

NP-hard sub-problems involving costs: examples of applications and Lagrangian based filtering

Hadrien Cambazard *G-SCOP - Université de Grenoble*

Plan

1. Context and motivation

- Illustrative application: the Traveling Purchaser Problem
- Optimization versus Satisfaction
- Combinatorial versus polyhedral methods

2. Propagation based on Lagrangian Relaxation

- Lagrangian duality
- Filtering using Lagrangian reduced costs
- Let's try on the Nvalue global constraint

3. Overview of some NP-Hard Constraints with costs

- Multi-cost regular, Weighted-circuit, Weighted-Nvalue, Bin-packing with usage costs
- 4. Examples of applications

Illustrative Application The Traveling Purchaser Problem

Traveling Purchaser Problem (TPP)

Traveling Purchaser Problem (TPP)

- A set of items
- A set of markets,
 each selling some of
 the items at
 different prices
- The traveling costs
 between markets
 (and from/to home)

Traveling cost = 6 + 2 + 3 = 11Shopping cost = 4 + 4 + 9 + 6 + 2 + 4 = 29

Total cost = 40

Traveling Purchaser Problem (TPP)

Find the route minimizing the sum of traveling and shopping costs to buy all the items

Generalization of TSP

Numerous heuristics

[T. Ramesh, 1981]

[G. Laporte, 2003]

[J. Riera-Ledesma, 2006]

[L.Gouveia, 2011]

Best known exact method based on Branch and Cut and Price. [G. Laporte, 2003]

Variables:

 $next_i \in \{0,1,\ldots,n\}$: the successor of market \mathbf{i} in the shopping trip $next_i = i$ (i not visited)

 $s_k \in \{i | v_i \in M_k\}$: the market where item **k** is bought

Variables:

 $next_i \in \{0,1,\ldots,n\}$: the successor of market \mathbf{i} in the shopping trip $next_i = i$ (i not visited) $s_k \in \{i|v_i \in M_k\}$: the market where item \mathbf{k} is bought $cs_k \geq 0$: the price paid for item \mathbf{k} : the price paid for traveling from market \mathbf{i} to its successor

Variables:

```
next_i \in \{0,1,\ldots,n\} : the successor of market \mathbf{i} in the shopping trip next_i = i (i not visited) s_k \in \{i|v_i \in M_k\} : the market where item \mathbf{k} is bought  cs_k \geq 0  : the price paid for item \mathbf{k} : the price paid for traveling from market \mathbf{i} to its successor
```

$$Minimize \sum_{i} Ct_{i} + \sum_{k} Cs_{k}$$

Variables:

```
next_i \in \{0,1,\dots,n\} : the successor of market \mathbf{i} in the shopping trip next_i = i (i not visited) s_k \in \{i|v_i \in M_k\} : the market where item \mathbf{k} is bought : the price paid for item \mathbf{k} : the price paid for traveling from market \mathbf{i} to its successor
```

$$Minimize \sum_{i} Ct_{i} + \sum_{k} Cs_{k}$$
 Price of item k in market i
$$\text{Element}(Cs_{k}, [b_{k1}, \ldots, b_{ki}], s_{k}) \ \forall k$$

$$\text{Element}(Ct_{i}, [d_{i1}, \ldots, d_{ij}], \ldots, d_{in}], next_{i}) \ \forall i$$
 Traveling cost from i to j

Variables:

```
next_i \in \{0,1,\ldots,n\} : the successor of market \mathbf{i} in the shopping trip next_i = i (i not visited) s_k \in \{i|v_i \in M_k\} : the market where item \mathbf{k} is bought : the price paid for item \mathbf{k} : the price paid for traveling from market \mathbf{i} to its successor
```

$$Minimize \sum_{i} Ct_{i} + \sum_{k} Cs_{k}$$

Price of item k in market i

ELEMENT
$$(Cs_k, [b_{k1}, \ldots, b_{ki}], s_k) \forall k$$

ELEMENT $(Ct_i, [d_{i1}, \ldots, d_{ij}], next_i) \forall i$ from i to j

... the next variables must form a circuit + single loops

- Objective is decomposed (using Element constraints):
 - Resulting lower bound is often very weak
 - Infeasible values are eliminated but not sub-optimal ones.
- sub-optimal = infeasible regarding the best known upper-bound

optimization component domain reduction variable instantiation

Cost-based filtering

- (Picture from [Foccaci, 2002])
- [Focacci, Lodi, Milano, 2002]: Embedding relaxations in global constraints for solving TSP and TSPTW
- Relaxations based on assignments, spanning tree

Cost-based filtering

- (Picture from [Foccaci, 2002])
- [Focacci, Lodi, Milano, 2002]: Embedding relaxations in global constraints for solving TSP and TSPTW
- Relaxations based on assignments, spanning tree
- Linear relaxation of global constraints
 - [Refalo, 2000]: Linear formulation of Constraint Programming models and Hybrid Solvers

Cost-based filtering

- (Picture from [Foccaci, 2002])
- [Focacci, Lodi, Milano, 2002]: Embedding relaxations in global constraints for solving TSP and TSPTW
- Relaxations based on assignments, spanning tree
- Linear relaxation of global constraints
 - [Refalo, 2000]: Linear formulation of Constraint Programming models and Hybrid Solvers
- Back to the TPP: what cost-based filtering can be done?

TPP: cost based filtering?

- The traveler has to visit a minimum number of markets to buy everything
 - Lower bound of traveling cost

- The traveler can not visit too many markets
 (traveling cost would be too high w.r.t to known
 upper bound)
 - Lower bound of shopping cost
- Number of markets visited: Nvisit

Problem structure 1 : Hitting set

- Look only at feasibility
- Can we buy everything in less than $Nvisit\,$ markets ?

