
A Constraint-based Approach to Enigma 1225

Hadrien Cambazard and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

Barbara M. Smith

School of Computing, University of Leeds, U.K.

Abstract

This paper presents a constraint programming approach to the Enigma 1225, a
mathematical puzzle published in the New Scientist magazine in February 2003. An
approach based on Prolog was published recently. In this paper we give a constraint
programming perspective on the problem, highlighting the differences between the
two methodologies. We show how problem-specific knowledge can be easily incorpo-
rated into a constraint-based approach, giving an efficient constraint model for the
generalized version of the puzzle. From the constraint programming point of view,
the Enigma 1225 puzzle exhibits interesting symmetries, that can be eliminated us-
ing only a small number of constraints added to the model. Furthermore, properties
of the puzzle can be used to derive a strong constraint propagation scheme that
limits the search once an optimal solution has been found.

Key words: Constraint Programming, Modelling, Symmetry Breaking, Puzzles.

1 Introduction

A puzzle is published each week in the New Scientist magazine 1 , called
Enigma; each puzzle is given a unique number to identify it. The Enigma
1225 problem was published in the February 8th 2003 issue [1]. It is an inter-
esting mathematical puzzle, which serves as a nice pedagogical example for

Email addresses: h.cambazard@4c.ucc.ie (Hadrien Cambazard),
b.osullivan@4c.ucc.ie (Barry O’Sullivan), bms@comp.leeds.ac.uk (Barbara
M. Smith).
1 http://www.newscientist.com

Preprint submitted to Elsevier 18 January 2009

demonstrating the expressiveness of constraint programs. The statement of
the puzzle, as it appeared in the magazine, is as follows:

First draw a chessboard. Now number the horizontal rows 1, 2, . . . 8 from top
to bottom and number the vertical columns 1, 2, . . . 8 from left to right. You
have to put a whole number in each of the sixty-four squares, subject to the
following:
(1) No two rows are exactly the same.
(2) Each row is equal to one of the columns, but not to the column with the

same index as the row.
(3) If N is the largest number you write on the chessboard then you must

also write 1, 2, . . . , N − 1 on the chessboard.
The sum of the sixty-four numbers you write on the chessboard is called to-
tal. What is the largest total you can obtain?

The puzzle can clearly be generalized to a square chessboard of any size, and
we deal with the generalized puzzle in this paper. Figure 1 gives three examples
of feasible solutions to the puzzle for boards of size 4, 6 and 7. The solution
for the puzzle of size 4, with total = 40, is optimal. These examples will be
used throughout the paper.

4

2

2

2

3

3

4 4

44

23

1

1 1 3

R4

R2

R1

R3

R2

R6

R5

R4

R1

R3

C1 C3 C4C2

2

5 5

5 5

552

55

4

4 4

4 4

44 4

4

1

C2 C3 C4 C6C5C1

C2 C3 C4 C6C5C1

R2

R5

R4

R1

R3

R6

R7

C7

6

7

7

7

4

5

6

6

5

5

3

3

3

4

4

4

2

3

5

1

1

3 6

41

1

2

1

1

2

3

4

5 6

6

5

1 22 22 2 2 1

1

11

1

3

3

3

2

2

2

22

2 22 2 2

222

2 2

222

2 2

22

Fig. 1. Three examples of feasible solutions to the puzzle for different sized boards.

Csenki [3] has described a Prolog-based approach to modelling and solving
the generalized puzzle. In any feasible solution to the puzzle, the rows of the
chessboard are a permutation of the columns, such that no column index is
mapped to the same row index. (Permutations with this restriction are called
derangements.) Given any such permutation of 1, 2, ..., n, Csenki shows how
to find the solution with the highest value of total for that permutation, for
an n × n chessboard. This reduces the problem to finding the permutation
of 1, 2, ..., n that will yield the highest total. Csenki further shows that there
are classes of permutations that are equivalent, in that all members of the
class give solutions with the same maximum value of total, so that only one
representative of each class need be considered. Each class corresponds to a
partition of n, and Csenki uses a recursive algorithm from discrete mathemat-
ics for enumerating partitions of integers. The approach is strongly based on
Prolog’s logic programming paradigm, specifically taking advantage of unifi-
cation.

2

In this paper we give an alternative approach based on the constraint pro-
gramming paradigm, leading to a complementary analysis of the puzzle. While
constraint programs are often solved using a form of backtrack search, efficient
inference about local consistencies through the use of generic constraint prop-
agation algorithms and problem-specific global constraints allow us to easily
exploit problem-specific knowledge in a constraint model. Rather than explic-
itly enumerating the partitions of n, as Csenki does, we write constraints that
implicitly describe the representative permutations. We also design an upper
bound on the value of total that can be easily incorporated into a constraint
approach. The combination of the upper bound and the implicit enumeration
of representative permutations avoids the inherently exponential behaviour of
a generate-and-test approach that lists all feasible solutions to prove optimal-
ity. Using constraint propagation we can considerably reduce the number of
feasible solutions we need to explore.

