβ ,pα =

P
pβ≤|P (Ii,j+1)| yi,j,pα,pβP

pα≤|P (Ii1)| yi,0,0,pα = 1P
pα≤|P (Iin)| yi,n,n+1,pα = 1P
b≤M Nb ≥

P
j,pα,pβ

c1(pα, pβ)× yi,j,pα,pβ
∀b ∈ [1, . . . , M] Nb ≥

P
j,pα,pβ

c2(b, pα, pβ)× yi,j,pα,pβ
B∗ ≥

P
j,pα,pβ

c3(pα, pβ)× yi,j,pα,pβ
∀j ≤ n, pα ≤ |P (Iij)|, xijpα =

P
pβ≤|P (ci,j+1)| yi,j,pα,pβ

∀j ≤ n, pα ≤ |P (Iij)|, xijpα =
P
pβ≤|P (ci,j−1)| yi,j−1,pβ ,pα

The overall model is written in the following way:

minimise
∑
b≤M Nb

∀i ≤ m SP (i)∑
b≤M b×Nb = B∗

The number of variables for this model is exponential as it depends on the number of
integer partitions of the maximum element of the matrix, but this is bounded in practice.

6 Experimental Results

We performed a direct comparison between our CP model and the current state-of-the-
art [1, 4] which showed our approach to be the fastest by more than two orders-of-
magnitude, as well as the most scalable. It solves all 340 instances in the benchmark

suite whereas the best known approach can solve only 259 of them1. Secondly, we eval-
uated the quality of the continuous relaxation of our LP model, showing they typically
were extremely close to optimal, and demonstrated that it could sometimes be useful
for giving lower bounds to the CP model, providing significant speed-up over the CP
model alone on large instances.

Table 1. Comparing the Shortest Path Model CPSP with the Counter Model.

Inst
CPSP Counter model

Time (seconds) Time (seconds)
NS min med avg max NS min med avg max

12-12-10 20 0.11 0.18 0.25 0.66 20 0.32 0.83 1.00 3.62
12-12-11 20 0.14 0.22 0.71 3.32 20 0.67 2.27 2.63 6.23
12-12-12 20 0.23 0.50 0.94 6.94 20 1.04 3.91 4.76 12.30
12-12-13 20 0.28 1.63 1.93 4.77 20 2.26 7.13 8.57 30.50
12-12-14 20 0.35 1.59 3.28 26.36 20 1.19 9.63 11.58 49.76
12-12-15 20 0.61 5.76 12.70 74.59 20 4.37 23.00 40.68 156.23
15-15-10 20 0.13 0.31 0.73 5.67 20 2.51 13.16 14.18 46.14
15-15-12 20 0.41 1.29 3.86 18.20 20 9.02 53.41 105.22 475.95
15-15-15 20 1.55 15.45 28.98 102.92 16 111.01 587.73 790.11 3409.69
18-18-10 20 0.24 0.46 1.01 5.88 20 26.22 135.03 183.91 851.34
18-18-12 20 0.47 3.07 6.00 19.36 18 121.84 1131.85 1371.88 4534.41
18-18-15 20 2.35 20.47 64.85 571.19 6 2553.80 3927.24 3830.12 4776.23
20-20-10 20 0.23 0.52 3.99 43.11 19 81.63 660.03 1190.01 3318.89
20-20-12 20 0.72 5.10 15.34 83.03 10 666.42 2533.41 3105.34 6139.53
20-20-15 20 3.15 61.73 180.70 697.51 0 - - - -
30-30-10 20 0.88 2.97 76.77 474.26 0 - - - -
40-40-10 20 1.42 11.33 468.19 3533.22 0 - - - -

Evaluation of the CP Model. We compared our CP Shortest Path model (CPSP), from
Section 5.1, against the Counter model of [1, 4], which is the best known approach to
this problem. The same 340 problem instances and an executable binary from [1] were
kindly provided by the authors, facilitating a direct and fair comparison. The bench-
marks comprised 17 categories of 20 instances ranging in size from 12× 12 to 40× 40
with maximum elements between 10 and 15, denoted m-n-M in our results tables. Ta-
ble 1 reports the number of instances solved in each category (column NS), along with
the minimum, median, average and maximum time for each category using a time limit
of 2 hours on an iMac2. Our CPSP approach clearly outperforms the Counter Model
as the size grows. On 20-20-10 instances where the Counter Model fails to solve one
instance within two hours, the speed-up is almost two orders-of-magnitude. Our CP
model is implemented in Choco3 and Java, whereas the Counter Model is implemented
in Mercury4 and compiled to C. Results in [9] use 15 × 15 intensity matrices with a
maximum element of 10, requiring up to 10 hours to solve using a 2GHz workstation.