Problem structure 1: Hitting set

- Look only at feasibility
- Can we buy everything in less than $Nvisit\,$ markets ?

Hitting Set Problem

 $\overline{Nvisit} = 3$

Gingerbread: {M2, M3, M6, M7}

Carrot cake: {M2, M5}

Organic tomatoes: {M1, M2, M4, M6}

Zucchini: {M3, M4, M7}

Chicken: {M1, M4}

Problem structure 1: Hitting set

- Look only at feasibility
- Can we buy everything in less than $Nvisit\,$ markets ?

Hitting Set Problem

 $\overline{Nvisit} = 3$

{M2, M4, M8}

Gingerbread: {M2, M3, M6, M7}

Carrot cake: {M2, M5}

Organic tomatoes: {M1, M2, M4, M6}

Zucchini: {M3, M4, M7}

Chicken: {M1, M4}

Problem structure 1 : Hitting set

- Look only at feasibility
- Can we buy everything in less than $Nvisit\,$ markets ?

Hitting Set Problem

 $\overline{Nvisit} = 3$

{M2, M4, M8}

Gingerbread: {M2, M3, M6, M7}

Carrot cake: {M2, M5}

Organic tomatoes: {M1, M2, M4, M6}

Zucchini: {M3, **M4**, M7}

Chicken: {M1, M4}

Problem structure 1: Hitting set

- Look only at feasibility
- Can we buy everything in less than $Nvisit\,$ markets ?

Hitting Set Problem

1

In CP:

AtMostNValue

Gingerbread: {M2, M3, M6, M7}

Carrot cake: {M2, M5}

Organic tomatoes: {M1, M2, M4, M6}

Zucchini: {M3, M4, M7}

Chicken: {M1, M4}

- Look only at feasibility + shopping cost
- What is the cheapest way to buy everything in less than \overline{Nvisit} markets?

- Look only at feasibility + shopping cost
- What is the cheapest way to buy everything in less than \overline{Nvisit} markets?

p-median Problem

- Look only at feasibility + shopping cost
- What is the cheapest way to buy everything in less than \overline{Nvisit} markets?

- Look only at feasibility + shopping cost
- What is the cheapest way to buy everything in less than \overline{Nvisit} markets?

p-median Problem

In CP:
AtMostNValue
with costs?

Problem structure 3 : k-TSP

- Look only at traveling cost
- What is the cheapest way to visit at least <u>Nvisit</u> markets?

Problem structure 3 : k-TSP

- Look only at traveling cost
- What is the cheapest way to visit at least <u>Nvisit</u> markets?

k-TSP problem

Problem structure 3 : *k-TSP*

- Look only at traveling cost
- What is the cheapest way to visit at least <u>Nvisit</u> markets?

Problem structures

 $Nvisit \in \{1, \dots, B\}$: Number of visited markets TotalCost = TravelingCost + ShoppingCost

Relaxation	Nature of the problem	Value of the parameter	How to solve / propagate it ?	Key propagation
Feasibility	Hitting Set	\overline{Nvisit} (cardinality)		\underline{Nvisit}
Feasibility + Shopping cost	p-median	$p = \overline{Nvisit}$		$\frac{ShoppingCost}{Nvisit}$
Traveling Cost	k-TSP	$k = \underline{Nvisit}$		$\frac{TravelingCost}{\overline{Nvisit}}$

Problem structures

 $Nvisit \in \{1,\ldots,B\}$: Number of visited markets TotalCost = TravelingCost + ShoppingCost

Relaxation	Nature of the problem	Value of the parameter	How to solve / propagate it ?	Key propagation
Feasibility	Hitting Set AtMostNValue	\overline{Nvisit} (cardinality)		\underline{Nvisit}
Feasibility + Shopping cost	p-median WEIGHTED-NVALUE	$p = \overline{Nvisit}$		$\frac{\textit{ShoppingCost}}{\textit{Nvisit}}$
Traveling Cost	k-TSP Close to Weighted-Circuit	$k = \underline{Nvisit}$		$\left \frac{TravelingCost}{\overline{Nvisit}} \right $

So far on the TPP

How to reason about NP-Hard sub-problems involving costs?

So far on the TPP

- How to reason about NP-Hard sub-problems involving costs?
- Can CP be competitive with "advanced linear programming methods"?

Best known exact method based on Branch and Cut and Price. [G. Laporte, 2003]

So far on the TPP

- How to reason about NP-Hard sub-problems involving costs?
- Can CP be competitive with "advanced linear programming methods"?

Best known exact method based on Branch and Cut and Price. [G. Laporte, 2003]

 Branch and Cut and Price is the state of the art exact framework for a large class of problems related to routing :

TSP, TSPTW, TPP, TTP, VRP, ...

Can we question that?

Plan

1. Context and motivation

- Illustrative application: the Traveling Purchaser Problem
- Optimization versus Satisfaction
- Combinatorial versus polyhedral methods

2. Propagation based on Lagrangian Relaxation

- Principles of Lagrangian duality
- Filtering using Lagrangian reduced costs
- Let's try on the Nvalue global constraint

3. Overview of some NP-Hard Constraints with costs

- Multi-cost regular, Weighted-circuit, Weighted-Nvalue, Bin-packing with usage costs
- 4. Examples of applications

Propagation based on Lagrangian Relaxation

Principles, filtering, Experimentations with NValue

2- Lagrangian relaxation

Shortest path with resource constraints

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)

$$\sum t_{ij}x_{ij} \leq T$$
 (2)

$$x_{ij} \in \{0,1\}$$

Simplified example taken from Network flows of Ahuja, Magnanti, Orlin

Shortest path with resource constraints

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)
$$\sum t_{ij}x_{ij} \leq T$$
 (2)
$$x_{ij} \in \{0,1\}$$

$$(c_{12},t_{12}) = \underbrace{(1,1)}_{(1,10)} \underbrace{4}_{(1,7)} \underbrace{1}_{(10,1)} \underbrace{5}_{(2,2)} \underbrace{x_{13} = 1, x_{35} = 1, x_{56} = 1}_{z = 10 + 12 + 2 = 24} \underbrace{time = 3 + 3 + 2 \leq 10}_{time}$$