This paper is organized as follows. Section 2 presents several observations
and theoretical results on the problem, highlighting their importance from a
constraint solving point of view. In Section 3 we briefly introduce constraint
programming and present two models of the Enigma 1225 puzzle: a simple one
and a more advanced model. We present some empirical results summarising
the behaviour of each of our models in Section 5, showing the power of ex-
ploiting problem-specific knowledge in a constraint model. We conclude in
Section 6.

2 An Analysis of the Enigma 1225 Puzzle

2.1 From Permutations to Integer Partitions

Using a standard notation for permutations, we can denote a column-to-row
permutation of the board using a matrix in which the first row represents the
columns of the board and the second row represent the rows of the board. For
example, the solutions given Figure 1 are based on the three permutations π1,
π2, π3 defined as follows:

π1 =

 1 2 3 4

2 1 4 3

 π2 =

 1 2 3 4 5 6

2 3 1 5 6 4

 π3 =

 1 2 3 4 5 6 7

7 3 4 5 2 1 6

 . (1)

The interpretation of π1 is that column 1 is equal to row 2, column 2 =
row 1, column 3 = row 4 and column 4 = row 3. Any feasible solution to
the puzzle is defined by such a permutation of 1, . . . , n due to Rule 2 of the
puzzle statement. In [3] it was noted that some sets of permutations give rise

3

to solutions whose overall totals are equivalent and one need only consider a
representative of each set of equivalent permutations. We briefly recall this
property since it allows us to greatly reduce the number of permutations we
need to consider when searching for an optimal solution to the puzzle.

A permutation can be represented alternatively using cycle notation, showing
its decomposition into disjoint cycles. For example, π3 is composed of a 3-cycle
and a 4-cycle and can be written as: π3 = (1 7 6)(2 3 4 5). One can read this
cycle representation of the permutation as follows: for the first cycle, 1 → 7,
7 → 6 and 6 → 1, closing the cycle, and for the second cycle, 2 → 3 → 4 →
5→ 2.

The cycle representation of π3 is associated with the integer partition {3, 4}
of 7 such that 7 = 3 + 4. The main result of [3] was, essentially, to show
that all permutations of 1, . . . , n whose cycle representation is associated with
the same integer partition of n are equivalent, in the sense that they lead to
solutions of the puzzle with the same overall value of total. For example, π3

and ρ3 yield the same value of total, where:

ρ3 = (1 3 4)(2 5 6 7). (2)

To demonstrate the equivalence, we can show how a solution derived from π3

can be transformed into a solution derived from ρ3 by applying a permutation
to the columns and rows. A suitable permutation can be found by writing
the cycle decomposition of each permutation in two rows, in such a way that
cycles of equal length are aligned. Define σ to be the permutation that takes
a value in the first row to the corresponding element in the second row. We
then have, for example:

σ =

 7 6 1 3 4 5 2

1 3 4 2 5 6 7

 = (1 4 5 6 3 2 7). (3)

Clearly the required permutation σ is not uniquely defined: we could instead
write the two permutations as π3 = (1 7 6)(2 3 4 5) and ρ3 = (1 3 4)(2 5 6 7)
and get σ = (1)(2)(3 5 7)(4 6).

The ρ3 solution is built by applying σ to the columns of the solution based on
π3 and then to the rows of the resulting matrix (or v.v.). The two steps of the
transformation are shown in Figure 2.

One can check that the permutation associated with the solution on the right
of Figure 2 is indeed ρ3.

Thus, rather than considering the permutations of n we need only consider

4

R6

2

2

22

2 22 2 2

222

2 2

222

2 2

222

5 5

5 5

552

55

4

4 4

4 4

44 4

44

C2 C3 C4 C6C5C1

R2

R5

R4

R1

R3

R6

R7

C7

1 22 1 2 2

542

4

2

1

2

22 2 5

422

5 4

2

2 2

5

2 2

3 2

223

24

4

2 1

1 1

4

2

5

2

2

5

3

5

52 4

C2 C3 C4 C6C5C1

R2

R5

R4

R1

R3

R6

R7

C7

3 22 1 2 2

2

22

1

1

2

2

2

2

2

22

2 1 2

231

4 4

4

5 5

4

2 2

2 5

44

25

5

4 2

2 2

4

1

5

5

2

2 5

3

C2 C3 C4 C6C5C1

R2

R5

R4

R1

R3

R7

C7

1 22 22 2 2 1

1

11

1

3

3

3

2

ρ3π3

Fig. 2. Transformation of a solution based on π3 into a solution based on ρ3.

the integer partitions of n. Moreover, no unit cycle is allowed, to fulfil the
second part of Rule 2, and hence partitions containing a 1 can be ignored.
We will, therefore, focus on integer partitions in the remainder of the paper,
and specifically on the link between a given partition (giving the permutation
linking the rows and columns) and the objective function, i.e. total.

