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Abstract. Identifying structures in a given combinatorial problem is often a key
step for designing efficient search heuristics or for understanding the inherent com-
plexity of the problem. Several Operations Research approaches apply decomposition
or relaxation strategies upon such a structure identified within a given problem. The
next step is to design algorithms that adaptively integrate that kind of information
during search. We claim in this paper, inspired by previous work on impact-based
search strategies for constraint programming, that using an explanation-based con-
straint solver may lead to collect invaluable information on the intimate dynamically
revealed and static structures of a problem instance. Moreover, we discuss how ded-
icated OR solving strategies (such as Benders decomposition) could be adapted to
constraint programming when specific relationships between variables are exhibited.

1. Introduction

Generic search strategies for solving combinatorial optimisation prob-
lems represent the Holy Grail for both Operations Research (OR) and
Constraint Programming (CP) people. Several tracks are now explored:
dynamically adapting the search strategy, identifying specific structures
in a given instance in order to speed up search, etc. Whatever the
technique, the key point is to be able to identify, understand and use the
intimate structure of a given combinatorial problem instance (Gomes
et al, 1997; William et al, 2003a; William et al, 2003b). For example,
Bessière et al. (2001) proposed to take into account variable neigh-
borhood; more recently, Refalo (2004) defined impact-based solving
strategies for constraint programming. These new techniques, taking
into account propagation, dynamically use the structure of the solved
problem.

In this paper, we attempt to identify, differentiate and exploit prob-
lem structure that is revealed during the course of the solution algo-
rithm. We focus on structure that appears in the form of subsets of
variables that play a specific role in the problem. To this end we define
several fine-grained measures of the impact of fixing the values of the
variables in these subsets. The goal is to:

− identify structure that is not initially visible;
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− design new generic techniques for guiding the search;

− pave the way for the use of impact analysis in such decomposition-
based methods as Benders decomposition.

Our new impact measures are made possible by the use of an expla-
nation-based constraint solver that provides inside information about
the solver embedded knowledge gathered from the problem. This in-
formation represent some kind of trace of the inferences made dur-
ing propagation and therefore implicitly outlines relationships between
variables.

The paper is organized as follows: Section 2 introduces the basis
and motivations of our work. Several impact measures and associated
graphs are presented in Section 3 distinguishing their respective ability
to reflect dynamically revealed and static structures on a concrete ex-
ample. Finally, as we believe that the detection of hidden structures can
be explicitly used into CP, we start to show the interest of those such
structures as a guide for searching as well as the design of a dedicated
resolution strategy inspired from a logic-based decomposition.

2. Search strategies for structured problems

Efficient constraint programming search strategies exploit specific as-
pects or characteristics of a given (instance of a) problem. In OR,
relaxation or decomposition strategies exploit the fact that part of the
problem can be considered as a classical problem (such as compatible
or optimal flow problems, shortest path problems, knapsack problems,
etc.). This aspect of the problem is often called structure.

A problem is more generally said to be structured if its components
(variables1 and/or constraints) do not all play the same role, or do not
have the same importance within the problem. In such a problem, the
origin of the complexity relies on the different behavior (or impact)
for specific components of the problem. One of the main difficulties
in identifying structures in problems is that it is not always evident
until one begins to solve the problem. The interplay between a given
instance and the search algorithm itself may define or help to exhibit a
hidden structure within the problem. We call it a dynamically revealed
structure. It is related to initial choices that direct search to wrong
directions as well as new relationships due to the addition of constraints
during search.

1 In the following, we will focus our study only on variables as components
inducing a structure.
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Structures are characterized using various notions: for example, back-
bones (Monasson et al, 1999) are variable assignments that appear
in every solutions. Backdoors recently introduced in (William et al,
2003b) represent an interesting concept to characterize hidden struc-
tures within a problem. Informally, it can be defined as a subset of
variables that encapsulate the whole combinatorics of the problem:
once this subset instantiated, the remaining sub-problem can be solved
very quickly. Several search strategies are based upon backdoors. The
following two are central in this paper:

