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NP-hard sub-problems involving costs:

examples of applications and Lagrangian based
filtering

Hadrien Cambazard
G-SCOP - Université de Grenoble
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Context and motivation

— Illustrative application: the Traveling Purchaser Problem
— Optimization versus Satisfaction

— Combinatorial versus polyhedral methods

Propagation based on Lagrangian Relaxation
— Lagrangian duality

— Filtering using Lagrangian reduced costs

— Let’s try on the Nvalue global constraint

Overview of some NP-Hard Constraints with costs

— Multi-cost reqular, Weighted-circuit, Weighted-Nvalue, Bin-packing
with usage costs

Examples of applications



Illustrative Application
The Traveling Purchaser Problem



Traveling Purchaser Problem (TPP)

/ /m . /I
=]

- Gingerbread
- Carrot cake

- Tomatoes

- Zucchini

- Chicken

- Irish cheddar

Gingerbread 12€
Carrot cake 7€

2€
7€

AL 4€

Tomatoes 4€
Zucchini 3€
Chicken 5€

Irish cheddar 4€/

11€

A

Gingerbread 9€
Carrot cake 6€
Tomatoes 5€
Zucchini 2€
Chicken 4€
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Chicken 4€

— A set of items

— A set of markets,
each selling some of
the items at
different prices

— The traveling costs
between markets
(and from/to home)



Traveling Purchaser Problem (TPP)
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- Gingerbread
- Carrot cake

- Tomatoes

- Zucchini

- Chicken

- Irish cheddar

2€ /! N
=]
Gingerbread 12€ Gingerbread 9€
Carrot cake 7€ Carrot cake 6€
Tomatoes 5€
Zucchini 2€
Chicken 4€
2€
7€
/n\\
4€
Tomatoes 4€ I—’! "-4\
Zucchini 3€ Fq L]
Chicken 5€
7Giﬁ]gerbread 9€

Travelingcost=6+2+3 =11
Shoppingcost=4+4+9+6+2+4=29

Irish cheddar 4€
/ Carrot cake 6€

Tomatoes 3€
Zucchini 2€
Chicken 4€

— A set of items

— A set of markets,
each selling some of
the items at
different prices

— The traveling costs
between markets
(and from/to home)

Total cost =40



Traveling Purchaser Problem (TPP)

Gingerbread 9€
Carrot cake 6€
Tomatoes 5€
Zucchini 2€

Find the route minimizing the

sum of traveling and shopping
costs to buy all the items

Chicken 4€

M\
Sim

éngerbread 9€
Carrot cake 6€
Tomatoes 3€
Zucchini 2€
Chicken 4€

'T. Ramesh, 1981]
G. Laporte, 2003]
J. Riera-Ledesma, 2006]

j> Numerous heuristics L.Gouveia, 2011]

Generalization of TSP

Best known exact method based on
Branch and Cut and Price. [G. Laporte, 2003]




Let’s start modeling

Variables:

next; € {0,1,...,n} :the successor of market i in the shopping trip
next; = ¢ (i not visited)

sk € {i|v; € My} : the market where item k is bought
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Let’s start modeling

Variables:

next; € {0,1,...,n} :the successor of market i in the shopping trip
next; = ¢ (i not visited)

sk € {i|v; € My} : the market where item k is bought

Cs, >0 : the price paid for item k

Ct; >0 . the price paid for traveling from market i

to its successor

Minimize ), Ct; + >, Csg

Price of item k in market i

/
ELEMENT(C's, |bg1, - . oy beml, sk) VE

ELEMENT(Cti, [dit, - . {dij) - . ., din], next;) Vi Traveling cost

fromitoj
... the next variables must form a circuit + single loops




Optimization in CP

e Objective is decomposed (using Element constraints):
— Resulting lower bound is often very weak
— Infeasible values are eliminated but not sub-optimal ones.

e sub-optimal = infeasible regarding the best known
upper-bound



Global constraint

Optimization in CP | o ¢

grad(X,v)

N B ™
R ~~ cost-based
optimization

P filtering

component
p R .*J algorithm

domain reduction
variable instantiation

o COSt-based ﬁlte rlng | (Picture from [Foccaci, 2002])

— [Focacci, Lodi, Milano, 2002]: Embedding relaxations in
global constraints for solving TSP and TSPTW

— Relaxations based on assignments, spanning tree
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Global constraint

Optimization in CP | o ¢

grad(X,v)

e g <= cost-based
optimization
P filtering

component
P ‘ ".‘J algorithm

domain reduction
variable instantiation

o COSt-based ﬁlte rlng | (Picture from [Foccaci, 2002])

— [Focacci, Lodi, Milano, 2002]: Embedding relaxations in
global constraints for solving TSP and TSPTW

— Relaxations based on assignments, spanning tree

* Linear relaxation of global constraints

— [Refalo, 2000]: Linear formulation of Constraint
Programming models and Hybrid Solvers

* Back to the TPP: what cost-based filtering can be
done ?



TPP: cost based filtering ?

* The traveler has to visit a minimum number of
markets to buy everything

— Lower bound of traveling cost

* The traveler can not visit too many markets
(traveling cost would be too high w.r.t to known
upper bound)

— Lower bound of shopping cost

e Number of markets visited: /Nvisit



Problem structure 1 : Hitting set

* Look only at feasibility

 Can we buy everything in less than /Nv1S1t markets ?



Problem structure 1 : Hitting set

* Look only at feasibility

 Can we buy everything in less than /Nv1S1t markets ?