2.2 Inferring Strong Upper Bounds on the Objective

The objective associated with the Enigma 1225 puzzle is to maximise the sum
of the values in the cells of the board. It is, therefore, critical to design up-
per bounds that can be used during search to avoid unpromising solutions.
Optimization is successfully addressed in constraint programming when prop-
agation is able to prune the search space based on inferences derived from the
value of the objective function. In this section we address this issue in detail
and show that strong bounds can be obtained on the objective function of
this problem. Rule 2 of the puzzle can be used to infer bounds on the minimal
number of occurrences of values related to a cycle composition. We will use
this information in a constraint model later in the paper.

Suppose that a solution to the puzzle is derived from a permutation π. We
denote by (i, j) the cell of the board located in row i and column j. Observe
that a cell (i, j) will take the same value as a cycle of cells linked by the
permutation π as follows:

(i, j)→ (π(j), i)→ (π(i), π(j))→ (π2(j), π(i))→ (π2(i), π2(j))

→ (π3(j), π2(i))→ . . .→ (i, j)

where πm(i) denotes the composition of π, m times, i.e.:

πm(i) =def

m︷ ︸︸ ︷
π(π(. . . π(i))) .

We denote by eqcπ(i, j) the set of cells that take the same value as (i, j) due
to π, including (i, j) itself. For example, eqcπ3(6, 1) = {(6, 1), (7, 6), (1, 7)}
because (6, 1) → (7, 6) → (1, 7) → (6, 1). In the solution derived from π3

5

shown in Figure 1, these three cells have the value 3. Moreover, we say that
a cell (i, j) is a cell of a cycle τ if i ∈ τ or j ∈ τ . A value belongs to a cycle
if it occurs in at least one cell of the cycle. For example, the values {1, 2, 3}
belong to cycle τ1 = (1 7 6) of π3.

Property 1 (Value Occurrence in Even-length Cycles.) Let π be a per-
mutation of 1, 2, ..., n and τ a cycle of size k of π, where k is even. Every value
belonging to τ occurs at least 2k times on the board.

Proof. We need to show that for a given arbitrary cell (i, j) of τ , |eqcπ(i, j)| ≥
2k. Observe that in the cycle of cells with the same value listed earlier, two
kinds of cell occur alternately: (πs(i), πs(j)) and (πs(j), πs−1(i)). Therefore,
the cycle of cells of equal value can only end if: πs(i) = i

πs(j) = j
or

 πs(j) = i

πs−1(i) = j
(4)

In the first case, we can only have πs(i) = i if s is a multiple of k, from the
definition of the cycle. The smallest possible value of s is k, and in that case
there are 2k cells in the cycle.

In the second case, combining the two equations gives πs(πs−1(i)) = i. Again,
this can only happen if 2s−1 is a multiple of k, but since k is even this cannot
happen.

Hence, any value involved in the cycle occurs at least 2k times. �

Property 2 (Value Occurrence in Odd-length Cycles.) Let π be a per-
mutation of n and τ a cycle of size k of π, where k is odd. One value belonging
to τ occurs exactly k times and all others at least 2k times.

Proof. It follows from the previous proof of Property 1 that if k is odd, the
minimum number of occurrences of a value is at least k, because we can then
have s + s − 1 = k, and k cells are required in the chain. In fact, only one
sequence of cells can be exactly of size k. Indeed the second condition of
Equation 4, which is needed to have exactly k equal cells, implies that both i
and j are in the cycle (i, j ∈ {1, . . . k}) and at the same time π(k+1)/2(j) = i and
π(k−1)/2(i) = j. For any i among {1 . . . k}, j is determined uniquely by these
equations. Consider for example the cycle (1 4 2 3 5) with k = 5. For i = 1, the
single value of j such that π(k+1)/2(j) = π3(j) = 1 and π(k−1)/2(i) = π2(1) = j
is 2. As j is determined for any i in {1 . . . , k} by the second part of Equation 4,
there can only be k cells that can fulfil this condition. In other words, there
is only one set of exactly k cells that takes the same value. All other values
occur at least 2k times, to fulfil the first condition of Equation 4. �

6

For example, π2 has a cycle of length 3 and in the corresponding solution, the
value 2 occurs exactly three times (in the cycle of equal cells (3, 1)→ (2, 3)→
(1, 2)→ (3, 1)) and the value 1 occurs six times.

