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Abstract
We address a parallel machine scheduling prob-
lem for which the objective is to maximize the
weighted number of scheduled tasks, and with the
special constraint that each task has a mandatory
processing instant. This problem arises, in our
case, to schedule a set of astronomical observa-
tions on a telescope. We prove that the prob-
lem is NP-complete, and we propose a constraint-
programming-based branch-and-price algorithm to
solve it. Experiments on real and realistic datasets
show that the method provides optimal solutions
very efficiently.

1 Scheduling observations on a telescope
Large telescopes are few and observing time is a precious re-
source subject to a strong pressure from a competitive com-
munity. Besides, a growing number of astronomical projects
require surveying a large number of targets during discontin-
uous runs spread over few months or years. An important
example in today astronomy is the imaging surveys to dis-
cover and study extra-solar planets, which require to observe
hundreds of targets to get a chance of imaging a few planets.

There are many targets to be selected as actual observa-
tions and the total demand of observing time far exceeds the
supply. Furthermore, the optimization must occur on dif-
ferent scales: prior to each year or semester, the requested
targets list must fit the projected calendar, leading to adjust
both; then the schedule is optimized again prior to each run
(roughly, every week) and re-optimized prior to each night,
to take into account priority changes and to reschedule failed
observations. Even during one night, unexpected conditions
such as bad weather might indeed require quasi real time ad-
justments, calling for efficient algorithms.

Software solutions exist to cope with scheduling observa-
tions. SPIKE, originally designed for the Hubble Space Tele-
scope, addresses specific cases and uses a constraint program-
ming approach, together with a multistart stochastic repair
procedure [Johnston and Miller, 1994]. SPOT is a recent inte-
grated tool designed for automating the schedule computation
in the case of a search for extra-solar planets: it first analyzes
the various constraints and determines the observation win-
dows of each target in each night, and then computes actual

schedules using heuristic and meta-heuristic techniques. It is
fast (5 minutes for 1000 targets on a modern laptop), provides
a friendly user interface and is portable on all major operating
systems [Lagrange et al., 2015].

In this paper we investigate alternative, exact methods to
cope with the typical kind of instances which are frequently
addressed to SPOT and that can be described as a parallel ma-
chine scheduling problem with time-windows and the partic-
ular constraint that each task has a mandatory instant at which
it must be in execution; the problem is formally defined in
Section 2, together with notations, a mixed-integer program-
ming formulation and the many links with interval scheduling
problems. Then, we prove the NP-completeness of the prob-
lem (Section 3) and propose solution procedures and bounds
(Section 4). Experimental results on real and realistic datasets
are discussed in Section 5.

2 Problem description
We are given a set of allocated nights and a targets list. Each
target has a scientific priority and many properties as its coor-
dinates, its angular proximity to the moon, its elevation above
the horizon, etc. Each night has also specific properties: its
starting and ending times as well as particular conditions (e.g,
due to weather) that prevent the observation of some specific
directions or target faint objects. Furthermore, in the case of
extra-solar planet surveys, a target must be observed when it
crosses its meridian and the exposure must ensure a minimum
rotation of the field of view. Altogether, this information de-
fines, for every target: an interest, an observation duration, a
mandatory instant of observation (the meridian) and an ob-
servation window; note that, apart from the interest, all these
parameters are night-dependent.

As a consequence, the problem we address is a parallel
scheduling problem with an apriori mandatory part known
for each task (nights can be seen as machines and targets as
tasks). It is precisely defined as follows.

We consider a setM of m nights and a set T of n targets.
Each target i has an interval [rji , d

j
i [ when it can be observed

during night j, and a duration of observation pji ; furthermore
each target must be observed at its meridian mj

i . The tele-
scope can observe only one target at once, and each target i
has a weight wi that represents its “interest”. The objective is
to maximize the total weight of the observed targets by decid-



ing the allocation of the targets to the nights and the schedule
of the observations within the nights.

The existence of mandatory instants (meridians) implies a
particular structure on both the instances and the solutions:

Property 1 A target i has a mandatory instant during night
j if and only if 2pji ≥ d

j
i − r

j
i .