Nvisit = 3

Hitting Set Problem

Gingerbread:
Carrot cake:

Organic tomatoes:

Zucchini:
Chicken:

Irish cheddar:

{M2, M3, M6, M7}
{M2, M5}

{M1, M2, M4, M6}
{M3, M4, M7}
{M1, M4}

{M8, M9}
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Problem structure 1 : Hitting set

* Look only at feasibility

 Can we buy everything in less than /Nv1S1t markets ?

:> Hitting Set Problem

Gingerbread: {M2, M3, M6, M7}
Nfuisit — 3 Carrot cake: {M2, M5}

Organic tomatoes: {M1, M2, M4, M6}
Zucchini: {M3, M4, M7}
Chicken: {M1, M4}

Irish cheddar: {M8, M9}

(M2, M4, M8}



Problem structure 1 : Hitting set

* Look only at feasibility

 Can we buy everything in less than /Nv1S1t markets ?

In CP:
AtMostNValue

Hitting Set Problem

Gingerbread:
Carrot cake:

Organic tomatoes:

Zucchini:
Chicken:

Irish cheddar:

(M2, M3, M6, M7}
(M2, M5}
(M1, M2, M4, M6}

{M3, M4, M7}
{M1, M4}

{M8, M9}



Problem structure 2 : p-median

* Look only at feasibility + shopping cost

 What is the cheapest way to buy everything in less than
Nuvisit markets ?




Problem structure 2 : p-median

* Look only at feasibility + shopping cost
 What is the cheapest way to buy everything in less than

Nuvisit markets ?
» p-median Problem
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Problem structure 2 : p-median

* Look only at feasibility + shopping cost

 What is the cheapest way to buy everything in less than
Nuvisit markets ?

:> p-median Problem

Chicken MG Nvisit = 3
)
M7 {éﬂ:“]\ Carrot
M1 /1IN R M5 cake 7€
M\ Al /I /Il\'lll %\
= =]
8€ — Al 5€ B
Organic
tomatoes 4€

M4 S M3
MmN 2€ 7ucchini M2 Gingerbread Irish | 3¢ /1IN
m ] gy [ometread [ e 2€ 7Y




Problem structure 2 : p-median

* Look only at feasibility + shopping cost

 What is the cheapest way to buy everything in less than

Nuvisit markets ?

v

In CP:

AtMostNValue
with costs ?

Chicken
M1
M\
8€ A
M4
MmN _ %€
H

:> p-median Problem

M6 Nvisit = 3
M\
M7 B Carrot
!.I!‘.\ - M5 cake 7€
'LTD
= N\ L
S
v 5€ @Q
Organic
tomatoes 4€
M3 s | 2€ 7
Zucchini /E"é]\ Gingerbread ch(;:dar A g%




Problem structure 3 : k-TSP

* Look only at traveling cost
* What is the cheapest way to visit at least Nvisit markets ?



Problem structure 3 : k-TSP

* Look only at traveling cost
* What is the cheapest way to visit at least Nvisit markets ?

:> k-TSP problem

M6 Nvisit = 3
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S IEETEEE it SR ~

w A t I

i HC RS | DR {ég
=[] -

M8
e s I\



Problem structure 3 : k-TSP

* Look only at traveling cost

* What is the cheapest way to visit at least Nvisit markets ?

» k-TSP problem




Problem structures

Nvisit € {1,..., B} : Number of visited markets
TotalCost = TravelingCost + ShoppingCost

Relaxation Nature of the Value of the How to solve / Key
problem parameter propagate it ? propagation
Feasibility Hitting Set Nvisit
(cardinality)
Feasibil!ty + | ShoppingCost
Shopping p-median p = Nvisit Nuvisit
cost VU1 S1t
Traveling :
Cost TSP L — Nuisit TravelingCost
Nuvisit




Problem structures

Nvisit € {1,..., B} : Number of visited markets
TotalCost = TravelingCost + ShoppingCost

Relaxation Nature of the Value of the How to solve / Key
problem parameter propagate it ? propagation
Feasibility Hitting Set Nvisit
ATMOSTN VALUE (cardinality)
Feasibil!ty + | ShoppingCost
Shopping p-median p = Nvisit ..
cost WEIGHTED-NVALUE Nvisit
Traveling :
Cost TSP L — Nuisit Travelzeg'Cost
Close to Nuvisit

WEIGHTED-CIRCUIT




So far on the TPP

* How to reason about NP-Hard sub-problems involving costs ?
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* Can CP be competitive with “advanced linear programming
methods” ?

Best known exact method based on
Branch and Cut and Price.



So far on the TPP

How to reason about NP-Hard sub-problems involving costs ?

Can CP be competitive with “advanced linear programming
methods” ?

Best known exact method based on
Branch and Cut and Price.

Branch and Cut and Price is the state of the art exact
framework for a large class of problems related to routing :

TSP, TSPTW, TPP, TTP, VRP, ...
Can we question that ?