− Branching heuristics in CP attempt to early guide the search to-
wards the backdoor variables as they try to perform choices that
simplify the whole problem as much as possible. They are based on
a simple idea: select a variable that leads to the possibly smallest
search space and that raises contradictions as early as possible.
This principle (often referred to as the first fail principle (Haral-
ick and Elliot, 1980)) is often implemented by taking the current
domain and degree of constraindness of the variables into account
(see (Boussemart, 2004) or (Bessière et al, 2001) for variants).
More recently, (Refalo, 2004) proposed to characterize the im-
pact of a choice and a variable by looking at the average search
space reduction caused by this choice (another way of identifying
a backdoor);

− Benders decomposition (Benders, 1962) falls exactly within the
range of backdoors techniques. It is a solving strategy based on
a partition of the problem among its variables into two sets x, y.
A master problem provides an assignment x∗, and a sub-problem
tries to complete this assignment over the y variables. If this proves
impossible, the sub-problem produces a cut2 (a constraint) added
to the master problem in order to prune this part of the search
space on the x side. The interesting cuts are those which are able to
prune not only the current x∗ solution from the search space (this is
mandatory) but also the largest possible class of assignments that
share common characteristics with x∗ which make them subopti-
mal or inconsistent for the same reason. This technique is intended
for problems with a special structure. The master problem is based
on a relevant subset of variables that generally verifies the two
following assumptions:

1. The resulting subproblem is easy. In practice, several small
independent subproblems are used, making it easy to perform

2 This cut is often referred to as the Benders cut.
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the required exhaustive search in order to produce the Benders
cut;

2. The Benders cut is accurate enough to ensure a quick conver-
gence of the overall technique.

In such a decomposition, the master problem can be considered
as a backdoor because, thanks to condition (1), once the master
problem completely instantiated the subproblem can be solved
efficiently. Moreover, if the remaining subproblem can be actually
solved polynomially (this is referred to as strong backdoors), a
powerful cut based on the minimal conflict can often be computed.

For decomposition techniques, the structure needs to be identified
before search starts. Classical structure identification is made through
an analysis of the constraint network. For example, it is common for
solving graph coloring problems to look for maximal cliques in order
to compute bounds or to add global constraints such as all-different
(Régin, 1994) in order to tighten propagation on the problem. But,
such an analysis only provides information on visible static structures.
Nevertheless, hidden structures and dynamically revealed ones seem
to be of very high interest for a lot of search strategies. Of course,
their identification is at least as costly as solving the original problem.
However, we believe that the propagation performed by the solver dur-
ing search provides information that should lead to approximate those
hidden structures. One way of exploiting that information is to use
explanations (a limited, readable, and useable trace of the propagation
process).

3. Identifying problem structure using explanations

Refalo (2004) introduced an impact measure with the aim of detecting
choices with the strongest search space reduction. He proposes to char-
acterize the impact of a decision by computing the Cartesian product
of the domains (an evaluation of the size of the search space) before and
after the considered decision. We want to go a step further by analyzing
where this reduction occurs and how past choices are involved. We
extend those measures into an impact graph of variables, taking into
account both the effects of old decisions and their effective involvement
in each inference made during resolution.

Our objective is to identify variables that maximally constrain the
problem, or subsets of variables that have strong relationships and a
strong impact upon the whole problem (just like a backdoor). We have
focused our study on the following points:
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− the impact or influence of a variable on the direct search space
reduction;

− the impact of a variable inside a chain of deductions made by the
solver even a long time after the variable has been instantiated;

− the region of the problem under the influence of a variable and the
precise links between variables.

Explanations for constraint programming seem a relevant tool for
providing such an information.

3.1. Explanations and Constraint Programming

Constraint programming is a generic search paradigm which relies on a
tree-based exploration of the search space along with inference mecha-
nisms (filtering algorithms) aimed at pruning as much as possible the
search space. Search can be considered as a dynamic constraint addition
technique. Such dynamic constraints will be referred to in the following
as decision constraints. In this paper, we will consider assignment-like
decision constraints: xi = a (the decision here amounts to choose a
value for a variable). Each decision is propagated to the whole con-
straint network until a fix-point is achieved, a solution is found or a
contradiction is identified. In this latter case, the search algorithms
backtracks to the last choice point and choose another alternative.
Explanations have been initially introduced to improve backtracking-
based algorithms. They have been recently used for other purposes
including dynamic constraint satisfaction problems and user interaction
(Jussien, 2003).