Shortest path with resource constraints

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)
$$\sum t_{ij}x_{ij} \leq T$$
 (2)
$$x_{ij} \in \{0,1\}$$

For all
$$\lambda \geq 0$$
 : Shortest path

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

$$(c_{12}, t_{12}) = (1,1)$$
 $(1,10)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$
 $(1,2)$

A solution:
$$\begin{cases} x_{13} = 1, x_{35} = 1, x_{56} = 1 \\ z = 10 + 12 + 2 = 24 \\ time = 3 + 3 + 2 \le 10 \end{cases}$$

Shortest path with resource constraints

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)
$$\sum t_{ij}x_{ij} \leq T$$
 (2)
$$x_{ij} \in \{0,1\}$$

For all $\lambda \geq 0$:

Shortest path

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

Lagrangian sub-problem for $\lambda=2$

For all $\lambda > 0$:

Any feasible solution \overline{x} of P is also feasible for $L(\lambda)$ and $\overline{z} \geq \overline{w}(\lambda)$ So we have : $z^* \geq w^*(\lambda)$

For all $\lambda > 0$:

Any feasible solution \overline{x} of P is also feasible for $L(\lambda)$ and $\overline{z} \geq \overline{w}(\lambda)$ So we have : $z^* \geq w^*(\lambda)$

path conservation (1)

$$x_{ij} \in \{0, 1\}$$

 $L(\lambda)$

For all $\lambda \geq 0$:

Any feasible solution \overline{x} of P is also feasible for $L(\lambda)$ and $\overline{z} \geq \overline{w}(\lambda)$ So we have : $z^* \geq w^*(\lambda)$

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)
$$\sum t_{ij}x_{ij} \le T \qquad (2)$$
$$x_{ij} \in \{0,1\} \qquad \boxed{P}$$

For all $\lambda > 0$:

Any feasible solution \overline{x} of P is also feasible for $L(\lambda)$ and $\overline{z} \geq \overline{w}(\lambda)$

So we have : $z^* \ge w^*(\lambda)$

Min z =
$$\sum c_{ij}x_{ij}$$

path conservation (1)
$$\sum t_{ij}x_{ij} \le T \qquad (2)$$
$$x_{ij} \in \{0,1\} \qquad \boxed{P}$$

For all
$$\ \lambda \geq 0$$
 :

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

For all $\lambda > 0$:

Any feasible solution \overline{x} of P is also feasible for $L(\lambda)$ and $\overline{z} \geq \overline{w}(\lambda)$

So we have : $z^* \ge w^*(\lambda)$

Lagrangian Dual:

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

For all $\,\lambda \geq 0\,\,$:

$$\operatorname{Min} w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij}) \\
= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T \\
\text{path conservation (1)} \\
x_{ij} \in \{0, 1\}$$

$$L(\lambda)$$

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

Note:

- Changing λ does not affect the set of feasible solutions of $L(\lambda)$
- So the cost of given solution of $L(\lambda)$ can be seen as a linear function of λ

For all $\lambda \geq 0$:

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

T = 14

• Note:

- Changing λ does not affect the set of feasible solutions of $L(\lambda)$
- So the cost of given solution of $L(\lambda)$ can be seen as a linear function of λ

$$L \le (10+3\lambda) + (12+3\lambda) + (2+2\lambda) - 14\lambda$$
= $24 - 6\lambda$ (1-3-5-6)

For all $\lambda \geq 0$:

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

T = 14

 $\operatorname{Max} L$

$$L \le (10+3\lambda) + (12+3\lambda) + (2+2\lambda) - 14\lambda$$
= $24 - 6\lambda$ (1-3-5-6)

For all $\,\lambda \geq 0\,\,$:

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

T = 14

$\operatorname{Max} L$

$$L \le (10+3\lambda) + (12+3\lambda) + (2+2\lambda) - 14\lambda \\ = 24 - 6\lambda \quad \text{(1-3-5-6)}$$

$$L \le 15 - 4\lambda$$
 (1-3-2-5-6)

For all $\lambda \geq 0$:

Min
$$w(\lambda) = \sum c_{ij} x_{ij} - \lambda (T - \sum t_{ij} x_{ij})$$

 $= \sum (c_{ij} + \lambda t_{ij}) x_{ij} - \lambda T$
path conservation (1)
 $x_{ij} \in \{0, 1\}$

$$L^* = \max_{\lambda \ge 0} w^*(\lambda)$$

T = 14

Max L

$$L \le 3 + 4\lambda$$
 (1-2-4-6)
 $L \le 14$ (1-2-4-5-6)
 $L \le 5 + \lambda$ (1-2-5-6)
 $L \le 13 - \lambda$ (1-3-2-4-6)
 $L \le 24 - 5\lambda$ (1-3-2-4-5-6)
 $L \le 15 - 4\lambda$ (1-3-2-5-6)
 $L \le (10 + 3\lambda) + (12 + 3\lambda) + (2 + 2\lambda)$
 $= 24 - 6\lambda$ (1-3-5-6)