Proof If mj
i is a mandatory instant then rji ≥ mj

i − p
j
i and

dji ≤ mj
i + pji and thus 2pji ≥ dji − rji . Conversely, if

2pji ≥ dji − rji then tji = (rji + dji )/2 can be considered
as a mandatory instant. 2

Property 2 The observations must be scheduled by non-
decreasing mandatory instants (for a given night j).

Proof Consider two targets 1 and 2 such that mj
1 < mj

2.
Target 2 ends after mj

2 (mandatory instant) and thus strictly
after mj

1: hence, target 1 cannot respect its mandatory instant
mj

1 if it is schedule after target 2. 2

Property 2 is a key feature for everything that follows as
the order of the observations scheduled during a same night
is known in advance. First, it allows for the following mixed-
integer linear formulation:

max
∑

i∈T wizi
(1)

∑
j∈M zji = zi i ∈ T

(2) rji z
j
i ≤ ti i ∈ T , j ∈M

(3) ti + pjiz
j
i ≤ djiz

j
i +M(1− zji ) i ∈ T , j ∈M

(4) zji1 + zji2 ≤ yi1,i2 + 1 i1, i2 ∈ T
j ∈M

(5) ti1 + pji1 ≤ ti2 +M(1− yi1,i2) i1 ≺j i2 ∈ T
j ∈M

where the decision variables are: zi (binary, 1 if and only
if target i is scheduled); zji (binary, 1 if and only if target i
is scheduled during night j); yi1,i2 (binary, 1 if and only if
targets i1 and i2 are scheduled during the same night); and ti
(non-negative, the starting time of the observation of target i).

The objective sums up the total interest of the scheduled
targets. Constraints (1) ensure that each scheduled target is
actually scheduled within some night. Constraints (2) and (3)
impose that a target, if scheduled during night j, respects the
corresponding observation interval (note: M is a large con-
stant, e.g., the length of the longest night). Constraints (4) and
(5) ensure that two observations scheduled during the same
night do not overlap; in constraints (5), “i1 ≺j i2” refers
to the order induced by Property 2. This mixed-integer for-
mulation allows for a clear statement of the problem, but is
improper for a fast solution of large instances.

When interpreted in scheduling terms, the problem, due to
Property 1, is described by the notation R|rji , 2p

j
i ≥ dji −

rji |
∑
wiUi (see e.g., [Pinedo, 2014] for classical notations

and results from scheduling theory). If the observation inter-
vals do not depend on the night (rji = ri; d

j
i = di; p

j
i = pi),

then nights are identical machines, and the problem becomes
a special case of the parallel machine scheduling problem

with release and due dates where one wants to minimize the
weighted number of unscheduled tasks (P |ri|

∑
wiUi). This

problem is NP-complete, even for a single night, no release
dates and a unique due-date (1|di = d|

∑
wiUi), or with no

release dates, no due dates, and no weights (P ||
∑
Ui), or for

one night and no weights (1|ri|
∑
Ui). However, the special

case 1|ri, pi = p|
∑
wiUi is polynomially solvable [Baptiste,

1999], as is the case for 1|ri, pi = di− ri|
∑
wiUi [Chuzhoy

et al., 2006].
If the duration of the interval is exactly the processing

time but the observation intervals depend on the night (i.e.,
pji = dji − r

j
i ), then the problem belongs to interval schedul-

ing (see [Kolen et al., 2007] for a review). If all targets have
the same weight, then the problem can be solved in polyno-
mial time by a greedy algorithm [Faigle and Nawijn, 1995;
Carlisle and Lloyd, 1995]. If the duration does not depend on
the night (pi = di − ri), the problem can be formulated as a
minimum cost flow and is solvable in polynomial time [Arkin
and Silverberg, 1987; Bouzina and Emmons, 1996]. How-
ever, when some targets are not visible some nights, the prob-
lem becomes NP-complete, except if the number of nights is
fixed [Arkin and Silverberg, 1987].