Properties 1 and 2 show that optimal solutions will tend to come from a per-
mutation consisting of small cycles, to allow for more distinct values to be
included on the board. This can be used to derive upper bounds on the maxi-
mum number of distinct values used on the board, and that can be translated
into bounds on the objective function itself.

Property 3 (Number of Distinct Values.) The cells of a cycle of size k
in a board of size n contain at most nval(n, k) distinct values where:

nval(n, k) =

{
n− k/2 if k is even,

n− (k − 1)/2 otherwise.

Proof. A cycle of size k involves k rows, containing kn cells, and k columns,
also containing kn cells. There are k2 cells in the block where these rows and
columns intersect. Hence, the number of cells in the cycle is 2kn− k2.

The number of distinct values in these cells is maximized if each value is used
as few times as possible. So in the even case, we have:

nval(n, k) = (2kn− k2)/2k = n− k/2
because in the best case every value occurs exactly 2k times (see Property 1).
In the odd case, we have:

nval(n, k) = (2kn− k2 − k)/2k + 1 = n− (k − 1)/2

because in the best case one value occurs k times and all others 2k times. �

This immediately gives us a simple upper bound on the number of distinct
values in an optimal solution of the puzzle.

Property 4 (Upper Bound on the Number of Distinct Values.) Let C =
{c1, . . . , ck} be a non-increasing partition of n, i.e. ci ≥ ci+1, for i = 1, 2, ..., k−
1. Define ubNVal(n, {c1, . . . , ck}) recursively as follows:ubNVal(0, {∅}) = 0

ubNVal(ni, {ci, . . . , ck}) = nval(ni, ci) + ubNVal(ni − ci, {ci+1, . . . , ck})
(5)

where ni = ci + ci+1 ++ ck.

ubNVal(n, {c1, . . . , ck}) is an upper bound on the number of distinct values
in a solution to the Enigma 1225 puzzle based on a permutation corresponding

7

to the partition C = {c1, c2, ..., ck} of n.

Proof. In constructing this upper bound, the elements of the partition are
considered independently. For each one, the maximum possible number of
values involved in the corresponding cycle (see Property 3) is added to the
bound. This can be visualized in Figure 3. The first cycle, of length c1, acts
on the dashed area at the top and left of the matrix and at most nval(n, c1)
different values can occur in this area. The board is then reduced to a size of
n− c1×n− c1 and the process continues with c2. In this way, the total area of
the board is shared between the cycles. The resulting ubNVal(n, {c1, . . . , ck})
is an upper bound, because we are ignoring any interaction between the cycles:
for instance, the cycle of length c2 does act on the area of the board allocated
to the first cycle in Figure 3, although we assume that it does not, and this
could reduce the number of distinct values in the area allocated to c1.

Any ordering of the partition would thus give a valid upper bound. By sorting
the values in the partition to be non-increasing, the largest cycles are applied
to the largest area of the board, thus giving the tightest upper bound.

For example, ubNVal(6, {4, 2}) ≤ ubNVal(6, {2, 4}), since in the first case
we have ubNVal(6, {4, 2}) = nval(6, 4) + nval(2, 2) = (6− 2) + (2− 1) = 5,
and in the second case, ubNVal(6, {2, 4}) = nval(6, 2) + nval(4, 4) = (6 −
1) + (4− 2) = 7. �

c2

...

...

nval(n, c1)

ck

nval(n− c1, c2)

...c1

Fig. 3. Illustration of Property 4.

We need to go a step further to obtain an upper bound that can yield useful
information even if the partition is not completely known. Notice, to this end,
that ubNVal(n,C) is maximized by C = {2, . . . , 2} when n is even and by
C = {3, 2, . . . , 2} when n is odd. Smaller cycles increase the bound on the
number of values. Indeed, for n1, n2 odd:

nval(n1, 2) > nval(n2, k) ∀n1 ≥ n2 and k > 2

since n1−1 > n2−k/2 for n1 ≥ n2 and k > 2, and similarly if n1, n2 are even:

nval(n1, 3) > nval(n2, k) ∀n1 ≥ n2 and k > 3.

8

A partial partition C ′ can, therefore, be extended to a complete partition C
by adding 2, . . . , 2 or 3, 2, . . . , 2 to reach n, depending on whether the remain-
ing size is even or odd, and C maximizes the upper bound ubNVal(n,C)
amongst all partitions that contain C ′. Given this complete partition C, an
upper bound on the objective value, S, can be immediately obtained by con-
sidering the value ubNVal(n,C) placed in all cells. The objective is at most
n2 × ubNVal(n,C), which is an ideal, but illegal, case where the value ub-
NVal(n,C) is placed in every cell in the grid. Although this bound could be
improved further, it is sufficient to greatly reduce the search space.