Subgradient algorithm:

$$\begin{vmatrix} \lambda_{k+1} \leftarrow \max(0, \lambda_k + \mu(\sum t_{ij}x^k - T)) \\ \mu_{k+1} = \mu_0(3/5)^k \end{vmatrix}$$

$$\lambda_0 = 0$$

$$\mu_0 = 1$$

Subgradient algorithm:

$$\begin{vmatrix} \lambda_{k+1} \leftarrow \max(0, \lambda_k + \mu(\sum t_{ij} x^k - T)) \\ \mu_{k+1} = \mu_0 (3/5)^k \end{vmatrix}$$

$$\lambda_0 = 0$$
$$\mu_0 = 1$$

$$\lambda_1 = 4$$
$$\mu_1 = 0.6$$

Subgradient algorithm:

$$\begin{vmatrix} \lambda_{k+1} \leftarrow \max(0, \lambda_k + \mu(\sum t_{ij}x^k - T)) \\ \mu_{k+1} = \mu_0(3/5)^k \end{vmatrix}$$

$$\lambda_0 = 0$$

$$\mu_0 = 1$$

$$\lambda_1 = 4$$
$$\mu_1 = 0.6$$

$$\lambda_2 = 1$$
 $\mu_2 = 0.6^2 = 0.36$

Subgradient algorithm:

$$\begin{vmatrix} \lambda_{k+1} \leftarrow \max(0, \lambda_k + \mu(\sum t_{ij} x^k - T)) \\ \mu_{k+1} = \mu_0 (3/5)^k \end{vmatrix}$$

$$\lambda_0 = 0$$

$$\mu_0 = 1$$

$$\lambda_1 = 4$$
$$\mu_1 = 0.6$$

$$\lambda_2 = 1$$
 $\mu_2 = 0.6^2 = 0.36$

$$\lambda_3 = 1.36$$
 $\mu_3 = 0.6^3 = 0.216$

$$\lambda_4 = 1.57$$

• • •

Subgradient algorithm:

$$\begin{vmatrix} \lambda_{k+1} \leftarrow \max(0, \lambda_k + \mu(\sum t_{ij} x^k - T)) \\ \mu_{k+1} = \mu_0 (3/5)^k \end{vmatrix}$$

$$\lambda_0 = 0$$
$$\mu_0 = 1$$

$$\lambda_1 = 4$$
$$\mu_1 = 0.6$$

$$\lambda_2 = 1$$
 $\mu_2 = 0.6^2 = 0.36$

$$\lambda_3 = 1.36$$
 $\mu_3 = 0.6^3 = 0.216$

$$\lambda_4 = 1.57$$

• • •

To ensure convergence, we should have:

$$\mu_k \to 0 \text{ and } \sum_{j=1}^k \mu_j \to \infty$$

— We can filter at any iteration of this algorithm using the current Lagrangian subproblem and its $w^*(\lambda)$

$$w^*(1) = 20 - 14 = 6 \le z^*$$

Suppose we know an upper bound of $\overline{z} = 15$

 $w^*(1) = 20 - 14 = 6 \le z^*$

6

Suppose we know an upper bound of $\overline{z} = 15$

We compute shortest path from source to all other nodes and from all other nodes to sink

Suppose we know an upper bound of $\overline{z} = 15$

Suppose we know an upper bound of
$$z = 15$$

$$w^*_{|35} = 13 + (15) + 4 - 14 = 18 > \overline{z} = 15 \Rightarrow x_{35} = 0$$

$$(0-20) 1 \qquad (3) \qquad (5) \qquad (4)$$

(15)

(16-4)

(13-12)

(8)

(4)

(20-0)

(13-8)

(11)

(16-4)

(2)

(5)

(11-9)

(3)

(13-12)

(11)

(13)

(0-20)

$$w^*(1) = 20 - 14 = 6 \le z^*$$

Suppose we know an upper bound of $\overline{z} = 15$

$$w_{|35}^* = 13 + (15) + 4 - 14 = 18 > \overline{z} = 15 \Rightarrow x_{35} = 0$$

[Sellmann, 2004]

Lagrangian dual is changed !does it affect convergence ?

(20-0)

(13-8)

(16-4)

(11)

(8)

(2)

(5)

(11-9)

(3)

(13-12)

(11)

(13)

(0-20)

Suppose we know an upper bound of $\overline{z} = 15$

$$w_{|35}^* = 13 + (15) + 4 - 14 = 18 > \overline{z} = 15 \Rightarrow x_{35} = 0$$

Lagrangian dual is changed [Sellmann, 2004] does it affect convergence?

(8)

(4)

- Filtering takes place near L* most of the time but not necessarily
 - What values of λ are good for filtering ?

Plan

- 1. Context and motivation
 - Illustrative application: the Traveling Purchaser Problem
 - Optimization versus Satisfaction
 - Combinatorial versus polyhedral methods
- 2. Propagation based on Lagrangian Relaxation
 - Lagrangian duality
 - Filtering using Lagrangian reduced costs
 - Let's try on the Nvalue global constraint
- 3. Overview of some NP-Hard Constraints with costs
 - Multi-cost regular, Weighted-circuit, Weighted-Nvalue, Bin-packing with usage costs
- 4. Examples of applications

$$NVALUE(N, [X_1, \ldots, X_n])$$

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

 $D(X_2) = \{2, 4\}$
 $D(X_3) = \{1, 2\}$
 $D(X_4) = \{1, 2, 3\}$
 $D(X_5) = \{4, 5\}$
 $D(X_6) = \{4, 5\}$
 $D(N) = \{1, 2\}$
NVALUE $(2, [2, 2, 2, 2, 4, 4, 2])$

$$NVALUE(N, [X_1, \ldots, X_n])$$

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$
 $D(X_2) = \{2, 4\}$ $D(X_3) = \{1, 2, 3\}$ $D(X_4) = \{1, 2, 3\}$ $D(X_4) = \{1, 2, 3\}$ $D(X_5) = \{4,5\}$ $D(X_6) = \{4,5\}$ $D(X) = \{1, 2\}$ $D(X) = \{1, 2\}$