When a discrete set of k intervals is associated to a target
(e.g., one possible interval per night), then the problem of de-
ciding whether all targets can be scheduled is NP-complete
if k ≥ 3 [Nakajima and Hakimi, 1982], and is polynomial if
k = 2 [Keil, 1992]. However, scheduling a maximum num-
ber of targets with discrete intervals is NP-complete if k ≥ 2
[Spieksma, 1999].

To the best of our knowledge, the assumption 2pji ≥ d
j
i−r

j
i

has not been studied before. It implies a particular structure
of a feasible solution but nevertheless, as we prove in the next
section, the problem remains NP-complete.

3 Complexity analysis
The complexity of various related problems has been dis-
cussed above; Table 1 sums up the main results. In this sec-
tion we prove that, with the assumption that 2pi ≥ di−ri the
problem is NP-complete but solvable in pseudo-polynomial
time if there is one night (Section 3.1), and is unary NP-
complete for several nights (Section 3.2). Note that NP-
completeness is not straightforward since the problem is
polynomial with either equal weights or duration equals to
the observation window.

Case Complexity
1||

∑
Ui polynomial

1|di = d|
∑
wiUi NP-complete

1|ri, pi = p|
∑
wiUi polynomial

1|ri|
∑
Ui NP-complete

1|ri, 2pi ≥ di − ri|
∑
Ui polynomial∗

1|ri, pi = (di − ri)|
∑
wiUi polynomial

1|ri, 2pi ≥ di − ri|
∑
wiUi NP-complete∗

P |ri, pi = (di − ri)|
∑
wiUi polynomial

P ||
∑
Ui NP-complete

P |ri, 2pi ≥ di − ri|
∑
wiUi NP-complete∗

Table 1: Complexity results. Stared-results are proven below.



3.1 The single night problem
The problem reduced to one night is a special case of
the one machine scheduling problem with release dates
(1|rj |

∑
wjUj , NP-complete). It is indeed a constant relative

window size problem, where each task verifies k pi ≥ di− ri
(polynomial for k = 1): we consider the case k = 2 and we
prove that the weighted problem is NP-complete (Theorem 1)
and the unweighted case is polynomial (Proposition 1).

Theorem 1 The single-night observation scheduling prob-
lem (1|ri, 2pi ≥ di − ri|

∑
wiUi) is NP-complete.

Proof The single-night observation scheduling problem is
trivially in NP. We shall reduce a variant of the PARTITION
problem to ours.

PARTITION: given n pairs of integers (a2i−1, a2i) such that∑2n
i=1 ai = 2B, is there a set S such that: S contains exactly

one element of each pair (a2i−1, a2i), and
∑

i∈S ai = B?
This problem is NP-complete [Garey and Johnson, 1979].

Consider an instance of PARTITION. For each pair of inte-
gers, we create a pair of incompatible targets. More precisely,
we consider 2n targets such that wi = pi = 2B + ai and:

• r2i−1 = r2i = 2(i− 1)B +
∑i−1

k=1 min(a2k−1, a2k),

• d2i−1 = d2i = 2iB +
∑i

k=1 max(a2k−1, a2k), except
for the last two targets: d2n−1 = d2n = (2n+ 1)B.

(Note that the assumption 2pi ≥ di − ri holds, and that the
transformation is polynomial.) The question is: is there a
schedule of these targets of total interest at least (2n+ 1)B?

First, assume that PARTITION has a solution S. We build
an observation schedule by picking the targets corresponding
to the integers in S: they can be scheduled within their time-
window and are done so without idle-time. The total interest
of such a schedule is (2n + 1)B. Hence if PARTITION has a
solution, then, there is a schedule of value (2n+ 1)B.

Conversely, let assume that there is a feasible schedule
of total interest (2n + 1)B. Such a value implies that
this schedule is non-idling, as the value of each observa-
tion is equal to its duration. Besides, for a given i, note
that no target other than 2i − 1 or 2i can be scheduled dur-
ing the interval ]2(i− 1)B+

∑i−1
k=1 max(a2k−1; a2k); 2iB+∑i

k=1 min(a2k−1; a2k)[, and that at most one of them can
be scheduled, for they are overlapping. Since the schedule
is non-idling, one target from each pair (2i − 1, 2i) has been
selected and the schedule corresponds to a solution of PARTI-
TION. Hence, if there is a schedule of value (2n+ 1)B, then
PARTITION has a solution.