DEFINITION 1. An explanation records some sufficient information
to justify an inference made by the solver (domain reduction, contra-
diction, etc.). It is made of a set of constraints C ′ (a subset of the set
C of the original constraints of the problem) and a set of decisions dc1,
..., dcn taken during search. An explanation of the removal of value a
from variable v will be written:

C ′ ∧ dc1 ∧ dc2 ∧ . . . ∧ dcn ⇒ v 6= a

Explanations computed by the constraint solver represent the logical
chain of inferences made by the solver during propagation. In a way,
they provide some kind of a trace of the behavior of the solver as any
operation needs to be explained. In the following, we will refer to E as
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the set of explanations computed so far and Eval
i the set of explanations

computed for all3 removals of value val from the domain of variable i.
Explanations are computed on-the-fly by each constraint and stored

at the variable level. They induce some additional time complexity (fil-
tering algorithms need to integrate an explaining algorithm) and some
additional space complexity (O(nd) where n is the number of variables
and d the maximum size of the domaine as at most one explanation
is stored for any value4). Let |e| be the size of an explanation e i.e.
the number of constraints in e. Explanation e1 will be considered as
more precise than explanation e2 if |e1| < |e2|. Indeed, the smaller
an explanation, the more precise it is, as the number of necessary
hypothesis to infer the associate value removal is reduced. Finally, the
age ad

e of a decision when computing explanation e is defined as the
number of decisions taken since d when e is produced.

3.2. Characterizing impact

Refalo (2004) characterizes the impact of the decision xi = a as the
search space reduction induced by this decision (following the first
fail principle). Nevertheless, this reduction does not only occur when
the decision is posted to the problem but also when other (future)
deductions that are partially based on the hypothesis xi = a are made.

The use of explanations can provide more information on the real
involvement of the decision in the reduction. A past decision xi = a
has an effective impact (in the solver’s point of view) over a value val
of variable xj if it appears in the explanation justifying its removal.

Our first measure is expressed as the number of times a decision
occurs in a removal explanation for value val from variable xj . The
size of the explanation is also taken into account as it reflects directly
the number of hypothesis required to deduce the removal. Limited
hypothesis means higher possibility of occurrence for the associated
removal. Hence, the relationship between associated variables should
be stronger. I0 is meant to measure this influence:

I0(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1/ |e| (1)

From this basic measure we define several different others: first, two
measures (I1 and I2) based on the solver’s activity and explanations
are introduced; second, a third one (I3) taking into account the search

3 A value can be removed from the domain of a variable several times during
search. This is due to backtracking.

4 This is an upper bound used to limit space occupation.
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space reduction is proposed in order to identify static structures and
to guide the search process.

As search and propagation are intricately related, it seems natural
to normalize those measures wrt search.

− First, the impact is normalized wrt the number of times |xi = a|
decision xi = a is taken. The idea is just not to overestimate
frequently taken decisions:

I1(xi = a, xj , val) =
I0(xi = a, xj , val)

|xi = a|

− Another possible normalization is to consider the age ad
e of a de-

cision d when computing explanation e in order to decrease the
impact of old decisions. We get:

I2(xi = a, xj , val) =
∑

{e∈Eval
j ,xi=a∈e}

1
|e| × axi=a

e

− As opposed to the approach used in (Refalo, 2004) (which com-
putes an instantaneous impact) impact computation is scattered
through the solving process each time an explanation is computed.
I3 therefore tries to identify recurrent search space reductions
related to a given decision:

I3(xi = a, xj , val) =
I0(xi = a, xj , val)

|{xi = a active ∧ val ∈ Dom(xj)}|

I3(xi = a, xj , val) can be considered as the probability that the value
val of xj will be pruned if the decision xi = a is taken. This measure is
therefore updated each time a new removal occurs and as long as xi = a
is active. It takes into account the frequency as well as the proportion of
the involvement of a decision within explanations of removals. Finally,
I1 tends to favor old decisions as opposed to I2 who favors recent
decisions. Section 3.4 will show the interest of these parameters for
a final user and its comprehension of the solver’s behavior.