$$NVALUE(N, [X_1, \ldots, X_n])$$

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

$$D(X_2) = \{2, 4\}$$

$$D(X_3) = \{1, 2, 3\}$$

$$D(X_4) = \{1, 2, 3\}$$

$$D(X_4) = \{1, 2, 3\}$$

$$D(X_5) = \{4,5\}$$

$$D(X_6) = \{4,5\}$$

$$D(X_6) = \{4,5\}$$

$$D(X_6) = \{1, 2\}$$

$$D(X_6) = \{1, 2\}$$

$$D(X_6) = \{4,5\}$$

$$D(X_6) = \{$$

- Enforcing GAC is NP-Hard
- Several lower bounds proposed by [Hebrard et al, 2006]

$$NVALUE(N, [X_1, \ldots, X_n])$$

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

 $D(X_2) = \{2, 4\}$
 $D(X_3) = \{1, 2\}$
 $D(X_4) = \{1, 2, 3\}$
 $D(X_5) = \{4, 5\}$
 $D(X_6) = \{4, 5\}$
 $D(N) = \{1, 2\}$

- Enforcing GAC is NP-Hard
- Lower bound of N obtained by a greedy computing an independent set [Hebrard et al, 2006]

$$NVALUE(N, [X_1, \ldots, X_n])$$

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

 $D(X_2) = \{2, 4\}$
 $D(X_3) = \{1, 2\}$
 $D(X_4) = \{1, 2, 3\}$
 $D(X_5) = \{4, 5\}$
 $D(X_6) = \{4, 5\}$
 $D(N) = \{1, 2\}$

- Enforcing GAC is NP-Hard
- Lower bound of N obtained by a greedy computing an independent set [Hebrard et al, 2006]

$$\text{NVALUE}(N, [X_1, \dots, X_n])$$

- Propagating a sharp lower bound of N is NP-Hard
- The best lower bound proposed in [Bessière et al, 2006] is based on LP-relaxation of:

$$\min \sum_{i=1}^{m} y_i$$

$$\sum_{i \in D(X_j)} y_i \ge 1 \qquad \forall j = 1, \dots, n$$

$$y_i \in \{0, 1\} \qquad \forall i \in V$$

m: number of values

n: number of variables

$$NVALUE(N, [X_1, \ldots, X_n])$$

- Propagating a sharp lower bound of N is NP-Hard
- The best lower bound proposed in [Bessière et al, 2006] is based on LP-relaxation of:

$$\begin{array}{ccc}
\operatorname{Min} \sum_{i=1}^{m} y_i \\
\sum_{i \in D(X_j)} y_i \ge 1 & \forall j = 1, \dots, n \\
y_i \in \{0, 1\} & \forall i \in V
\end{array}$$

For all
$$(\lambda_1, \dots, \lambda_n) \ge 0$$

$$\text{Min } w_{\lambda} = \sum_{i=1}^m y_i + \sum_{j=1}^n \lambda_j (1 - \sum_{i \in D(X_j)} y_i)$$

$$= \sum_{i=1}^m (1 - \sum_{j|i \in D(X_j)} \lambda_j) y_i + \sum_{j=1}^n \lambda_j$$

$$y_i \in \{0, 1\} \qquad \forall i \in V$$

m: number of valuesn: number of variables

$$NVALUE(N, [X_1, \ldots, X_n])$$

- Propagating a sharp lower bound of N is NP-Hard
- The best lower bound proposed in [Bessière et al, 2006] is based on LP-relaxation of:

For all $(\lambda_1, \dots, \lambda_n) \ge 0$ $\text{Min } w_{\lambda} = \sum_{i=1}^m y_i + \sum_{j=1}^n \lambda_j (1 - \sum_{i \in D(X_j)} y_i)$ $= \sum_{i=1}^m (1 - \sum_{j|i \in D(X_j)} \lambda_j) y_i + \sum_{j=1}^n \lambda_j$ $y_i \in \{0, 1\} \quad \forall i \in V$

- **m**: number of values
- **n**: number of variables

- No constraints in the Lagrangian subproblem
- Easily solved by inspection :

Set
$$y_i$$
 to 1 if $(1 - \sum_{j|i \in D(X_i)} \lambda_j) < 0$

• Filtering is also done "for free"

$$NVALUE(N, [X_1, \ldots, X_n])$$

- Propagating a sharp lower bound of N is NP-Hard
- The best lower bound proposed in [Bessière et al, 2006] is based on LP-relaxation of:

$$\begin{array}{ccc}
\operatorname{Min} \sum_{i=1}^{m} y_i \\
\sum_{i \in D(X_j)} y_i \ge 1 & \forall j = 1, \dots, n \\
y_i \in \{0, 1\} & \forall i \in V
\end{array}$$

For all
$$(\lambda_1, \dots, \lambda_n) \ge 0$$

$$\min w_{\lambda} = \sum_{i=1}^m y_i + \sum_{j=1}^n \lambda_j (1 - \sum_{i \in D(X_j)} y_i)$$

$$= \sum_{i=1}^m (1 - \sum_{j|i \in D(X_j)} \lambda_j) y_i + \sum_{j=1}^n \lambda_j$$

$$y_i \in \{0, 1\} \qquad \forall i \in V$$

- **m**: number of values
- **n**: number of variables

- No constraints in the Lagrangian subproblem
- Easily solved by inspection :

Set
$$y_i$$
 to 1 if $(1 - \sum_{j|i \in D(X_i)} \lambda_j) < 0$

Filtering is also done "for free"

[Mouthy, Deville, Dooms, JFPC 2007]

A global constraint for the set covering problem

$$NVALUE(N, [X_1, \ldots, X_n])$$

dominating set of queens
(picture from [Hebrard et al, 2006])