As a consequence, solving the observation scheduling
problem solves PARTITION. As the latter is NP-complete,
so is the former. 2

Proposition 1 If all targets have the same interest (wi =
1), then the single-night observation scheduling problem
(1|ri, 2pi ≥ di − ri|

∑
Ui) is polynomially solvable.

Proof The selected targets must be scheduled in a predefined
order (Property 2); we assume that they are numbered accord-
ingly (1 ≺ 2 ≺ . . . ≺ n). Apply the following procedure:

1. Set initial solution S = ∅

2. For i = 1 to n do

• if target i is compatible with every observation in
S, schedule it as early as possible;

• otherwise, target i is incompatible with target k, the
last target added to S; replace k with i if i ends
before k when scheduled as early as possible.

This algorithm runs in polynomial time and, besides, it is op-
timal. Indeed, let S∗ be an optimal solution and let k∗ and k
be the first observations to differ respectively in S∗ and S. By
definition of the procedure, k ends before k∗ and is thus com-
patible with all the remaining observations of S∗: the pro-
cedure must have selected them (or alternative observations
that, in each case, ends before the corresponding observations
in S∗). As a consequence S has as many observations as S∗,
and is thus optimal. 2

The known order of the observations within a night allows
for a procedure based on standard dynamic programming:

Theorem 2 The single-night observation scheduling prob-
lem (1|ri, 2pi ≥ di − ri|

∑
wiUi) can be solved in pseudo-

polynomial time.

Proof Consider a set of n targets and a night length T =
maxi=1..n di. Let f∗(i, t) be the optimal value of a schedule
involving targets 1, . . . , i and such that i finishes before t. f∗
verifies:

f∗(i, t) =


0 i = 0,∀t ∈ [0, T ]
f∗(i− 1, t) ∀i ∈ [1, n], t ∈ [0, ri + pi[
max(f∗(i− 1, t), f∗(i− 1, t− pi) + wi)

∀i ∈ [1, n], t ∈ [ri + pi, di]
f∗(i, di) ∀i ∈ [1, n], t ∈ ]di, T ]

Note that, for a target i the last three cases span over the whole
night: [0, ri + pi[∪[ri + pi, di]∪]di, T ]. We are looking for
f∗(n, T ) which can be computed in space and time complex-
ity O(nT ). 2

Note that this procedure provides a very efficient algorithm
when the time horizon is not too large.

3.2 Several nights problem
If the order of the observations does not depend on the night,
then the algorithm of Theorem 2 can be generalized, yielding
an O(nTm) algorithm, pseudo-polynomial for a fixed num-
ber of nights m. However, in the general case, the problem is
unary NP-complete:

Theorem 3 The observation scheduling problem is NP-
complete in the strong sense when there are several nights,
even for the unweighted case and if the observation intervals
are the same for all the nights (that is: problem P |2pi ≥
di − ri|

∑
Ui is unary NP-complete).

Proof The observation scheduling problem is in NP. We shall
prove that the NUMERICAL 3-DIMENSIONAL MATCHING
problem reduces to ours.

NUMERICAL 3-DIMENSIONAL MATCHING (3-DM):
given 3 sets of n non negative integers X = {x1, · · · , xn},
Y = {y1, . . . , yn} and Z = {z1, · · · , zn} such that∑n

i=1(xi+yi+zi) = nB, is there a collection S of n subsets



Sj = {xj1 , yj2 , zj3} containing exactly one element of each
set X , Y and Z such that ∪nj=1Sj = X ∪ Y ∪ Z and such
that for each set Sj : xj1 + yj2 + zj3 = B? This problem is
NP-complete in the strong sense [Garey and Johnson, 1979].

Now, consider an instance of 3-DM. The reduction is as
follows: consider 3 sets of n targets each T X ∪ T Y ∪ T Z =
T ; the total number of targets is then |T | = 3n. The duration
of a target i is the same whatever the night and is defined by:

• ∀i ∈ T X , pXi = 4B + xi with 0 < xi < B;

• ∀i ∈ T Y , pYi = 2B + yi with 0 < yi < B;

• ∀i ∈ T Z , pZi = B + zi with 0 < zi < B.