We will now show how the previous results can be embedded in a simple
constraint model, and then into a better model giving a very efficient solver
for the generalised puzzle, i.e. for arbitrary board sizes.

3 A Constraint Programming Model

Constraint Programming [8] is a well-known paradigm for solving combinato-
rial problems. The problem to be solved is stated as a constraint satisfaction
problem (CSP), described in terms of a set of variables, each with a finite
set of possible values, its domain, together with a set of constraints. Each
constraint specifies assignments that are not allowed for some subset of the
variables. A solution to the CSP is an assignment to every variable of a value
from its domain, in such a way that all the constraints are satisfied. This
framework can be extended to optimization problems by adding an objective
function and requiring the solution that maximizes or minimizes this function,
as appropriate.

CSPs are normally solved using depth-first backtrack search interleaved with
constraint propagation. The search typically proceeds by a series of binary
choices, var = val versus var 6= val, where var is a CSP variable that has
not yet been assigned a value, and val is a value in its domain. The aim of
constraint propagation is reduce the search space by making logical inferences
from the constraints of the problem, including the constraints added at choice
points during the search, since var = val and var 6= val may be considered as
constraints. Although other kinds of logical inference are possible, constraint
solvers usually restrict constraint propagation to removing those values from
the domains of variables that can be seen to conflict with the constraints.
Backtracking is triggered when some variable is found to have an empty do-
main as a result of constraint propagation.

Global constraints [5] give constraint solvers significant power by capturing
some recurrent and well-known subproblem that can be solved efficiently using
a propagation algorithm specific to the global constraint.

9

We present an initial simple constraint programming model in Figure 4. While
this model is a correct formulation of the puzzle, we will show later in the paper
that it is quite inefficient. We will present a much more efficient model based on
the problem-specific knowledge we have gained in the previous section about
the puzzle.

Objective: maximize(S), the sum of the entries on the board.
Variables
S ∈ {1, . . . , ub(S)}
N ∈ {1, . . . , ub(N)}
pi ∈ {1, . . . , n} ∀ i ≤ n
xij ∈ {1, . . . , ub(N)} ∀ i, j ≤ n
oi ∈ {0, . . . , n2} ∀ i ≤ ub(N)
Constraints
C1 : ∀i, j ≤ n, i 6= j xi1 6= xj1 ∨ . . . ∨ xin 6= xjn
C2 : ∀i ≤ n pi = j ⇔ x1i = xj1 ∧ . . . ∧ xni = xjn
C3 : gcc({xij|i, j ≤ n}, [o1, . . . , oub(N)])
C4 : ∀i ≤ ub(N) oi = 0⇔ N < i
C5 : alldifferent({p1, . . . , pn})
C6 : ∀i ≤ n pi 6= i
C7 : N = max({xij|i, j ≤ n})
C8 : S =

∑
i oi × i

Fig. 4. A simple constraint model for the Enigma 1225.

The specification of the simple constraint model in Figure 4 is written in a no-
tation quite close to standard declarative constraint modelling languages such
as ILOG OPL 2 . However, we have used Choco 3 , an open-source constraint
programming system in this work.

S is the variable that represents the objective function, which is the sum
of all cells of the board; the objective is to maximize S. N is the variable
corresponding to the number of distinct values used in the grid. The set of
possible values of N , i.e. its domain, is between 1 and ub(N), an upper bound
for N . As described in the last section, ubNVal(n, {2, 2, . . . , 2}) (n even) or
ubNVal(n, {3, 2, . . . , 2})) (n odd) are used for ub(N). For the upper bound
on S, ub(S), we use n2 × ub(N). (Note that apart from its use in calculating
the initial bound on N , we make no use of the upper bound on the number of
distinct values in this model.)

The pi variables encode the relationship between the rows and columns: pi = k
means that column i is equal to row k. The xij variables correspond to the
cells of the board, where xij = k means that value k will be placed in the

2 http://www.ilog.com
3 http://choco.sourceforge.net/

10

square row i and column j, and their domain ranges from 1 to ub(N). Finally,
oi expresses the number of occurrences of value i in the grid.