Evaluation of the LP Model. Although the IP shortest-path model is not able to com-
pete with CPSP, the continuous relaxation (LP) is very tight and leads to excellent lower
bounds, which are often optimal for large instances. Table 2 reports, for each category,

1 Benchmark suite available from http://www.4c.ucc.ie/datasets/imrt
2 Mac OS X 10.4.11, 2.33 GHz Intel Core 2 Duo, 3 GB 667MHz DDR2 SDRAM.
3
http://choco.sourceforge.net

4
http://nicta.com.au/research/projects/constraint_programming_platform

Table 2. The quality and time taken to compute the linear programming relaxation.

Inst %Opt Avg time Inst %Opt Avg time
12-12-10 95 1.76 18-18-10 100 3.96
12-12-11 85 2.52 18-18-12 95 16.91
12-12-12 95 5.00 18-18-15 100 93.97
12-12-13 95 7.91 20-20-10 100 4.69
12-12-14 95 13.79 20-20-12 90 18.41
12-12-15 60 26.91 20-20-15 95 136.97
15-15-10 95 2.61 30-30-10 95 13.40
15-15-12 85 9.86 40-40-10 100 24.86
15-15-15 85 50.04

Table 3. Comparing the CP model with and without initial lower bounds from the LP relaxation.

Inst
CPSP Hybrid = LP + CPSP

Time (seconds) Nodes Time (seconds) Nodes
NS min med avg max avg NS min med avg max avg

12-12-10 20 0.05 0.10 0.14 0.60 125.55 20 1.25 1.79 1.86 2.78 108.10
12-12-11 20 0.07 0.12 0.43 2.25 259.25 20 1.82 2.56 2.80 5.26 201.20
12-12-12 20 0.14 0.32 0.66 5.47 194.65 20 3.24 5.11 5.38 8.94 156.35
12-12-13 20 0.18 1.24 1.46 3.70 250.00 20 4.16 8.02 8.64 15.95 171.80
12-12-14 20 0.23 1.17 2.61 21.16 373.25 20 5.39 14.63 15.40 26.07 298.00
12-12-15 20 0.40 4.64 10.65 63.98 611.85 20 16.39 30.36 35.27 85.61 518.05
15-15-10 20 0.07 0.20 0.51 4.07 301.15 20 1.70 2.54 2.76 5.04 177.45
15-15-12 20 0.25 1.05 3.24 15.75 389.15 20 7.61 10.22 11.66 25.50 289.50
15-15-15 20 1.13 13.08 25.37 89.55 938.35 20 31.13 56.63 62.75 138.34 613.65
18-18-10 20 0.16 0.34 0.82 5.30 367.05 20 2.50 3.87 4.24 6.31 296.30
18-18-12 20 0.25 2.66 5.31 18.10 598.95 20 11.73 18.75 18.83 31.84 409.50
18-18-15 20 1.81 17.28 56.03 494.07 1366.20 20 70.40 96.85 105.86 169.47 622.35
20-20-10 20 0.14 0.41 3.56 39.83 1313.40 20 2.52 5.31 5.20 9.84 564.15
20-20-12 20 0.45 4.59 13.98 73.91 1329.30 20 12.51 19.25 24.01 81.89 836.75
20-20-15 20 2.44 58.04 159.50 612.43 4435.65 20 92.43 155.19 207.95 635.92 2295.70
30-30-10 20 0.52 2.60 75.52 472.25 15771.05 20 10.73 14.87 26.55 161.09 7144.85
40-40-10 20 0.91 6.89 466.68 3631.50 130308.80 20 24.27 28.98 49.07 209.02 23769.35

the percentage of instances for which the optimal value of the relaxation matches the
real optimal value, as well as the average time of LP. Table 3 compares the CP model
(CPSP) against a hybrid approach in which lower bounds are first computed based on
the LP to start the bottom-up approach of CPSP5. The LP was solved using the barrier
algorithm with CPLEX (version 10.0.0). Although the hybrid model is often slowed
down by the continuous relaxation (the minimum times of CPSP are far better than the
minimum times of the hybrid), it scales better on the 40-40-10 instances. On 40-40-10,
the hybrid approach is on average 9 times faster than CPSP.