Those impact measures highly depend on the effective exploration
of the search space and techniques similar to those used in (Refalo,
2004) will be used to initialize them (propagation of each value in each
variable’s domain) and to sharpen them (using a restart protocol which
restarts search in order to take into account from the root node, impacts
computed in previous searches).
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3.3. Variable relationships

We aim now at providing the final user a synthetic representation of the
structure of the problem. This representation will be used to analyse
and understand the problem and how the solver addressed it. Therefore,
we would like to point out relations between variables. Thus, we need
to aggregate the measures introduced above on all the values in the
domain of a variable:

∀α ∈ [0, 1, 2], Iα(xi = a, xj) =
∑

val∈D(xj)

Iα(xi = a, xj , val)

I3 needs to be handled separately as we need to relate the search
space reduction of one variable on another one. We therefore consider
the initial size of the domain:

I3(xi = a, xj) =
|D(xj)| −

∑
val∈D(xj)(1− I3(xi = a, xj , val))

|D(xj)|

In this context, 1−I3(xi = a, xj , val) corresponds to the probability
of presence of the value val of the variable xj after taking xi = a.
We can now define the influence of a variable on another one in the
following way:

Iα(xi, xj) =
∑

v∈D(xi)

Iα(xi = v, xj)

Relationships between variables can now be represented using an
impact graph associated to each measure α. This graph is a valued
oriented graph GIα(X, E,W ) where X is the set of variables in the
problem and the weight for an arc (xi, xj) ∈ E (E = X ×X) is defined
as Iα(xi, xj). Each variables is a node of this graph and the weight of
arc (xi, xj) represents the influence of xi on xj . The greater the weight,
the greater the influence.

3.4. How to use impacts to analyze structures

We want now to show how the impact graph can be used to identify
structures. We use here a concrete example and will show how infor-
mation from the impact graph is analyzed to get information about the
problem and its resolution.

3.4.1. A particular instance
We consider a random binary problem in which a structure is added
by increasing the tightness of a subset of constraints in order to create
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several subsets of variables with strong relationships. Random instances
are characterized by the tuple < N, D, p1, p2 > (we use the classical B
model (Achliptas et al, 1997)) where N is the number of variables, D
the unique domain size, p1 the density of the constraint network and
p2 the tightness (the proportion of forbidden tuples) of the constraints.
Here we consider N = 30, D = 10, p1 = 50%. We design three subsets
of 10 variables whose tightness is p2 = 53% while it is set to 3% in the
remainder of the network.

The specific instance we chose here to illustrate our different mea-
sures is interesting because it seems harder to solve than expected
for the mindom (Haralick and Elliot, 1980) classical variable selection
heuristic (where the variable with the smallest current domain is chosen
for instantiation). Using the different impact graphs introduced above,
we would like to illustrate how several questions may be addressed when
facing a problem instance:

− is it possible without any network analysis to identify the structure
embedded within the instance ?

− why mindom is not performing as expected on this instance ? Is
this due to the instance or to the heuristic itself ?

3.4.2. Visualizing the impact graph
Figures 1 to 4 show the impact graph GI of the 30 variables involved in
our instance. We use here a matrix-based representation (Ghoniem et
al, 2004): variables are represented both on the rows and columns of the
matrix. The cell at the intersection of row i and column j corresponds
to the impact of the variable vj on the variable vi. The stronger the
impact, the heavier the edge, the darker the cell. The matrix is ordered
according to the order of the hidden kernel of variables5.

Search is initiated with singleton consistency propagation (every
value of every variable is propagated (Prosser et al, 2000)) to ensure
that the impacts of variables are homogenously initialized. Although
the graph is almost entirely connected, the matrix-based visualization
depicted in Figure 1 makes it possible to see very clearly the structure
of the problem, i.e. the three sets of variables having strong internal
links, right after this first propagation step (we use here the generic
impact measure I0).

Figure 2 depicts the impact graph after two minutes of search using
mindom as variable selection heuristic. Impacts are not used here for

5 We are currently working on clustering algorithms (Cleuziou et al, 2003) to
discover this particular ordering from the impact graph alone.
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Figure 1. The impact graph GI0 (using I0) after the initialization phase.

search but are only maintained during search in order to generate
the associated graphs. One can notice how I0 highly concentrates on
dynamically revealed structure (initial clusters are no longer visible
compared to Figure 1) whereas I3 is focused on the original static
structure and interestingly forgets the weak links even after two minutes
of computation (see Figure 2). The darker area for I0 at the bottom left
corner shows that the variables in the first two sets have an apparently
strong influence on the variables belonging to the third set. This can be
accounted for by the fact that bad decisions taken early on the variables
of the first sets lead the solver into numerous try-and-fail steps on the
variables of the third set hiding the existing structure in the problem.
Notice that this zone would get darker if search would not have been
interrupted for analysis.