Constraint C1 expresses Rule 1 of the puzzle (no two rows can be exactly the
same). Constraint C2 expresses that pi = j if and only if row i is equal to
column j. No column can be equal to the row of the same index because of
constraint C6. Constraint C5 combined with the domains of the pi variables
ensure that the values assigned to them must be a permutation of 1, 2, ..., n:
there are n variables with n values between them, and they must all have
different values. C1 and C2 could be expressed as stated in Figure 4 using
the Boolean connectors and, or, etc., that are usually available in constraint
solvers. However, for efficiency reasons, we implemented them in Choco using
dedicated constraints.

The fact that all numbers between 1 and N should appear on the board
is stated by a global cardinality constraint [7]: gcc({v1, . . . , vn}, [o1, . . . , oN])
that forces value i to occur exactly oi times amongst the set of variables
{v1, . . . , vn}. C7 defines N to be the largest number appearing on the board,
and constraint C4 says that every number up to and including N must appear
on the board. Constraint C8 defines S to be the sum of all the cells on the
board, via the occurrence variables o1, ..., oub(N).

For this basic model, the decision variables are the pi and xij variables. The
search is performed first on the pi variables and then switches to the xij
variables. Searching first on the xij variables gives much worse performance:
it results in assignments to the xij variables that cannot satisfy C2 and thus
leads to wasted search effort.

For both sets of variables, the next variable chosen for instantiation is the one
with smallest remaining domain (MinDomain), breaking ties by choosing the
variable with smallest index. This MinDomain variable ordering heuristic is
a standard search heuristic in constraint programming that often gives good
results. It is a dynamic heuristic, i.e. the variable order is not fixed in advance
of the search, since it takes into account the effect of constraint propagation
on the domains of the variables during the search. Having chosen a variable,
the smallest value in its domain is assigned to it.

As mentioned earlier, we implemented the basic constraint model using the
latest version of the Choco Constraint Programming system [6], running on a
dual core 2Ghz MacBook with 2Gb of Ram. We present our results in Table 1.
We report the optimal value found, the time (in seconds) required to find and
optimal solution and prove optimality, the number of nodes in the search tree,
the number of backtracks and the optimal partition found.

It should be noted that the basic model is not sufficient to solve even small
instances of the puzzle in a reasonable amount of time. With a time-limit of

11

Table 1
Empirical results using the basic model.

Objective Time Back- Optimal

n value (sec.) Nodes tracks partition

3 15 0.01 8 10 {3}

4 40 0.43 249 588 {2, 2}

5 55 0.88 2407 5824 {5}

one hour, when n = 6, the optimal solution can be found, but its optimality
cannot be proven.

4 An Improved Model

The basic model is much worse than the faster of the two Prolog implementa-
tions presented by Csenki [3], who reported a “near instantaneous response”
for n = 14. Our basic model has two main disadvantages compared with the
Prolog approach. Firstly, once a permutation has been found (i.e. an assign-
ment to the pi variables), it still needs to search for the optimal assignment
to the xij variables for that permutation. Secondly, it does not take any ad-
vantage of Csenki’s observation that only one representative permutation for
each partition of n need be considered. Our second model will address these
two drawbacks. The new model is given Figure 5 and its improvements are
detailed in the following two sections.

4.1 Improving Constraint Propagation

Properties 1 and 2 can be used to reason about the minimal number of oc-
currences of values. For example, they show that every value ≤ N must occur
at least 3 times, so that the domain of oi can be restricted to {0, 3, . . . , n2}
rather than {0, . . . , n2}. This allows the gcc constraint to remove more values
from the domains of the variables.

We have shown in Section 2.2 that given a partition C of n, these properties can
be further used to provide an upper bound on the number of distinct values N ,
and hence a bound on the objective function, S. As the main computational
task is the maximization of S, a simple constraint (C12) can be written to
propagate that upper bound as follows.

First of all, the exact value of S can be calculated if the permutation is known
(i.e. pi instantiated but xij unknown, ∀1 ≤ i, j ≤ n) by computing the exact

12

cardinality of all sets eqcp(i, j), the set of cells that take the same value as
(i, j), as defined in Section 2.2. Algorithm 1 runs in O(n2) time, and computes
the sets of equal cells implied by a permutation π. Moreover, the calculation
can be extended to assign the xij variables to their optimal values for this
permutation.

Algorithm 1 computeSFromPermutation(permutation π)

1: eqcSet← ∅; {set of sets of equal cells}
2: for all cells (i, j) not marked do
3: set← ∅;
4: (a, b) ← (i, j);
5: repeat
6: set← set ∪ (a, b);
7: mark (a, b);
8: (a, b)← (π(b), a);
9: until (a, b) = (i, j)

10: eqcSet← eqcSet ∪ {set};
11: end for
12: sort the sets in eqcSet in increasing order of size;
13: c← |eqcSet|;
14: for all setk ∈ eqcSet from the smallest (set1) to the biggest (setc) do
15: for all cells (i, j) ∈ setk do
16: instantiate xij to k;
17: end for
18: end for
19: return

∑
k |eqcSet.get(k)| × k;

Secondly, consider a partial (possibly empty) assignment of the variables in P ,
such that the cycle composition (integer partition) consistent with this partial
assignment is not completely defined. In Section 2.2 we explained how to com-
pute the best possible partition that maximizes the upper bound. Algorithm 2
summarizes the computation of the upper bound on S. If the permutation
variables are not ground then we build the partial partition implied by pi and
complete it as explained in Section 2.2 to derive the bound.