Plan

2. Propagation based on Lagrangian Relaxation
— Principles of Lagrangian duality
— Filtering using Lagrangian reduced costs
— Let’s try on the Nvalue global constraint

3. Overview of some NP-Hard Constraints with costs

— Multi-cost reqular, Weighted-circuit, Weighted-Nvalue, Bin-packing
with usage costs

4. Examples of applications



Propagation based on Lagrangian

Relaxation
Principles, filtering, Experimentations with NValue



2- Lagrangian relaxation

Shortest path with resource
constraints

Min z = ZC@jxij
path conservation (1)

Y otijzi; <T (2)
z;j € {0,1}

Simplified example taken from Network flows of Ahuja, Magnanti, Orlin



2- Lagrangian relaxation

Shortest path with resource
constraints

Min z = ZC@jLBi]‘
path conservation (1)

Y otijzi; <T (2)
z;j € {0,1}

(c12,t12) = (1,1)

Asolution:< » =10+ 124+2 =24

T=10 {3313 — 173335 — 173356 =1
time=3+3+2<10



2- Lagrangian relaxation

Shortest path with resource

constraints Forall A >0 : Shortest path
Min z =2, cij; Min w(A) =3 cijai — AT = 3 tiji;)
path conservation (1) = > _(cij + Atiz)wi; — AT
Stz <T (2 path conservation (1)
ydry =
T;i € O, 1
z;; € {0,1} Iz j €10,1; T
(c12,t12) = (1,1)

Asolution:< » =10+ 124+2 =24

T=10 {3313 — 173335 — 173356 =1
time=3+3+2<10



2- Lagrangian relaxation

Shortest path with resource

constraints Forall A >0 : Shortest path
Min z = Z CijTij Min w()‘) — Z CijLij — )‘(T - Ztisz'j)
path conservation (1) = 2(cij + Alig)wij — AT
Stiey <T  (2) path conservation (1)
;i € 10,1
zi; € {0,1} 2 i €101 L(\)

Lagrangian sub-problem for A = 2




2- Lagrangian relaxation

Forall A >0 :
Min ’LU()\) = Zcijxij — )\(T — Ztijxij)
= Ci'—l-)\ti'wi'—)\T
path conservation (1) 2. _‘7 )%
path conservation (1)
Yotijriy < T (2)
B x5 € {0,1}
zij € {0,1} Pl T=10 L\

Min z = Z CijTgj

z=104+1242 =24

Forall A>0:
Any feasible solution T of Pis also feasible for L(\) and Z > w(\)
Sowe have: 2" > w*(\)
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2- Lagrangian relaxation

Forall A >0 :
Min w()\) = Zcijxij — )\(T — Ztijxij)
= Ci'—l-)\ti'wi'—)\T
path conservation (1) 2. _‘7 )%
path conservation (1)
Yotijriy < T (2)
B x5 € {0,1}
zij € {0,1} Pl T=10 L\

Min z = Z CijTgj

zZ =15 = 27

Forall A>0:
Any feasible solution T of Pis also feasible for L(\) and Z > w(\)
Sowe have: 2" > w*(\)



2- Lagrangian relaxation

Forall A >0 :

Min z = Z CijTij

path conservation (1)

Stijwy <T  (2)
xij € {07 1} P
Forall A >0:

Any feasible solution I of Pis also feasible for L(\) and Z > w(\)
Sowe have: 2" > w*(\)

(P)

Min w(X) = ) cijwiz — MT — Y tijzij)
= Z(Cij + )\tz’j)ajij — AT

path conservation (1)

ri; €{0,1}




2- Lagrangian relaxation

Min z = Z CijTij

> tijwiy <T
;5 € {0, 1}

path conservation (1)

(2)

P

Forall A >0:

Forall A >0 :

Min w(A) = Y cijzij — NT — - tijzij)
= 2.(cij + Atij)aij — AT
path conservation (1)

ri; €{0,1}

Any feasible solution I of Pis also feasible for L(\) and Z > w(\)

Sowe have: z* > w*(\)

(P)

Lagrangian Dual:
L* = maxx>o w*()\)



2- Lagrangian relaxation

Forall A>0 :

Min w(A) =) cijzi; — MT — > tijxi;)
=) _(cij + Atij)zij — AT

path conservation (1)

Tij € {0,1} L()\)
L* = maxx>o w*()\)
* Note:
— Changing )\ does not affect the set of feasible solutions
of L(\)

— So the cost of given solution of L(\) can be seen as a
linear function of A



2- Lagrangian relaxation

Forall A>0 :

Min w(A) =) cijzi; — MT — > tijxi;)
= Z(CU + )\tw)az” —\T
path conservation (1)

Tij € {O, 1}

L\

L* = maxx>o w*()\)

-10

1  Note:

— Changing A\ does not affect the set of
feasible solutions of L(\)

- — So the cost of given solution of L()) can
be seen as a linear function of A

i L<(10+3\) + (12430 + (2+2)) — 14X
=24—6) (1-3-5-6)

>
1251'15'\)‘

1-3-5-6



-10

2- Lagrangian relaxation

Forall A>0 :

Min w(A) =) cijzi; — MT — > tijxi;)
=) _(cij + Atij)zij — AT

path conservation (1)

Tij € {O, 1} L()\)
L* = maxx>o w*()\)
*
] ] ] ] — D)
1 2 3 4 5

1-3-5-6

Max L

L <10+ 3N F (124 3N + (2+ 2X) — 14X
=24— 6N (1-3-5-6)
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2- Lagrangian relaxation

Forall A>0 :

Min w(A) =) cijzi; — MT — > tijxi;)
=) _(cij + Atij)zij — AT

path conservation (1)

Tij € {O, 1}

L\

L* = maxx>o w*()\)

B

U

1—3—%—3(6

1-3-5-6

Max L

L < (10430 4+ (124 3\) + (24 2)) — 14A
=24 — 6\ (1-3-5-6)