 $x_i \in S_i \subset \{1, \ldots, n^2\}$: the queen attacking cell i

Minimize
$$z$$

NVALUE $(z, [x_1, \dots, x_{n^2}]),$
 $x_i \in S_i \subset \{1, \dots, n^2\}$

3- NValue

- LR can be fast (faster than LP)
- LR can filter a more than LP (even if the bound is theoretically the same)

3- NValue

Jean-Guillaume, 1h30 du mat

- LR can be fast (faster than LP)
- LR can filter a more than LP (even if the bound is theoretically the same)

3- NValue

 $NVALUE(N, [X_1, \ldots, X_n])$

- Instead of using Lagrangian/linear reduced costs, we fix the assignment and recompute the bound in a "singleton" manner
- LP has a better incremental behaviour

• Regular: REGULAR($[X_1, \ldots, X_n], A$)

[Pesant, 2004]

Propagation based on breath-first-search in the unfolded automaton

Automaton

• Regular: REGULAR $([X_1,\ldots,X_n],\widehat{A})$

[Pesant, 2004]

Propagation based on breath-first-search in the unfolded automaton

• Regular: Regular($[X_1, \ldots, X_n], A$)

[Pesant, 2004]

- Propagation based on breath-first-search in the unfolded automaton
- Cost regular: Regular($[X_1, \ldots, X_n], A$) $\land \sum_{i=1}^n c_{iX_i} = Z$
 - Propagation based on shortest/longest path in the unfolded automaton

• Regular: REGULAR($[X_1, \ldots, X_n], A$)

[Pesant, 2004]

- Propagation based on breath-first-search in the unfolded automaton
- Cost regular: Regular($[X_1,\ldots,X_n],A$) $\wedge \sum_{i=1}^n c_{iX_i}=Z$
 - Propagation based on shortest/longest path in the unfolded automaton
- Multi-cost regular: Multi-cost Regular($[X_1, \ldots, X_n], [Z^1, \ldots, Z^R], A$) Regular($[X_1, \ldots, X_n], A$) $\land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0, \ldots, R)$
 - Propagation based on resource constrained shortest/longest path
 - Sequencing and counting at the same time
 - · Personnel scheduling

[Menana, Demassey, 2009]

- Routing
- Example: combine Regular and GCC

Multi-cost regular :

REGULAR(
$$[X_1, ..., X_n], A$$
) $\land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0, ..., R)$

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

Multi-cost regular :

REGULAR(
$$[X_1, ..., X_n], A$$
) $\land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0, ..., R)$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

$X_1 X_2 X_3 X_4 X_5 X_6 X_7$								
c_D^1	1	1	1	1	1	1	1	
c_N^1	0	0	0	0	0	0	0	
c_R^1	0	0	0	0	0	0	0	

	X_1	X_2 .	X_3 .	X_4 .	X_5	X_6	X_7
c_D^2	0	0	0	0	0	0	0
c_N^2	1	1	1	1	1	1	1
c_R^2	0	0	0	0	0	0	0

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

Multi-cost regular :

REGULAR(
$$[X_1, ..., X_n], A$$
) $\land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0, ..., R)$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

X_1	X_2 .	X_3 .	X_4 .	X_5 .	X_6	X_7
D	R	N	R	D	D	R

R,D	R=2
\bigcap	
The state of the s	
S	
\sim R	

	X_1	X_2 .	X_3 .	X_4 .	X_5	X_6	X_7
c_D^1		1	1	1	1	1	1
c_N^1	0	0	0	0	0	0	0
c_R^1	0	0	0	0	0	0	0

	X_1	X_2 .	X_3 .	X_4 .	X_5	X_6	X_7
c_D^2	0	0	0	0	0	0	0
c_N^2	1	1	1	1	1	1	1
c_R^2	0	0	0	0	0	0	0

WEIGHTED-CIRCUIT
$$(X = [X_1, ..., X_n], Z)$$

 $X_i = j$ means j is the successor of i

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT
$$(X = [X_1, \dots, X_n]) \land \sum_{i=1}^n c_{iX_i} \leq Z$$

WEIGHTED-CIRCUIT
$$(X = [X_1, ..., X_n], Z)$$

 $X_i = j$ means j is the successor of i

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT
$$(X = [X_1, \dots, X_n]) \land \sum_{i=1}^n c_{iX_i} \leq Z$$

Filtering based on graph structure [Fages et al, 2012] [Caseau et al, 1997]

WEIGHTED-CIRCUIT
$$(X = [X_1, ..., X_n], Z)$$

 $X_i = j$ means j is the successor of i

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT
$$(X = [X_1, \dots, X_n]) \land \sum_{i=1}^n c_{iX_i} \leq Z$$

[Fages et al, 2012]

Filtering based on graph structure

[Caseau et al, 1997]

- Filtering based on the Held and Karp 1-Tree relaxation [Benchimol et al, 2012]
 - Relax the **tour** into a **1-tree** (a tree over all nodes except one + 2 edges connected to the ignored node)
 - Lagrangian subproblem based on a minimum spanning tree

WEIGHTED-CIRCUIT
$$(X = [X_1, ..., X_n], Z)$$

 $X_i = j$ means j is the successor of i

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT
$$(X = [X_1, \dots, X_n]) \land \sum_{i=1}^n c_{iX_i} \leq Z$$

[Fages et al, 2012]

Filtering based on graph structure

[Caseau et al, 1997]

Filtering based on the Held and Karp 1-Tree relaxation

[Benchimol et al, 2012]

- Relax the **tour** into a **1-tree** (a tree over all nodes except one + 2 edges connected to the ignored node)
- Lagrangian subproblem based on a minimum spanning tree
- Use "Lagrangian reduced-cost" to identify:
 - Edges that must be in the tour
 - Edges that can not be in a "better" tour

[Benchimol et al, 2012]

Fig. 3 The filtered graph for st70 with respect to an upper bound of 700 (a) and 675 (b).