The intervals [ri, di] associated with each target i are:

• [0; 5B] for i ∈ T X ;

• [4B; 8B] for i ∈ T Y ;

• [6B; 8B] for i ∈ T Z .

Note that the assumption 2pi ≥ di−ri holds. The weight of a
target i is 1. The number of nights is |M| = n. The question
is: is there a schedule of the observations with a total gain of
3n?

The complexity of this reduction is pseudo-polynomial,
hence it is a pseudo-polynomial transformation, provided that
3-DM has a “yes” answer if and only if the observation
scheduling problem has.

First, consider an instance of 3-DM for which a solution
exists. Then, the corresponding instance of the observation
scheduling problem admits a solution with a total gain of 3n:
each set Sj corresponds to night j, the first observation is
scheduled from 0 to 4B+xj1 , the second one from 4B+xj1
to 6B + xj1 + yj2 and the third one from 6B + xj1 + yj2 to
7B + xj1 + yj2 + zj3 = 8B, each respecting its interval, and
the total gain is 3n as all the observations are scheduled.

Conversely, assume that the observation scheduling prob-
lem admits a schedule of total gain 3n. Such a value is ob-
tained if and only if all the observations are scheduled. As
pXi > 4B, exactly one observation i ∈ T X must be sched-
uled first each night. The time remaining each night for the
other observations is less than 4B and, as pYi > 2B, exactly
one observation i ∈ T Y must be scheduled each night. The
time remaining each night is less than 2B and, as pZi > B
exactly one observation i ∈ T Z is scheduled last each night.
The total duration of the observations is equal to the avail-
able duration of the n nights:

∑n
i=1(4B + xi + 2B + yi +

B + zi) = 7nB +
∑n

i=1(xi + yi + zi) = 8nB. Con-
sequently there is no idle time, and each night j is such
that: 4B + xi1 + 2B + yi2 + B + zi3 = 8B, that is:
xi1 + yi2 + zi3 = B, leading to a solution for the instance
of the 3-DM.

As a consequence, there exists a pseudo-polynomial trans-
formation from 3-DM to the observation scheduling prob-
lem. As the former is NP-complete in the strong sense, so is
the latter. 2

4 Solution methods and upper bounds
Various direct formulations of the problem using mixed in-
teger programming, constraint programming and even local

search paradigms have been experimented before [Brauner
et al., 2015], but the results obtained are completely outper-
formed by approaches that take advantage of the fact that
the single-night problem can be solved in pseudo-polynomial
time. We therefore focus on exact and heuristic approaches
that rely on the dynamic program proposed for the single-
night case (Theorem 2).

4.1 A column generation procedure
The single-night case is not too hard (see Theorem 2), which
allows for a column generation procedure: the set of all possi-
ble schedules for every night is considered and a MIP selects
an optimal subset of them. The linear relaxation of this MIP
is solved iteratively by adding the column (feasible schedule)
with maximum reduced cost, which can be computed using
the dynamic program for the single-night case.

Let Ωj be the set of all possible schedules for night j.
The k-th schedule for night j is described by a 0/1 vector
(sk1,j , . . . , s

k
n,j), where ski,j is equal to 1 if and only if ob-

servation i belongs to the k-th schedule of night j, and the
weight of this schedule is equal to wk

j =
∑

i∈T wis
k
i,j .

Let ρkj be a binary variable indicating whether the k-th
schedule is used for night j. An extended formulation of the
observation scheduling problem can be stated as follows:

max
∑

j∈M
∑

k∈Ωj
wk

j ρ
k
j

(1)
∑

k∈Ωj
ρkj = 1 ∀j ∈M

(2)
∑

j∈M
∑

k∈Ωj
ski,jρ

k
j ≤ 1 ∀i ∈ T

ρkj ∈ {0, 1} ∀j ∈M,∀k ∈ Ωj

The sets Ωj are too large to be enumerated completely,
thus the linear relaxation of this model is solved with a
column generation procedure. The pricing problem is to
identify a variable ρkj to enter the basis. Let αj and βi denote
the dual variables of respectively constraints (1) and (2). The
reduced cost of variable ρkj is defined as:

rkj = wk
j − αj −

∑
i∈T

ski,jβi.