IL <15 — 4N (1-3-2-5-6)




2- Lagrangian relaxation

Forall A >0
Min w(A) =) cijzi; — MT — > tijxi;)
= > .(cij + Abij)mij — AT
path conservation (1)

Tij € {0, 1}

L\

L* = maxy>o w*(\) T=14

L Max L

7 1-2-4-6 L <344\ (1246

L <14 (1-2-4-5-6)

L<5+)\ (1256

L<13—)\ (13246

L <24 — 5\ (13-2-45-6)

L <15 —4)\ (1-3-2-5-6)

[L < (10 +3X) + (12 3X) + (2 F 2X) — 14N
=24 — 6 (1-3-5-6)
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2- Lagrangian relaxation

L L* = maxy>o w*(\)

L <3+4)\

Ao =0

L <54

L <24 -6\

Subgradient algorithm:

A1 max(0, A\, + p(> ;2% —T))
prt1 = po(3/5)"
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2- Lagrangian relaxation

L 4 L™ = maxy>q w*()\) Subgradient algorithm:
] L3440 | \gyq < max(0, A\, + u(>] tiz* = T))

2 \ pkt1 = po(3/5)"

. L<5+2A
Ao =0
o ,LL()_I
L <24—5) \ 4
A T
L < 24— 6) p1 = 0.6

Ao =0 A =4

po =1
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2- Lagrangian relaxation

L 4 L™ = maxy>q w*()\) Subgradient algorithm:

L<3+4h | Apiq < max(0, A\ + p(d ] tijxk —T))

2 \ pkt1 = po(3/5)"

o L<54+\
Ao =0
o ,LL()_I
L <24 -5\
)\ )\1 =4
L <24—6) p1 = 0.6
>\O:0 )\2 )\1:4
=

po =1



2- Lagrangian relaxation

L L™ = maxy>q w* ()\) Subgradient algorithm:
L3440 | \gyq < max(0, A\, + u(>] tiz* = T))
prt1 = po(3/5)"

Ao =0
po =1
AN =4
H1 = 0.6
Ao =1
Lo = 0.6 = 0.36
A3 = 1.36
o =1 U3 = 0.6 = 0.216

Ay = 1.57



2- Lagrangian relaxation

L L™ = maxy>q w* ()\) Subgradient algorithm:
L3440 | \gyq < max(0, A\, + u(>] tiz* = T))
prt1 = po(3/5)"

Ao =0
po =1
A =4
H1 = 0.6
>\O =0 )\2)\3)\4 )\1 =4
Ay =1
ts = 0.6% = 0.36
A3 = 1.36
o =1 us = 0.6% = 0.216
To ensure convergence, we should have: Ag = 1.57

tr — 0 and Z?Zl [ — 00



2- Lagrangian relaxation - Filtering

) L <3+4A\

<5+

-10

L <24 -6

— We can filter at any iteration of this algorithm using the
current Lagrangian subproblem and its w*(\)



2- Lagrangian relaxation - Filtering

Ao = T=14

) L <344\




2- Lagrangian relaxation - Filtering

L <344\

-10

<5+

L <24 -6

Ao = 1 T=14

w*(1) =20—-14=6 <2z’

Suppose we know an upper bound of Z = 15



2- Lagrangian relaxation - Filtering

Ao = 1 T=14

) L <3+4A\

<5+

-10

L <24—6) w (1) =20—-14 =6 < z*

Suppose we know an upper bound of Z = 15

We compute shortest path from
source to all other nodes and
from all other nodes to sink



2- Lagrangian relaxation - Filtering

Ao = 1 T=14

) L <3+4A\

<5+

-10

L <24—6) w (1) =20—-14 =6 < z*

Suppose we know an upper bound of Z = 15
(11-9) (13-8)

(2) Wiy =134+ (15) +4-14=18>Z=15= 235 =0
(8)



2- Lagrangian relaxation - Filtering

Ao = 1 T=14

) L <3+4A\

w*(1) =20—-14=6 <2z’

Suppose we know an upper bound of Z = 15

:13+(15)+4—14:18>§:15:>£U35:0

[Sellmann, 2004]

(zo-o) — Lagrangian dual is changed !
does it affect convergence ?



2- Lagrangian relaxation - Filtering

o Ao = 1 T=14
™ L <34+4)\

w*(1) =20—-14=6 <2z’

Suppose we know an upper bound of Z = 15

— Lagrangian dual is changed [Sellmann, 2004]

(20-0)  does it affect convergence ?

— Filtering takes place near L* most of the
time but not necessarily

What values of \ are good for filtering ?



Plan

— Let’s try on the Nvalue global constraint

3. Overview of some NP-Hard Constraints with costs

— Multi-cost reqular, Weighted-circuit, Weighted-Nvalue, Bin-packing
with usage costs

4. Examples of applications



3- NValue

NVALUE(N, [Xq,..., X))
— Enforce N to be the number of distinct values appearing in the set X of
variables

D(X1)=11,2,3,4,5, 6}
D(X5) ={2, 4}
D(X3) ={1, 2}
D(Xy) =11, 2,3}
D(X5) = 4,5}

D(X¢) ={4,5}

D(N) ={1, 2}

NVALUE(2,(2,2,2,2,4,4,2])



3- NValue

NVALUE(N, [ X

— Enforce N to be the number of distinct values appearing in the set X of
variables

UE(

[2, 2,2,2,4,4,2])