Figure 2. Impact graph GI0 (left) and GI3 (right) after two minutes of computation
using mindom.
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Figure 3 represents GI1 the impact graph related to I1. It is a
normalized graph where the impact of a decision taken by the solver
is divided by the number of times this decision has been taken during
search so far. By doing so, we aim at refining the previous analysis
by distinguishing two types of decisions: those having a great influence
because they are repeated frequently, and those having a great influence
because they guide the solver in some inconsistent branch of the search
tree and appear in all inconsistency explanations. We can thus isolate
early bad decisions that seem to involve the second set of variables.

Figure 3. The impact graph GI1 after two minutes of computation using mindom.

Finally, Figure 4 represents the activity within the impact graph
where the effect of old decisions is gradually discarded (I2). As ex-
pected, it appears that the solver keeps going back and forth between
the first and third sets of variables, with very negligible involvement
of the second set. This must be related to poor decisions taken on the
variables of the second set.

Figure 4. The impact graph GI2 after two minutes of computation using mindom.

impact-constraints.tex; 11/12/2006; 17:42; p.11



12

We therefore modified our search heuristic so that decisions whose
apparent influence increases too much (because they appear in many
explanations but do not provide any valuable pruning) are discarded as
soon as possible. The problem was then solved almost instantaneously.

4. Using impacts to improve search

In this section, we illustrate how the impact measure introduced above
can be used in order to improve search techniques.

4.1. Branching strategies

Classical branching strategies take into account the current domains
(mindom) and/or the degree of the variables in the constraint network
(dom + deg or dom/deg) in order to identify most constrained variables
whose instantiation will simplify the problem. Impacts as presented
above naturally generalize this idea.

4.1.1. Variable-oriented impacts
Impacts have been aggregated to express relationships between vari-
ables. In order to be used for branching, we need a problem-wide
aggregation. For measures I0 to I2, the global impact of a decision is
computed by aggregation on the whole set of variables in the problem6:

∀α ∈ [0, 1, 2], Iα(xi = a) =
∑

xj∈X

Iα(xi = a, xj)

Upon branching, first, we choose the variable x that maximizes∑
a∈D(x) I(x = a) and second, for that variable, we choose the value v

that minimizes I(x = a) in order to allow a maximum possible future
assignments (D(x) is here the current domain of x).

4.1.2. Constraint-oriented impacts
Impacts have been defined based on decision constraints ins order to
reveal relationships between variables through search. But, they can be
defined in a similar way for any constraint ct following I0:

I(ct) =
∑

{e∈E,ct∈e}
1/ |e| (2)

6 I3 is handled differently as we need to focus on search space reduction as it is
done in Section 3.3 for I3(xi = a, xj).
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One of the best branching strategies nowadays is dom/deg introduced
in (Bessière and Régin, 1996). dom/deg selects the variable that min-
imizes the ratio between the size of its current domain and its degree
in the constraint network. The idea is to favor smaller domains and
most constrained variables. It has been improved recently for binary
constraints by (Boussemart, 2004) leading to the dom/Wdeg heuristic
which increments the degree of a given constraint each time it raises a
contradiction. We propose here to get a step further by replacing the
degree with the impact measure of the constraints on the considered
variable (this is the dom/Ict heuristic).

4.2. Experiments

For simplicity and clarity, we have chosen to present the results ob-
tained for the two most significative variants: I2 et dom/Ict. The frame-
work of our experiments is the following:

− As explanations are nevertheless maintained to compute the im-
pact measures, we can easily switch from standard chronological
backtracking to back-jumping (we use mac-cbj (Prosser, 2000));

− We will compare our strategies to dom/deg, dom/Wdeg and IR, the
impact search based on the principles of (Refalo, 2004).IR com-
pares the remaining search space (taking the Cartesian product of
the domains) after and before each decision in order to precisely
quantify the search space reduction. The variable that maximizes
the search space reduction is chosen and the value that minimizes
it. In order to test the influence of the back-jumping mechanism,
IR and dom/deg are both tested using mac and mac-cbj. The best
combination is reported;

− All ties are randomly broken;

− Finally, experiments were conducted on a Pentium 4, 3 GHz run-
ning Windows XP. We use choco, an open-source constraint li-
brary in Java (choco-solver.net).