So the pricing problem is to identify a valid schedule (ski,j)

that maximizes
∑

i∈T s
k
i,j(wi − βi)− αj . Such a column of

maximum reduced cost can be found with the dynamic pro-
gram (Theorem 2) by replacing wi with (wi − βi). The sets
Ωj are thus iteratively increased as long as a positive reduced
cost schedule can be found. When dropping the constraints
that ρkj are integers, the procedure yields an upper bound.

4.2 A branch-and-price algorithm
The problem can be formulated as a constraint programming
model:

max z =
∑

i∈T wizi
(1)

∑
j∈M zji = zi i ∈ T

(2) NIGHTDISJUNCTIVE([zj1, . . . , z
j
|T |]) j ∈M

(3)
∑

i∈Cj
k
zji ≤ 1 j ∈M

Cj
k ∈ Cj

(4) OBJECTIVE(z, [z1
1 , . . . , z

|M|
|T | ])



The binary decision variables zi and zji denote respectively
whether target i is scheduled, and if it is scheduled during
night j. The starting dates of the observations are not explic-
itly represented as the model ensures that a feasible schedule
for each night can be obtained by scheduling targets as early
as possible in the order of their meridians. This is ensured by
constraints (2): NIGHTDISJUNCTIVE states that the targets
chosen for a night j can be scheduled without overlapping.
This disjunctive scheduling problem is easy to solve due to
the known ordering of the targets: checking whether a set of
targets can be scheduled can be done using a greedy algo-
rithm starting each target as early as possible. Algorithm 1 is
thus used as a necessary and sufficient condition for the con-
straint to be satisfied when applied to the mandatory targets
of night j, Mj = {i|zji = 1}. It is also used for each remain-
ing ungrounded zja by checking ifMj ∪{a} can be scheduled
and, if not, value 1 is filtered from the domain of zja; this en-
forces generalized arc-consistency in O(|T |2). This can be
seen has a specific case of the unary resource or disjunctive
global constraint with optional tasks when the order of the
tasks is known.

Algorithm 1 returns whether the set S of targets can be
scheduled in night j
Require: Targets S sorted by non-decreasing meridians

1: ctime← 0
2: for each target i ∈ S do
3: ctime← max(ctime, rji ) + pji
4: if ctime > dji then
5: return false;
6: return true

Constraints (3) are a relaxation of the NIGHTDISJUNC-
TIVE constraints that aims at speeding up the filtering of tar-
gets that cannot be scheduled a given night. A simple exam-
ple would be that two targets i1 and i2 cannot be scheduled in
a same night j when their total durations exceeds the available
time; that is when pji1 + pji2 > max(dji1 , d

j
i2

)−min(rji1 , r
j
i2

).
The two targets are then said to be incompatible. The incom-
patibility graph of night j is defined with a vertex for each
target and an edge for each pair of incompatible targets. A
clique Cj

k in this graph can provide a constraint stating that at
most one of the targets of the clique can fit in night j. The Cj

k
are obtained by computing maximal cliques in the incompat-
ibility graph of night j; and Cj simply denotes a set of such
maximal cliques.

Constraint (4) considers all variables of the problem and
encapsulates the column generation procedure to propagate
an upper bound of z. It can be seen as a redundant constraint
stating the objective function and the key features for imple-
menting it are:
• The dynamic program is modified to handle the manda-

tory/forbidden targets for a night. The domains of the
variables are thus taken into account in the sub-problem
of the column-generation and do not affect the master.
• All generated columns are kept and the ones compati-

ble with the current domains are added to the master to

initialize it whenever the filtering algorithm is called to
update the upper bound.

• When the relaxation turns out to be integer (ρkj end up
being integers), the zji are grounded to the related values.