D(X1)={1,2,3,4,5, 6}
D(X2) ={2, 4}

D(X3) =11, 2}

(X4) =11, 2, 3}

X5) =1{4,5}

(
(X6) ={4,5)
(V) ={1, 2}

o0 T O

X6
N)



3- NValue

NVALUE(N, [Xq,..., X))
— Enforce N to be the number of distinct values appearing in the set X of

variables
D(X1)=1{1,2,3,4,5, 6} D(X1)={1,2,3,4,5, 6}
D(X3) ={2, 4} D(X3) ={2, 4}
D(X3) ={1,2) D(X3) ={1, 2}
D(X4) ={1, 2, 3} D(X,) =11, 2, 3}
D(X5) ={4,5} D(Xs5) ={4,5}

D(Xe) = {4,5} D(Xs) ={4,5}

D(N) ={1,2} D(N) ={1, 2}

NVALUE(2,(2,2,2,2,4,4,2])

* Enforcing GAC is NP-Hard
» Several lower bounds proposed by [Hebrard et al, 2006]



3- NValue

NVALUE(N, [Xq,..., X))

— Enforce N to be the number of distinct values appearing in the set X of
variables

D(Xl) = {1; 2; 3; 4; 5/ 6}
D(

Xs) ={2, 4}
D(X3) =11, 2}
D(X4) =141, 2, 3}
D(X5) ={4,5}
D(X¢) ={4,5}
D(N) ={1, 2}

* Enforcing GAC is NP-Hard
* Lower bound of N obtained by a greedy computing an
independent set [Hebrard et al, 2006]
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— Enforce N to be the number of distinct values appearing in the set X of
variables

D(Xl) = {1; 2; 3; 4; 5/ 6}
D(

Xs) ={2, 4}
D(X3) =11, 2}
D(X4) =141, 2, 3}
D(X5) ={4,5}
D(X¢) ={4,5}
D(N) ={1, 2}

* Enforcing GAC is NP-Hard
* Lower bound of N obtained by a greedy computing an
independent set [Hebrard et al, 2006]



3- NValue

NVALUE(N, [X1,..., X,])

* Propagating a sharp lower bound of N is NP-Hard

 The best lower bound proposed in [Bessiere et al, 2006] is based on LP-
relaxation of:

Min 221 Vi

ZZED(XJ)ylzl ijl,,n
yr,;G{O,l} VieV

m: number of values
n: number of variables
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NVALUE(N, [X1,..., X,])

* Propagating a sharp lower bound of N is NP-Hard

 The best lower bound proposed in [Bessiere et al, 2006] is based on LP-

relaxation of:
Forall (A1,...,An) >0
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NVALUE(N, [X1,..., X,])

* Propagating a sharp lower bound of N is NP-Hard

 The best lower bound proposed in [Bessiere et al, 2006] is based on LP-

relaxation of:
Forall (A1,...,An) >0

Min Zwil Yi Min wy = Z:r;l Yi + Z?:l A (L — ZieD(Xj) Yi)
Zz‘eD(X-) yi = 1 Vi=1,...,n =iz (1~ ZJ’I'L'GD(XJ-) Aj)yi + Z?:l Aj

* No constraints in the Lagrangian subproblem
* Easily solved by inspection :

Set y; to 1if (1 =3 1 ,cp(x,)Aj) <0
* Filtering is also done “for free”

m: number of values
n: number of variables



3- NValue

NVALUE(N, [X1,..., X,])

* Propagating a sharp lower bound of N is NP-Hard

 The best lower bound proposed in [Bessiere et al, 2006] is based on LP-

relaxation of:
Forall (A1,...,An) >0

Min Zwil Yi Min wy = Z:r;l Yi + Z?:l A (L — ZieD(Xj) Yi)
Zz‘eD(X-) yi = 1 Vi=1,...,n =iz (1~ ZJ’I'L'GD(XJ-) Aj)yi + Z?:l Aj

* No constraints in the Lagrangian subproblem
* Easily solved by inspection :

Set y; to 1if (1 =3 1 ,cp(x,)Aj) <0
* Filtering is also done “for free”

m: number of values
n: number of variables

[Mouthy, Deville, Dooms, JFPC 2007]
A global constraint for the set covering problem



3- NValue

NVALUE(N, [X1,...,X,])

| A A
“‘ """""" ’)
N i

v VBN v

dominating set of queens

(picture from [Hebrard et al, 2006])

x; € S; C {1,...,n%}: the queen attacking cell i

Minimize z
NVALUE(z, [z1,...,2n2]),
€T; € Sz C {1,...,’”2}



3- NValue

NVALUE(N, [ X1, ..., X))

precision : 1074
maxlter : 1000

Solve the Linear relaxation +
reduced cost filtering

r - N
Greedy bound + filtering po = 10°
o pr = 1/k g = po(0.95)"
Q|N MD LR1 LR2 LP

Back Time (s) Back | Time (s) Back | Time(s) | Back | Time (s)
SAT 6 |3 |15 0.01 7 0.15 12 0.1 10 0.4
SAT 7 |4 | 386 0.13 55 0.6 128 0.3 120 3.5
SAT 8 |5 [ 2541 0.6 97 0.9 233 0.6 287 13.5
UNSAT | 8 | 4 | 1273232 | 70.5 1791 | 28.9 2948 9.8 2656 | 167
SAT 9 |5 1076891 | 81.4 862 15.8 1862 7.2 894 123

* LR can be fast (faster than LP)

Branching
lexicographic

* LR canfilter a more than LP (even if the bound is theoretically the same)