WEIGHTED-CIRCUIT
$$(X = [X_1, ..., X_n], Z)$$

 $X_i = j$ means j is the successor of i

Enforce X to be a Hamiltonian tour of weight at most Z

CIRCUIT
$$(X = [X_1, \dots, X_n]) \land \sum_{i=1}^n c_{iX_i} \leq Z$$

[Fages et al, 2012]

Filtering based on graph structure

[Caseau et al, 1997]

- Filtering based on the Held and Karp 1-Tree relaxation [Benchimol et al, 2012]
 - Relax the **tour** into a **1-tree** (a tree over all nodes except one + 2 edges connected to the ignored node)
 - Lagrangian subproblem based on a minimum spanning tree
- Strong filtering based on dynamic programming when the number of visited nodes is small (around 15-20: very common in wide a range of applications) [Cambazard et al, 2012]

BINPACKINGUSAGECOST($[X_1, \ldots, X_n], [L_1, \ldots, L_m], [Y_1, \ldots, Y_m], T, B, S$)

• A set of items $S = \{w_1, \ldots, w_n\}$

$$\downarrow w_1 \qquad \downarrow w_2 \qquad \cdot \qquad \cdot$$

• A set of bins $B = \{\{C_1, f_1, c_1\}, \dots, \{C_m, f_m, c_m\}\}$

Cost
$$c_{j}$$
 Load
$$cost_{j} = f_{j} + Load_{j}c_{j}$$

• Minimize $\sum_{j=1|Load_j>0}^m cost_j$

BINPACKINGUSAGECOST $([X_1,\ldots,X_n],[L_1,\ldots,L_m],[Y_1,\ldots,Y_m],T,B,S)$

- A set of items $S = \{w_1, \dots, w_n\}$
- A set of bins $B = \{\{C_1, f_1, c_1\}, \dots, \{C_m, f_m, c_m\}\}$
- Minimize the sum of the costs of the used bins

ltems Bins

BINPACKINGUSAGECOST $([X_1,\ldots,X_n],[L_1,\ldots,L_m],[Y_1,\ldots,Y_m],T,B,S)$

- A set of items $S = \{w_1, \dots, w_n\}$
- A set of bins $B = \{\{C_1, f_1, c_1\}, \dots, \{C_m, f_m, c_m\}\}$
- Minimize the sum of the costs of the used bins

BINPACKINGUSAGECOST $([X_1,\ldots,X_n],[L_1,\ldots,L_m],[Y_1,\ldots,Y_m],T,B,S)$

• LP relaxation easy to characterize and fast cost filtering can be done [Cambazard et al, 2013]

- Stronger filtering can be achieved using Lagrangian relaxation
 - Relax the constraint enforcing an item to occur in exactly one bin.
 - Lagrangian sub-problem is a knapsack and dynamic
 Programming provides the reduced costs.

Overview of Lagrangian based filtering for NP-Hard global constraints

Constraint	Lagrangian Subproblem	Examples of applications	References
Multi-cost-regular	Shortest/Longest Path	Personnel Scheduling	[Menana et al, 2009]
Weighted-circuit	1-Tree (Spanning Tree)	Traveling Salesman Problem Traveling Purchaser Problem Traveling Tournament	[Caseau et al, 1997] [Benoist et al, 2001] [Benchimol et al, 2012] [Fages et al, 2012] [Cambazard et al, 2012]
Weighted - atMostNValue	Sorting	Traveling Purchaser Problem Warehouse location	[Cambazard et al, 2012]
atMostNValue	Inspection		
Bin-Packing with usage costs	Knapsack	Energy optimization in data-centers	
Shortest Path in DAG with resource constraints	Shortest Path	Multileaf collimator sequencing	[Sellmann, 2005] [Cambazard et al, 2010]

Other applications:

- Golomb rulers [Van Hoove, 2013],
- Automated Recording Problem [Sellmann, 2003]
- Capacitated Network Design [Sellmann, 2002]

Plan

1. Context and motivation

- Illustrative application: the Traveling Purchaser Problem
- Optimization versus Satisfaction
- Combinatorial versus polyhedral methods

2. Propagation based on Lagrangian Relaxation

- Lagrangian duality
- Filtering using Lagrangian reduced costs
- Let's try on the Nvalue global constraint

3. Overview of some NP-Hard Constraints with costs

Multi-cost regular, Weighted-circuit, Weighted-Nvalue, Bin-packing with usage costs

4. Examples of applications

Back to the Traveling Purchaser Problem

Problem structures

 $Nvisit \in \{1,\ldots,B\}$: Number of visited markets TotalCost = TravelingCost + ShoppingCost

Relaxation	Nature of the problem	Value of the parameter	How to solve / propagate it ?	Key propagation
Feasibility	Hitting Set AtMostNValue	\overline{Nvisit} (cardinality)	[Bessière et al, 2006]	\underline{Nvisit}
Feasibility + Shopping cost	p-median WEIGHTED-NVALUE	$p = \overline{Nvisit}$	Lagrangian relaxation	$\frac{\textit{ShoppingCost}}{\textit{Nvisit}}$
Traveling Cost	k-TSP Close to Weighted-Circuit	$k = \underline{Nvisit}$	Dynamic Programming? Lagrangian relaxation	$\frac{TravelingCost}{\overline{Nvisit}}$

CP Model for the TPP

```
: Number of visited markets
Nvisit \in \{1, \dots, B\}
y_i \in \{0, 1\}
                          : do we visit market i?
s_k \in \{i | v_i \in M_k\} : the market where item k is bought
                          : the price paid for item k
Cs_k \geq 0
Minimize \ TravelingCost + ShoppingCost
     Cs_k = \text{ELEMENT}([b_{k1}, \dots, b_{ki}, \dots, b_{km}], s_k)
     \exists i \mid s_k = i \Leftrightarrow y_i = 1 (channeling S_k and Y_i)
    \text{NVALUE}([s_1, \dots, s_m], Nvisit)
    TSP([y_1,\ldots,y_n],
            Nvisit,
            TravelingCost, \ldots)
    WEIGHTED-NVALUE([s_1, \ldots, s_m],
                            Nvisit,
                            ShoppingCost, \ldots)
```