Algorithm 2 upperBoundOnS(n, π = {p1, . . . , pn})
1: if all pi are instantiated then
2: return computeSFromPermutation(π);
3: else
4: part← partial partition build by closing all open cycles defined by the

partial assignment of pi.
5: complete part by 2, . . . , 2 or 3, 2, . . . , 2 depending on whether the re-

maining size is even or odd, respectively.
6: return ubNVal(n, part)× n2.
7: end if

13

Algorithm 3 gives the details of the computation of ubNVal(n, partition p),
the upper bound presented in Section 2.2.

Algorithm 3 ubNVal(n,partition p)

1: ubNVal← 0;
2: for all k in the partition (from the biggest to the smallest) do
3: if k is even, add n− k/2 to ubNVal;
4: else add n− (k − 1)/2 to ubNVal;
5: n← n− k;
6: end for
7: return ubNVal;

Consider, for example, n = 11 and the following partial assignment: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

2 3 ? ? 1 ? ? 9 10 ? ?

 . (6)

The best extension of this partial permutation has two cycles of lengths 4
and 3: (1 2 3 5) and (8 9 10). The best partition extending the assignment
is, therefore, {4, 3, 2, 2}; ubNVal(11, {4, 3, 2, 2}) = 9 + 6 + 3 + 1 = 19 and
ub(S) = 19× 112.

Once a complete assignment to the pi variables has been found, the best
possible values for the xij variables are calculated by Algorithm 1 and the best
possible value of a solution based on this assignment is then known; this either
gives a new best solution, or, if the value calculated is worse than the best
solution already found, triggers backtracking to look for a better assignment.

Hence, having a tight bound on the value of S allows many assignments to
the pi variables to be abandoned; others will fail immediately when completed,
once the optimal solution has been found. Algorithm 2 is used as the prop-
agation algorithm of constraint C12 of Figure 5 that only updates the upper
bound of variable S. It is triggered at every change of the state of variables
pi.

4.2 Equivalent Solutions

As already described, Csenki shows that permutations that have the same
cycle decomposition are equivalent in the sense that they lead to solutions
to the puzzle that have the same value of total. In searching for the optimal
solution it is therefore important to consider only one representative permu-
tation for each possible cycle decomposition; considering more than one such
permutation is clearly a waste of effort.

14

We can consider that permutations with the same cycle decomposition are
symmetrically equivalent. For any given permutation, the optimal solution for
that permutation is equivalent to the optimal solution for any other permuta-
tion with the same cycle decomposition; or for cycle decompositions containing
a 1-cycle, the permutations are equivalent in having no feasible solution to the
puzzle.

Symmetry in constraint programming is an established research area [2,4].
Suppose the symmetry group of a CSP is G. Any g ∈ G applied to an assign-
ment vi = j is another assignment g(vi = j). If V1 = {v1 = l1, v2 = l2, ..., vk =
lk} is a complete assignment, then {g(v1 = l1), g(v2 = l2), ..., g(vk = lk), for
any g ∈ G, is also a complete assignment (i.e., it assigns exactly one value to
each variable, and is a solution to the CSP if and only if V1 is a solution. The
effect of a symmetry g on an assignment depends on the symmetry: symme-
tries may affect only the values, so that g(vi = li) is vi = g(li), whereas other
symmetries permute the variables, so that g(vi = li) is vg(i) = li.

In this case, given any assignment to the variables pi and the variables xij,
applying any permutation σ of 1, 2, ..., n to both the rows and the columns
gives an equivalent assignment. Hence, σ is a symmetry of the problem, where
σ(pi = j)→ (pσ(i) = σ(j)) and σ(xij = k)→ (xσ(i)σ(j)).

In dealing with symmetry in constraint programming, it is unusual to be able
to explicitly characterise the symmetry equivalence classes. In this case, we
can: two assignments to the pi variables are equivalent if the permutations that
they represent have the same cycle decomposion, and hence each symmetry
equivalence class corresponds to a partition of n.