3- NValue

NVALUE(N, [ X1, ..., X))

Solve the Linear relaxation +

N restren: 1000
N reduced cost filtering
- N
Greedy bound + filtering po = 10°
o pr = 1/k g = po(0.95)"
Ql|N MD LR1 LR2 LP
Back Time (s) Back | Time (s) Back | Time(s) | Back | Time (s)
SAT 6 |3 |15 0.01 7 0.15 12 0.1 10 |04
SAT 7 |4 | 386 0.13 55 0.6 128 0.3 120 | 3.5
SAT 8 |5 | 2541 0.6 97 0.9 233 0.6 287 | 13.5
UNSAT |8 |4 | 2546241 | 70.526.7| 1791 | 289 2048 | 9.8 2656 | 167
SAT 9 |5 | 2153565 | 81.422.5 862 | 15.8 1862 | 7.2 894 | 123

Jean-Guillaume, 1h30 du mat

* LR can be fast (faster than LP)

Branching
lexicographic

* LR canfilter a more than LP (even if the bound is theoretically the same)
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3- NValue

NVALUE(N, [ X1, ..., X))

Perform “singleton” filtering

Solve the Linear relaxation +

' “singleton” filtering

po =1 po = 10°
pe = 1/k pur = 10(0.95)"

Q| N MD Strong LR1 Strong LR2 Strong LP

Back Time (s) Back | Time (s) Back Time (s) | Back | Time (s)

6 [3 |15 0.01 0 0.2 0 0.1 0 0.1

7 (4 | 386 0.1 4 4.4 4 0.9 3 0.8

8 |5 | 2541 0.6 3 8.6 7 2.5 2 1.7

8 |4 | 1273232 | 70.5 20 14.2 21 4.2 20 5.1

9 |5 | 1076891 | 81.4 5 18.2 5 4.3 5 5.7

Instead of using Lagrangian/linear reduced costs, we fix the assighnment and
recompute the bound in a “singleton” manner

LP has a better incremental behaviour




3- Multi-cost regular

 Regular: REGULAR([X1,...,X,], A) [Pesant, 2004]
— Propagation based on breath-first-search in the unfolded automaton
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— Propagation based on shortest/longest path in the unfolded
automaton



3- Multi-cost regular

e Regular: REGULAR([X1,...,X,], A) [Pesant, 2004]
— Propagation based on breath-first-search in the unfolded automaton

* Costregular: REGULAR([X1,...,Xn],4A) A D0 cix, =2

— Propagation based on shortest/longest path in the unfolded
automaton

e Multi-cost regular : MuLTI-cosT REGULAR([X1, ..., X,],[Z},..., ZE], A)
REGULAR([X1,..., X)), A) A (O cix, =Z",Yr=0,...,R)

— Propagation based on resource constrained shortest/longest path

— Sequencing and counting at the same time

* Personnel scheduling
* Routing

— Example: combine Regular and GCC

[Menana, Demassey, 2009]



3- Multi-cost regular

Multi-cost regular :
REGULAR([X1,..., X)), A) A (O cix, =Z",Yr=0,...,R)

Example: X1 X X3 X4 X5 X X7

— Schedule 7 shifts of type: night (N), day (D), rest (R)
— (1) “A Rest must follow a Night shift” nﬂmﬂnnn

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”
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3- Multi-cost regular

Multi-cost regular :
REGULAR([X1,..., X)), A) A (O cix, =Z",Yr=0,...,R)

Example: X1 X X3 X4 X5 X X7

— Schedule 7 shifts of type: night (N), day (D), rest (R)
— (1) “A Rest must follow a Night shift” nﬂmﬂnnn
— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R=2 X1X2X3X4X5X6X7 X1X2X3X4X5X6X7
N cpl1 |1 |11 |1|1]1 ch|o|o|o|o|o|o|oO

R CrRlO|lO|O|O]|O]|O]|O Crlo|lo|lo|o|0O]|O]|O




R,D

1
@ Q cylo|o|o|o|ofofo il 111111
1 2

3- Multi-cost regular

Multi-cost regular :
REGULAR([X1,..., X)), A) A (O cix, =Z",Yr=0,...,R)

Example: X1 X X3 X4 X5 X X7

— Schedule 7 shifts of type: night (N), day (D), rest (R)
— (1) “A Rest must follow a Night shift” nnmﬂnnn
— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R=2 X1X2X3X4X5X6X7 X1X2X3X4X5X6X7
N cpl1 |1 |11 |1|1]1 ch|o|o|o|o|o|o|oO

R CrRlO|lO|O|O]|O]|O]|O Crlo|lo|lo|o|0O]|O]|O




3- Weighted-circuit
WEIGHTED-CIRCUIT(X = [X1,..., X,,], Z)

X, = 7 means j is the successor of ¢

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT(X = [X1,.... X, ) A DY cix, < Z
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X, = 7 means j is the successor of ¢

* Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT(X = [X1,.... X, ) A DY cix, < Z

* Filtering based on graph structure [Fagesetal,2012] [Caseau et al, 1997]
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WEIGHTED-CIRCUIT(X = [X1,..., X,,], Z)

X, = 7 means j is the successor of ¢

* Enforce X to be a Hamiltonian tour of weight at most Z
CIRCUIT(X = [X1,.... X, ) A DY cix, < Z
[Fages et al, 2012]
* Filtering based on graph structure [Caseau et al, 1997]