(Refalo, 2004) mentions that initializing impact is critical and using
restart can pay off when initialization is not able to efficiently approx-
imate impacts. Note that impacts become more pertinent as time goes
by. The two following techniques were therefore implemented:

− restart procedures enforce an increasing limitation on the num-
ber of nodes authorized during search. This limit is doubled at
each iteration providing a complete technique. Results with restart
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with an heuristic h are denoted in the results h + rest. They are
mentioned as soon as they outperform h alone.

− impacts are initialized using a propagation phase similar to single-
ton consistency (Prosser et al, 2000) (each value for each variable
is propagated). The cost of this initialization is reported in the
indicated times.

We considered three sets of benchmark problems:

1. The first set comes from experiments in (Refalo, 2004): a set of mul-
tiknapsack problems modelled with binary variables. Each problem
is solved as a satisfaction problem (the optimal value for the original
problem is set as a hard constraint). For this set a time limit of
1500s is considered. We report here an average for 30 executions
of the algorithms for solving each instance (recall that ties are
randomly broken).

2. Our second set is made of random structured instances made as
described in Section 3.4. A < 45, 10, 35, p2 > problem is struc-
tured with three kernels of 15 variables linked with an intra-kernel
tightness p2 and an inter-kernel tightness of 3%. 100 instances are
considered for each value of p2. Average results are presented.

3. Our last set is made of real world frequency allocation problems
(Cabon, 1999) coming from the FullRLFAP archive. The problem
resides in finding frequencies (fi) for different channels of commu-
nication minimizing interferences. Interferences are expressed using
minimal distance constraints between frequencies of some channels
(|fi − fj | > Eij or |fi − fj | = Eij). We followed (Bessière et al,
2001; Boussemart, 2004) to generate hard satisfaction instances.
Therefore, scenXX-wY-fZ will correspond to the original instance
scenXX where constraints with a weight greater than Y are removed
as well as the Z highest frequencies. Results are reported on a set of
15 hard instances identified by (Bessière et al, 2001; Boussemart,
2004).

4.3. First benchmark : multiknapsack problems

On this first benchmark (results are reported in Table I), IR is the
best strategy. We get the same results as in (Refalo, 2004) regarding
IR. The use of restart does not provide any improvement for any of
the tested heuristics. The random tie-breaking takes a too large part
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for I2 and dom/Ict7. Those two heuristics are not pertinent here as
they require a too long learning before impacts get to stabilize and
allow variable discrimination. It is quite clear for I2 when looking at
the number of nodes of the last iteration upon restart (cf. Table I).
Thus, restart makes I2 a viable alternative but it takes too long and
the overall time necessary for solving the problem increases.

Table I. Impacts on multiknapsack problems randomly breaking ties (average
results on 30 executions)

mac dom/deg mac IR mac dom/Wdeg

Tps (s) Nodes Tps (s) Nodes Tps (s) Nodes

mknap1-2 0 11.2 0 24.3 0 11.9

mknap1-3 0 85.9 0 165.7 0 89.8

mknap1-4 0.3 2236.7 0.2 1149.5 0.4 2506.1

mknap1-5 3.6 27749.1 3.5 23158.1 4.7 32437.6

mknap1-6 316.8 2031108.5 201.1 1066116.4 452.9 2636561.5

dom/Ict I2 I2 + rest

Tps (s) Nodes Tps (s) Nodes Tps (s) Nodes

mknap1-2 0 32.8 0 26.0 0 26.0

mknap1-3 0.1 334.5 0.1 594.3 0.1 200.8

mknap1-4 4.3 15063.8 2 7141.5 6 6770.8

mknap1-5 723 2881651.4 234 861328.5 317 446652.6

mknap1-6 > 1500 > 1500 > 1500

4.4. Second benchmark: structured random binary
problems

On this benchmark, mac-cbj seems critical (mac dom/deg, mac IR or
mac IR + rest are not able to compete) except for dom/Wdeg (Figures 5
and 6 report the obtained results). I2, dom/Wdeg as well as dom/Ict
are much more efficient than IR which is better than dom/deg. Here,
restart does not pay off for I2 and dom/Ict. However, restart with IR

7 Results are much more better (for all heuristics) on this benchmarks when ties
are broken deterministically.
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is a good strategy as the initialisation phase is insufficient to get useful
information.
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Figure 5. Average resolution time (left axis) and number of satisfiable instances
(sat) (right axis) for dom/deg, IR and dom/Ict.
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Figure 6. Average resolution time (left axis) and number of satisfiable instances
(sat) (right axis) for dom/Ict, I2 and dom/Wdeg.