CP Model for the TPP

```
Nvisit \in \{1, \dots, B\}: Number of visited markets
y_i \in \{0, 1\}
                : do we visit market i?
s_k \in \{i | v_i \in M_k\} : the market where item k is bought
                         : the price paid for item k
Cs_k \geq 0
Minimize \ TravelingCost + ShoppingCost
     Cs_k = \text{ELEMENT}([b_{k1}, \dots, b_{ki}, \dots, b_{km}], s_k)
     \exists i \mid s_k = i \Leftrightarrow y_i = 1 (channeling S_k and y_i)
    \text{NVALUE}([s_1, \dots, s_m], Nvisit)
    TSP([y_1, \ldots, y_n], \longrightarrow Close to WEIGHTED-CIRCUIT
            Nvisit.
            \overline{Travel}ingCost, \ldots)
    WEIGHTED-NVALUE([s_1, \ldots, s_m],
                           Nvisit
                           ShoppingCost, \ldots)
```

Overview of results on TPP

- Benchmark (Laporte class3):
 - 100 instances: up to 250 markets and 200 items
 - 11 open instances
- Very efficient when the optimal solution contains few markets
- Very complementary to [Laporte and al]

n	m	Nvisit	Obj BCP	Time BCP	Obj CP	Time CP
250	50	5	3161	17399 s	3161	0.6 s
250	150	18	2121	> 18000 s	1531	417 s
150	200	25	2594	1317 s	2594	5677 s
200	100	28	3161	8599 s	3178	> 7200 s

- CP only fails to prove optimality on 10 instances
- Closes 8 instances out of the 11 open instances (improves 10 best known solutions)

The Multileaf Collimator Sequencing Problem

Data: A matrix of integers (The intensities)

Question: Find a decomposition into a weighted sum of Boolean matrices such that,

- The matrices have the **consecutive ones** property
- The sum of the coefficients (Beam on time B) is minimum
- The number of matrices (Cardinality K) is minimum

B = 6

K = 3

minimise $w_1K + w_2B$

Overview of results

- Some results using **CP**:
 - Counter model: 20 x 20 with max intensity 10 [Baatar, Boland, Brand, Stuckey 07], [Brand 08]
 - Path model: 40 x 40 with max intensity 10 [Cambazard, O'Mahony, O'Sullivan 09]
- **Dedicated** algorithm:
 - 15 x 15 with max intensity 10 (up to 10h of computation) [Kalinowski 08]
- Using **Benders decomposition**: [Taskin, Smith, Romeijn, Dempsey ANOR '09] Clinical instances (around 20x20 with max intensity 20) solved optimally with up to 5.8 h of computation
- Results can be improved using Lagrangian Relaxation when intensity remains small
- - 80 x 80 with max intensity 10

- 20 x 20 with max intensity 20
- 12 x 12 with max intensity 25
- Clinical instances with up to 10 min of computation

Conclusion

Some applications require strong reasoning involving costs (and key NP-Hard sub-problems).

Lagrangian relaxation (LR) can provide a suitable filtering mechanism without the need of an LP solver:

- LR can be faster than LP to compute the bound
- LR can provide more filtering
- Drawbacks of LR:
 - It needs parameters (when using a sub-gradient algorithm)
 - It can experience issues for converging

Can we (CP) question the domination (exact algorithms) of **Branch and Cut and Price** for a large class of routing problems?

References

- Y. Caseau, F. Laburthe, Solving Small TSPs with Constraints, ICLP 1997
- P. Refalo, Linear formulation of Constraint Programming models and Hybrid Solvers CP 2000
- T. Benoist, F. Laburthe, B. Rottembourg Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems, CP-AI-OR 2001
- F. Focacci, A. Lodi, M. Milano, Embedding relaxations in global constraints for solving TSP and TSPTW, Ann. Math. Artif. Intell., 2002
- M. Sellmann, T. Fahle: Constraint Programming Based Lagrangian Relaxation for the Automatic Recording Problem. Annals OR 118(1-4): 17-33, 2003
- M. Sellmann: Theoretical Foundations of CP-Based Lagrangian Relaxation. CP 2004: 634-647
- T. Gellermann, M. Sellmann, R. Wright: Shorter Path Constraints for the Resource Constrained Shortest Path Problem. CPAIOR 2005: 201-216
- J. Menana, S. Demassey: Sequencing and Counting with the multicost-regular Constraint. CPAIOR 2009: 178-192
- Hadrien Cambazard, Eoin O'Mahony, Barry O'Sullivan: Hybrid Methods for the Multileaf Collimator Sequencing Problem. CPAIOR 2010: 56-70
- P. Benchimol, W.J. van Hoeve, J.C. Régin, L.M. Rousseau, M. Rueher, Improved filtering for weighted circuit constraints. Constraints 17(3): 205-233, 2012
- J.G. Fages, X. Lorca: Improving the Asymmetric TSP by Considering Graph Structure. CoRR abs/1206.3437, 2012
- H. Cambazard, B. Penz: A Constraint Programming Approach for the Traveling Purchaser Problem. CP 2012: 735-749
- H. Cambazard, E. O'Mahony, B. O'Sullivan: A shortest path-based approach to the multileaf collimator sequencing problem. Discrete Applied Mathematics 160(1-2): 81-99 (2012)
- M. R. Slusky, W.J. van Hoeve: A Lagrangian Relaxation for Golomb Rulers. CPAIOR 2013: 251-267