* Filtering based on the Held and Karp 1-Tree relaxation  [Benchimol et al, 2012]

— Relax the tour into a 1-tree (a tree over all nodes except one + 2 edges
connected to the ignored node)

— Lagrangian subproblem based on a minimum spanning tree



3- Weighted-circuit
WEIGHTED-CIRCUIT(X = [X1,..., X,,], Z)

X, = 7 means j is the successor of ¢

Enforce X to be a Hamiltonian tour of weight at most Z
CIRCUIT(X = [X1,.... X, ) A DY cix, < Z

[Fages et al, 2012]
[Caseau et al, 1997]
Filtering based on the Held and Karp 1-Tree relaxation  [Benchimol et al, 2012]

— Relax the tour into a 1-tree (a tree over all nodes except one + 2 edges
connected to the ignored node)

Filtering based on graph structure

— Lagrangian subproblem based on a minimum spanning tree

Use “Lagrangian reduced-cost” to identify: }‘
— Edges that must be in the tour
— Edges that can not be in a “better” tour

[Benchimol et al, 2012] _ °

Fig. 3 The filtered graph for st70 with respect to an upper bound of 700 (a) and 675 (b).



3- Weighted-circuit
WEIGHTED-CIRCUIT(X = [X1,..., X,,], Z)

X, = 7 means j is the successor of ¢

Enforce X to be a Hamiltonian tour of weight at most Z
CIRCUIT(X = [X1,.... X, ) A DY cix, < Z

e [Fages et al, 2012]
Filtering based on graph structure (Caseau et al, 1997]

Filtering based on the Held and Karp 1-Tree relaxation  [Benchimol et al, 2012]

— Relax the tour into a 1-tree (a tree over all nodes except one + 2 edges
connected to the ignored node)

— Lagrangian subproblem based on a minimum spanning tree

Strong filtering based on dynamic programming when the number of
visited nodes is small (around 15-20 : very common in wide a range of
applications) [Cambazard et al, 2012]



3- Bin Packing with Usage Costs

BINPACKINGUSAGECOST(| X1, ..., Xnl, [L1,---, L], [Y1,-- ., Y|, T, B, S)

* Asetofitems S = {wi,...,w,}

Yon Do+ - -

e Asetofbins B={{Cy, fi,ci},.- . ,{Cm; fmsCm}}

A Cost
A

v

Load
{ij ) } g
cost; = f; + Load;c;

Fixed cost for Usage cost
opening a bin depending
on the load

m
* Minimize Zj:1|L0adj>0 oSt




3- Bin Packing with Usage Costs

BINPACKINGUSAGECOST(| X1, ..., X!, [L1,--., L), [Y1,..., Y|, T, B, S)

* Asetofitems S = {wy,...,w,}
* Asetofbins B={{Ci, fi,c1},....{Cn, frnscm}}
* Minimize the sum of the costs of the used bins

7/ T3 ! “ “ IB
/% + 1901 13.02] {3025 {302} {302

ltems Bins




3- Bin Packing with Usage Costs

BINPACKINGUSAGECOST(| X1, ..., X, [L1,--., L], [Y1,..., Y], T, B, S)

* Asetofitems S = {wy,...,w,}
« Asetofbins B={{Ci, fi.c1}t,....{Cp, frn,Cm }+}
* Minimize the sum of the costs of the used bins

| 1
21

A_I (P1) Ii/ (P2)
7/

9 8x1 +3x2 + 3x2 + 3x2 = 26 Ox1 + 2x2 + 2x2 + 2X2 + 2x2 = 25

TN .
\EE%[ 7 IEEzﬂﬁ i

{9,0,1} {302}'5 (302} {302} {302} {901} 1302} 1302 {302} {3.0,2}




3- Bin Packing with Usage Costs

BINPACKINGUSAGECOST(| X1, ..., Xnl, [L1,---, L], [Y1,-- ., Y|, T, B, S)

* LP relaxation easy to characterize and fast cost
filtering can be done [cambazard et al, 2013]

e Stronger filtering can be achieved using Lagrangian
relaxation

— Relax the constraint enforcing an item to occur in exactly
one bin.

— Lagrangian sub-problem is a knapsack and dynamic
Programming provides the reduced costs.



Overview of Lagrangian based filtering for
NP-Hard global constraints

Constraint Lagrangian Examples of applications References
Subproblem
Multi-cost-regular Shortest/Longest | Personnel Scheduling [Menana et al, 2009]
Path
Weighted-circuit 1-Tree (Spanning | Traveling Salesman Problem [Case&}u etal, 1997]
Tree) Traveling Purchaser Problem [Benoist et al, 2001]

[Benchimol et al, 2012]
[Fages et al, 2012]
[Cambazard et al, 2012]

Traveling Tournament

Weighted - atMostNValue | Sorting Traveling Purchaser Problem [Cambazard et al, 2012]
Warehouse location

atMostNValue Inspection

Bin-Packing with usage Knapsack Energy optimization in data-centers

costs

Shortest Path in DAG with | Shortest Path Multileaf collimator sequencing [Sellmann, 2005]

resource constraints [Cambazard et al, 2010]
Other applications:

* Golomb rulers [Van Hoove, 2013],

* Automated Recording Problem [Sellmann, 2003]
e Capacitated Network Design [Sellmann, 2002]



1.

2.

3.

4.