• Finally the zji are filtered using the optimal reduced
costs. Reduced cost based filtering is a traditional fil-
tering technique that can be applied from an optimal so-
lution of the linear relaxation. It can possibly fix to 0
some binary (0/1) variables remaining out of the basis.
This technique can also be applied with an extended for-
mulation by taking advantage of the dynamic program.

Search strategy
The search is directed by the global relaxation provided by
the column generation procedure. It is performed in two steps
that can be seen as best first and first fail types of strategies.

First, a good feasible solution is identified. The branching
is performed on a variable zji that maximizes

∑
k∈Ω∗

j
ρkj s

k
i,j ,

setting value 1 first. In other words, we set to 1 the targets that
seem to be favored by the relaxation. This step is backtrack
free and the search simply dives to a feasible integer solution.

The search is then restarted from scratch and the branch-
ing is performed on a variable zji that minimizes |0.5 −∑

k∈Ω∗
j
ρkj s

k
i,j | and setting value 1 first. In other words, we

select the mostly undecided variables of the relaxation, hop-
ping to decrease the upper bound as much as possible to fail
as soon as possible.

4.3 A local search approach
We implemented a local search approach to serve as a base-
line. The search space is represented by the possible assign-
ments of the targets to the nights, with an additional fake night
for unscheduled targets. The following neighborhood is used
for any such assignment (a “night” might be the fake one):

• shift: move a target from one night to another.

• swap: swap two targets between two nights.

• reschedule: considering all targets of a given real night
j and those of the fake night, reschedule night j with a
set of maximum value (using the dynamic program of
Theorem 2).

A move is valid if it leads to a feasible assignment (all
nights can be scheduled) and does not degrade the objective
function. The moves are explored in a random order and the
first valid move found is performed. So the search is per-
formed in the space of feasible assignments only, and can it-
erate over plateaus of configurations with the same objective
value. A simple tabu mechanism is added. This approach can
be seen as a large neighborhood search due to the reschedule
move which is the core component.

5 Experimentations
Since we only have one real dataset, we generated realistic
random datasets. We choose |T | ∈ {400, 600, 800, 1000}
and |M| ∈ {71, 107, 142}, respecting the proportion of the
real dataset between the number of targets and the number



SIZE CG B&P MIP LS SPOT
ins |T | |M| RUB GAP CPU NSOL FCPU LB O CPU GAP-2h GAP-2m GAP-2h GAP-2m GAP-2h
1 400 71 9810 0% 12 1 46 9810 Y 49 11.31% 0.92% 0.41% 3.26% 2.24%
2 400 71 9420 0% 12 1 42 9420 Y 44 10.93% 0.74% 0.32% 2.97% 2.23%
3 400 71 9920 0% 9 1 36 9920 Y 38 7.96% 0.40% 0.10% 2.42% 2.22%
4 400 71 9300 0% 7 1 31 9300 Y 34 10.65% 0.75% 0.54% 3.23% 1.61%
5 400 71 9260 0% 15 1 44 9260 Y 47 9.50% 0.86% 0.65% 3.56% 2.16%
6 600 107 14340 0% 35 1 149 14340 Y 161 - 1.26% 0.56% 16.95% 3.14%
7 600 107 14120 0% 39 2 157 14120 Y 312 - 1.49% 0.85% 16.22% 3.12%
8 600 107 14740 0% 29 1 140 14740 Y 150 - 1.22% 0.54% 15.74% 2.51%
9 600 107 14020 0% 37 1 153 14020 Y 164 - 0.93% 0.57% 15.76% 2.43%
10 600 107 13600 0% 46 1 200 13600 Y 212 - 1.47% 1.10% 17.06% 2.87%
11 800 142 19450 0% 71 1 412 19450 Y 447 - 0.93% 0.51% 18.05% 2.57%
12 800 142 19630 0% 188 1 683 19630 Y 724 - 1.43% 0.92% 17.07% 2.85%
13 800 142 19940 0% 174 1 547 19940 Y 584 - 1.00% 0.45% 19.21% 2.21%
14 800 142 19110 0% 138 1 582 19110 Y 619 - 1.10% 0.58% 18.79% 2.15%
15 800 142 18770 0.11% 176 1 637 18750 N 7200 - 1.12% 0.59% 17.31% 2.66%
16 1000 142 23410 0% 205 2 786 23410 Y 2084 - 2.22% 0.94% 29.05% 4.70%
17 1000 142 23390 0% 342 1 1025 23390 Y 1092 - 1.84% 1.15% 29.24% 4.10%
18 1000 142 23710 0.04% 280 1 856 23700 N 7200 - 2.07% 1.22% 29.23% 4.85%
19 1000 142 23020 0.04% 228 1 881 23010 N 7200 - 2.13% 1.00% 29.06% 4.47%
20 1000 142 22710 0% 226 2 871 22710 Y 2338 - 2.03% 1.19% 28.40% 4.54%
real 800 142 18620 0% 85 1 364 18620 Y 413 - 1.02% 0.16% 22.40% 3.65%