The efficiency of I2 and dom/Wdeg is probably due to the fact that
the complexity of this benchmark does not only rely at the instance
level but also because of the high degree of interaction with the search
algorithm. Artificial structures are in favor of heavy-tailed behaviors
(William et al, 2003a) which is characterized by a great variation in
pure random search leading to highly difficult to identify bad initial
choices. Notice that the bad behavior for IR starts just before the phase
transition.

4.5. Third benchmark: frequency allocation

On this benchmark, mac-cbj is crucial as shown in the first two columns
in Table II (7 solved instances for mac-cbj as opposed to only 3 for
mac). A way of analyzing this result is to look at the impact graph.
The first matrix on Figure 7 gives the impact graph at the end of
the initialization phase. One can immediately see that the constraint
network is really sparse. Moreover, even after a repeated random search
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(for a limited number of nodes) in order to let indirect relations appear
(the second matrix on Figure 7), impacts do not appear throughout
the problem but stay quite localized. Thrashing commonly arises in
such situations. As propagation remains quite local, a contradiction
can be discovered quite late on a part of the graph after a long search
on another part (because the two parts are poorly related).

Results for the four stragegies8 are presented on Table II. We sys-
tematically use here mac-cbj. IR is better that I2 which is in turn
better than dom/deg. The initialization phase can be quite costly (up
to 40 seconds in the worst cases) but can alone prove the inconsistency
of some instances. Initialization is not applied for dom/Wdeg as it does
not need it compared to dom/Ict.

dom/Wdeg is the winning strategy on this benchmark. However, our
new strategy dom/Ict is as efficient (in terms of solved instances – 12
out of the 15 instances considered9) and is only outperformed in terms
of time because of its necessary initialisation step.

Table II. Impacts on frequency allocation problems

mac dom/deg mac-cbj dom/deg I2 + rest IR + rest dom/Ict dom/Wdeg

scen11 Time (s) 47 7.9 38 53 40 11.5

(sat) Nodes 5863 1207 1432 3986 524 907

scen02-f24 Time (s) 0.8 0.1 3 3 3 0.1

(sat) Nodes 620 104 88 90 104 95

scen02-f25 Time (s) > 1h 3.6 4.6 3.7 8.5 1.4

(unsat) Nodes - 610 270 77 1252 83

scen03-f10 Time (s) > 1h 1766 11.5 9.7 10.5 0.5

(sat) Nodes - 527507 1128 415 186 188

scen03-f11 Time (s) > 1h > 1h > 1h > 1h 17.5 19.6

(unsat) Nodes - - - - 788 1369

scen06-w2 Time (s) > 1h 75 14.6 13.5 15.8 1.1

(unsat) Nodes - 68669 0 0 0 78

scen07-w1-f4 Time (s) 0.2 0.2 6 5.9 6.9 0.3

(sat) Nodes 271 202 194 191 185 207

scen07-w1-f5 Time (s) > 1h 0 4.4 4.3 5 0.1

(unsat) Nodes - 26 0 0 0 29

graph08-f10 Time (s) > 1h > 1h > 1h 679 19 14

(sat) Nodes - - - 200898 757 1392

graph08-f11 Time (s) > 1h > 1h > 1h 174 14 3.3

(unsat) Nodes - - - 32653 25 254

graph14-f27 Time (s) > 1h > 1h 14.9 26.2 32.9 3.7

(sat) Nodes - - 4886 9845 7080 1817

graph14-f28 Time (s) > 1h > 1h > 1h > 1h 14.3 4

(unsat) Nodes - - - - 1377 901

nb solved 3/15 7/15 8/15 10/15 12/15 12/15

8 IR needs to compute the Cartesian product of domains. In order to discard
integer overflowing, we based IR on the measure of the reduced values instead of the
remaining space.