Plan

Context and motivation

— Illustrative application: the Traveling Purchaser Problem
— Optimization versus Satisfaction

— Combinatorial versus polyhedral methods

Propagation based on Lagrangian Relaxation
— Lagrangian duality

— Filtering using Lagrangian reduced costs

— Let’s try on the Nvalue global constraint

Overview of some NP-Hard Constraints with costs

— Multi-cost reqular, Weighted-circuit, Weighted-Nvalue, Bin-packing
with usage costs

Examples of applications



Back to the Traveling Purchaser
Problem



Problem structures

Nvisit € {1,..., B} : Number of visited markets
TotalCost = TravelingCost + ShoppingCost

Relaxation Nature of the Value of the How to solve / Key
problem parameter propagate it ? propagation
o N _ [Bessiere et al, Nuvisit
Feasibility Hitting Set Nuvisit 2006]
ATMOSTN VALUE (cardinality)
Feasibil!ty + | Lagrangian ShoppingCost
Shopping p-median p = Nvisit relaxation .
cost WEIGHTED-NVALUE Nvisit
Traveling Dynamic ,
Cost k-TSP Lk — Nuvisit Programming ? vaelmg 'COSt
Close to Lagrangian Nuisit

WEIGHTED-CIRCUIT

relaxation




CP Model for the TPP

Nvisit € {1,...,B} :Number of visited markets

y; € {0,1} : do we visit market i ?
sk € {i|lv; € M}  :the market where item k is bought
Csj, > 0 : the price paid for item k

Minimize TravelingCost + ShoppingCost
CSk; = ELEMENT([bkl, ceey bk:ia ceey bkm], Sk;)

di|lsp =1y =1 (channeling Sk and Y; )
NVALUE([s1,. .., Sm], Nvisit)
TSP([y1, .- Ynl,

Nuvisit,

TravelingCost, . . .)
WEIGHTED-NVALUE([S1, . - ., Sm],

Nvisit,
ShoppingCost, .. .)



CP Model for the TPP

Nvisit € {1,...,B} :Number of visited markets

y; € {0,1} : do we visit market i ?
sk € {i|lv; € M}  :the market where item k is bought
Csj, > 0 : the price paid for item k

Minimize TravelingCost + ShoppingCost
CSk; = ELEMENT([bkl, ceey bk:ia ceey bkm], Sk;)

di|sp =iy =1 (channeling Sk and Y; )
NVALUE([s1, ..., Sm], Nvisit)
TSP([y1, - - -, Ynl, —+ Close to WEIGHTED-CIRCUIT
Nvisit,
TravelingCost, . . .)
WEIGHTED-NVALUE([S1, . - ., Sm],
Nvisit)

ShoppingCost, .. .)



Overview of results on TPP

Benchmark (Laporte class3):
— 100 instances: up to 250 markets and 200 items
— 11 open instances

Very efficient when the optimal solution contains few markets
Very complementary to [Laporte and al]

_n-m

250 150 18
150 200 25
200 100 28

CP only fails to prove optimality on 10 instances

Closes 8 instances out of the 11 open instances (improves 10 best
known solutions)



The Multileaf Collimator Sequencing Problem

Data : A matrix of integers (The intensities)

Question : Find a decomposition into a weighted sum of Boolean
matrices such that,

- The matrices have the consecutive ones property
- The sum of the coefficients (Beam on time B) is minimum
- The number of matrices (Cardinality K) is minimum

eIl

) 330 2 20 0) 00001100 0O 00 0 O0OO0OUDOD 011 000O00O0
005 56 4 41 00111000 ocooo0O0TTT1T 0oo1T11110
) 3 3 3 565 2 2 oooo11 11 0O00O0O0OUOOUD 01111100
) 4 4 6 55 20 0001T11 10 01110000 o111 110
033 23220=2/100011110 0O 00O0100TUO0|+3/01100000¢0
) 5 511100 01100000 00011100 01100 00
03300000 0 0OOOOODOD D 00 0OODODDODOOW 01100000
) 3322220 00011110 0O 00O0O0ODODOUOOUD 01100 0 (
111 4 2 2 2 2] 00001111 11110000 00 1

minimise w1 K + wo B



Overview of results

Some results using CP:
— Counter model: 20 x 20 with max intensity 10 [Baatar, Boland, Brand, Stuckey 07], [Brand 08]

— Path model: 40 x 40 with max intensity 10 [Cambazard, O Mahony, O Sullivan 09]

Dedicated algorithm:
— 15 x 15 with max intensity 10 (up to 10h of computation) [Kalinowski 08]

Using Benders decomposition: [Taskin, Smith, Romeijn, Dempsey ANOR09]
Clinical instances (around 20x20 with max intensity 20) solved optimally with up to 5.8 h of computation

Results can be improved using Lagrangian Relaxation when intensity remains small

Significant improvement using Branch and Price and constraint propagation
— 80 x 80 with max intensity 10 [Cambazard, O’Mahony, O’Sulllivan, 2012]

— 20 x 20 with max intensity 20
— 12 x 12 with max intensity 25
— Clinical instances with up to 10 min of computation



Conclusion

Some applications require strong reasoning involving costs (and
key NP-Hard sub-problems).

Lagrangian relaxation (LR) can provide a suitable filtering
mechanism without the need of an LP solver:
— LR can be faster than LP to compute the bound
— LR can provide more filtering
— Drawbacks of LR:
* It needs parameters (when using a sub-gradient algorithm)
* |t can experience issues for converging

Can we (CP) question the domination (exact algorithms) of
Branch and Cut and Price for a large class of routing problems ?
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