Figure 1: Computational results

of nights (datasets 1–15) or increasing the number of targets
with the same number of nights (datasets 16–20). For all
datasets, the horizon is equal to 640 (time is discretized in
minutes).

The dataset generator tries to reproduce the real dataset.
We first generate random targets that can be observed some
time during the year and we compute the visibility window of
each target each day of a year. Then we generate a number of
random nights of observation, batched into runs (consecutive
days), as in the real dataset. As a consequence, the targets of
two nights in the same run are almost the same, up to an off-
set of the visibility windows, due to the rotation of the earth
around the sun.

The experiments were performed on an Intel Xeon E5-
2440 v2 @ 1.9 GHz processor and 32 GB of RAM, and ran
with a memory limit of 4 GB and a time limit of 2 hours.

Figure 1 provides, from left to right, the dataset name,
the size of T and M, and the computational result of each
method described: the column generation (Section 4.1), the
branch-and-price (Section 4.2), the MIP formulation (Section
2), the local search (Section 4.3) and the SPOT software (Sec-
tion 1).

• Column generation: the upper bound rounded down to
a multiple of 10 (RUB, wi are multiples of 10), the gap
between RUB and the best lower bound found (GAP)
and the computation time in seconds (CPU).

• Branch-and-price: the number of solutions found
(NSOL), the computation time to find the first solution
(FCPU), the best lower bound (LB), yes (Y) or no (N)
depending if optimality has been proved and the total
computation time (CPU) in seconds.

• MIP: the gap between the best known upper bound
bound and the solution obtained by the MIP in 2 hours,
”-” if no feasible solution was found within the time limit
(GAP-2h).

• Local search: the gap between the best known upper
bound and the solution obtained with local search in 2

minutes (GAP-2m), and the same gap with the solution
obtained after 2 hours (GAP-2h).

• SPOT: the gap between the best known upper bound and
the solution obtained with SPOT in 2 minutes (GAP-
2m), and the same gap with the solution obtained after 2
hours (GAP-2h).

The optimal solution is found and proved by the branch-
and-price for 18 out of 21 datasets. For the 3 remaining, the
gap with the upper bound computed by column generation is
smaller than 0.11%. The best lower bound is always provided
by the branch-and-price (the gap is thus not given for this ap-
proach). The proof of optimality is achieved when the bound
is initially optimum. The heuristic guided by the linear relax-
ation dives directly to the best known integer solution in all
cases except three (instances 7, 16, 20).

The local search is also relevant because it finds good so-
lutions (with a gap smaller than 2.22%) within only 2 min-
utes, whereas the first solution of the branch-and-price re-
quires more computation time for the biggest datasets (with
|T | ≥ 800). In comparison, on the real dataset, the MIP
model (section 2) does not found any solution and SPOT pro-
vides a solution of objective 17940 (i.e a gap of 3.65%) using
2 hours of computation time.

6 Conclusion

In this paper, we have studied a parallel machine problem
with mandatory instants. We proved the NP-completeness
of the problem and proposed a column-generation, a branch-
and-price and a local-search procedures to solve it. Experi-
mental results show these methods strongly dominates an out-
of-the-box MIP and a tailored dedicated heuristic. Indeed,
optimal (or very near optimal) solutions can be obtained in a
very short time (2 hours), with regard to the planning horizons
(several months).
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