9 3 out of the 15 instances could not be solved by none of the tested techniques.
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Figure 7. The impact graph at the end of the initialisation phase and after a repeated
random search of fixed size.

4.6. Impact-based strategies: first insights

Strategies Iα (α ranging from 0 to 2) are strongly related to the solver’s
activity during search (thus, focussing on the dynamically revealed
component of the structures). Their use can be quite efficient as they
reveal bad initial choices (whose influence will grow incommensurably
during search without any useful pruning because the solver cannot
manage to get back to them). Moreover, when applying impacts to
constraints, the ones responsible for the propagation are identified. But,
we think that the explanation-based impact varies too much between
two different nodes in the search tree so that Iα will not make robust
generic strategies alone. I3 is clearly too costly (wrt. time) in its current
implementation to be used as default heuristic.

5. Specific structures exploitation

Benders decomposition in OR is a technique dedicated to problems
that have a static structure: a subset of variables which has a great
impact on the others and for which the remainder of the problem
can be decomposed in independent sub-problems. The decomposition
uses a master-slave relationship between variables. The master vari-
ables are called complicating variables by Geoffrion (1972). Once these
variables instantiated, the resulting optimization subproblem is much
more simple.

Our aim here is to use this decomposition technique, which has
proven quite efficient in OR, for our hidden structures revealed by the
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impact graphs we defined (we have subsets with strong intra-relations
and light inter-relations). Using this technique in CP is not immedi-
ate. Usually, classical Benders cuts are limited to linear programming
and are obtained by solving the dual of the subproblem. Therefore,
they require that dual variables or multipliers to be defined to apply
the decomposition. However, Hooker and Ottosson (2003) proposed
to overcome this limit and to enlarge the classical notion of dual by
introducing an inference dual available for all kinds of subproblems.
They refer to a more general scheme and suggest a different way of
considering duality, a Benders decomposition based on logic: being able
to produce a proof and a sufficient set of hypothesis to justify this proof.

However this inference dual must be implemented for each class of
problems to derive accurate Benders cuts (Jain and Grossmann, 2001).
One way of thinking the dual is to consider it as a certificate of opti-
mality or an explanation (as introduced in Section 3.1) of inconsistency
in our case. Our explanation-based constraint programming framework
therefore provides in a sense an implementation of the logic-based Ben-
ders decomposition in case of satisfaction problems (Cambazard et al,
2004). One can notice here as the computation of explanations is lazy10,
the first explanation is taken whereas several explanations exist. One
cannot look for the minimal explanation for evident scalability reasons.
Therefore, such an inference dual provides an arbitrary11 dual solution
but not necessarily the optimal one. Obviously, the success of such an
approach depends on the degree to which accurate explanations can be
computed for the constraints of the subproblem.

Explanation-based constraint programming as used in algorithms
like mac-dbt (Jussien and al, 2000) or in decision-repair (Jussien
and Lhomme, 2002) automatically focus on the master problem of such
a decomposition but may revert to a more conventional behavior (simi-
lar to mac) when independence is not properly identified. The next step
would be here to use the structure exhibited from the impact graphs
presented above in order to apply a Benders decomposition scheme
in a second phase of resolution. The identification of sub-structures
once the master instantiated could guide the generation of cuts for the
master to gather as much information as possible where lies the real
combinatorics of the problem.

10 Not all possible explanations are computed when removing a value. Only the
one corresponding to the solver actual reasoning is kept.

11 This can also be accounted for linear duality where any dual solution is a bound
for the primal problem.
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6. Conclusion

In this paper, we introduced several indicators useful for both iden-
tification and use while searching of key structures at the heart of
combinatorial problems. We focused our study on the relationship be-
tween variables and gave new perspectives on the design of generic
search heuristics for constraint programming as well as search algo-
rithms. We believe that the presence of backdoors or subset of variables
exhibiting a strong impact over the whole problem could be explicitly
used by ad hoc decomposition or relaxation strategies inspired from
Operation Research. A concrete example is Benders decomposition and
its generic extension based on logic. It is indeed exactly a backdoors
technique and could be applied in Constraint Programming as a nogood
learning strategy.
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