7 Conclusion

We have provided a new approach to solving the Multileaf Collimator Sequencing Prob-
lem. Although the complexity of the resulting algorithm depends on the number of in-
teger partitions of the maximum intensity, which is exponential, it can be used to design
very efficient approaches in practice. We proposed a new CP and Linear models encod-
ing each line as a set of shortest path problems and obtained two orders-of-magnitude

5 These experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.

improvements compared to the best known method for this problem. The linear model
is a very tight formulation giving excellent lower bounds for the cardinality. A simple
hybrid approach, using the continuous relaxation at the root node before starting the
search with CP, outperforms the CP model alone on large instances.

The resulting approaches strongly rely on the fact that the maximum radiation in-
tensity is often small compared to the size of the matrix. It is, therefore, interesting to
determine the complexity of the algorithm by the maximum intensity. [1] explains that
in the instances available to them, the maximum intensity does not exceed 20 whereas
the collimators can reach 40 rows. This limitation might, thus, not be critical in prac-
tice. However many possibilities remain to be investigated to allow better scaling in
terms of the maximum element of the intensity matrix. The LP model typically has an
exponential number of variables and could certainly be solved more efficiently using
column generation techniques. Reasoning on the CP models could be strengthened by
solving resource constrained shortest path for each row using dynamic programming
and avoiding any branching on the partition variables. Finally, there are other objective
functions to consider in this problem, which we will study in the future.

Acknowledgements. This work was supported by Science Foundation Ireland under
Grant Number 05/IN/I886. We are indebted to Sebastian Brand for providing his bench-
mark instances and an executable version of the solver presented in [1].

References
1. D. Baatar, N. Boland, S. Brand, and P.J. Stuckey. Minimum cardinality matrix decomposition

into consecutive-ones matrices: CP and IP approaches. In CPAIOR, pages 1–15, 2007.
2. D. Baatar, H.W. Hamacher, M. Ehrgott, and G.J. Woeginger. Decomposition of integer ma-

trices and multileaf collimator sequencing. Discrete Applied Mathematics, 152(1-3):6–34,
2005.

3. G.K. Bahr, J.G. Kereiakes, H. Horwitz, R. Finney, J. Galvin, and K. Goode. The method of
linear programming applied to radiation therapy planning. Radiology, 91:686–693, 1968.

4. S. Brand. The sum-of-increments constraints in the consecutive-ones matrix decomposition
problem. In SAC’09: 24th Annual ACM Symposium on Applied Computing, 2009.

5. R. E. Burkard. Open problem session. In Oberwolfach Conference on Combinatorial Opti-
mization, November 2002.

6. K. Engel. A new algorithm for optimal multileaf collimator field segmentation. Discrete
Applied Mathematics, 152(1-3):35–51, 2005.

7. T. Gellermann, M. Sellmann, and R. Wright. Shorter path constraints for the resource con-
strained shortest path problem. In CPAIOR, pages 201–216, 2005.

8. H.W. Hamacher and M. Ehrgott. Special section: Using discrete mathematics to model mul-
tileaf collimators in radiation therapy. Discrete Applied Mathematics, 152(1-3):4–5, 2005.

9. T. Kalinowski. The complexity of minimizing the number of shape matrices subject to min-
imal beam-on time in multileaf collimator field decomposition with bounded fluence. Dis-
crete Applied Mathematics, in press.

10. M.J. Maher. Analysis of a global contiguity constraint. In In Workshop on Rule-Based
Constraint Reasoning and Programming, 2002.

11. D. Martin and S. Francois. A generalized permanent labelling algorithm for the shortest path
problem with time windows. INFOR, 26(3):191–212, 1988.

12. G. Pesant. A regular language membership constraint for finite sequences of variables. In
CP, pages 482–495, 2004.