Rather than enumerating the partitions of n, as in [3], the approach which we
adopt here is to design a set of constraints that will only allow one permuta-
tion for each partition. We introduce a set of new variables Q = {q1, . . . , qn}
denoting the inverse of P = {p1, . . . , pn}, such that pi = j ⇔ qj = i. The
inverse constraint (constraint C11 in Figure 5) enforces such channelling be-
tween the two sets of variables and is provided in most standard constraint
solvers such as ILOG Solver and Choco [6].

Given a partition of n, the permutation representing that partition is chosen
to be the one in which each cycle involves consecutive elements and the cycles
are in non-decreasing order of size. For example, if the partition is {3, 4},
the representative permutation is (1 2 3)(4 5 6 7). Constraint C9 in Figure 5
enforces the first condition (the elements of each cycle are consecutive).

If pi < i, then element i is the end of a cycle which started with the element
pi, and the first element of the next cycle is i + 1. In that case, we have to
ensure that the next cycle is at least as long as the cycle just ending. The
next cycle will consist of the elements i+ 1, i+ 2, ..., k, where pk = i+ 1, and

15

the length of the cycle is k− i, which can be expressed in terms of the inverse
variables as qi+1 − i. The cycle just ending starts with pi and ends with i, so
its length is i−pi+1. The necessary condition to ensure non-decreasing cycles
is qi+1 − i ≥ i− pi + 1, or qi+1 ≥ 2i− pi + 1. This is stated in constraint C10.

Eliminating the symmetry in the Enigma 1225 puzzle requires only 2n addi-
tional constraints. Adding constraints to a model in order to eliminate sym-
metric assignments is a common approach in constraint programming. How-
ever, it is often impractical to eliminate the symmetry completely when the
symmetry group is large, because too many constraints would be required. A
few special cases are known in which the symmetry group may be large but
only a small number of constraints are required to eliminate all the symmetry.
The Enigma 1225 puzzle exhibits a type of symmetry that has not been met
before in constraint programming, and thus adds to the repertoire of known
special cases where symmetry elimination is tractable.

Putting together the improved bounds and elimination of symmetric equiva-
lents gives the improved CP model shown in Figure 5.

Objective: maximize(S), the sum of the entries on the board.
Variables
S ∈ {1, . . . , ub(S)}
N ∈ {1, . . . , ub(N)}
pi ∈ {1, . . . , n} ∀ i ≤ n
qi ∈ {1, . . . , n} ∀ i ≤ n
xij ∈ {1, . . . , ub(N)} ∀ i, j ≤ n
oi ∈ {0, 3, . . . , n2} ∀ i ≤ ub(N)
Constraints
C1 : ∀i, j ≤ n, i 6= j xi1 6= xj1 ∨ . . . ∨ xin 6= xjn
C2 : ∀i ≤ n pi = j ⇔ x1i = xj1 ∧ . . . ∧ xni = xjn
C3 : gcc({xij|i, j ≤ n}, [o1, . . . , oub(N)])
C4 : ∀i ≤ ub(N) N < i⇔ oi = 0
C5 : alldifferent({p1, . . . , pn})
C6 : ∀i ≤ n pi 6= i
C7 : N = max({xij|i, j ≤ n})
C8 : S =

∑
i oi × i

C9 : ∀i ≤ n pi ≤ i+ 1
C10 : ∀i < n pi < i⇒ qi+1 ≥ 2i+ 1− pi
C11 : inverse(P,Q)
C12 : S ≤ upperBoundOnS(n, p1, . . . , pn)

Fig. 5. The complete constraint model for the Enigma1225 puzzle.

16

4.3 Search Strategy

For the advanced model, the decision variables are just the pi variables; once
these variables are instantiated, i.e. the permutation defining the matrix is
known, the xij variables can be assigned their best possible values for this
permutation using Algorithm 3, as already described. Indeed, once a permu-
tation is known, a sharp upper bound on N is propagated and, during the
search on P , partial assignments of P will be pruned by the upper-bound
constraint.

As before, the search heuristic used for the pi variables is to choose the vari-
able with smallest remaining domain, breaking ties by choosing the variable
with smallest index, and to assign it its smallest possible value. However, the
heuristic results in different behaviour in this model, because of the additional
filtering of the domains of the pi variables from constraints C9 to C11. Here,
after initial propagation of the constraints, p1 has only one possible value (2),
since 1-cycles are not allowed. This assignment is made as a result of constraint
propagation, since there is no choice involved. The heuristic then chooses p2,
which can be either 1 or 3. The first choice is p2 = 1 (giving an initial 2-cycle);
the choice p2 = 3 is made if the search backtracks to this node. If p2 = 1, the
domain of p3 is reduced to just {4}, and then p4 can be 3 or 5. Choosing 3
first gives another 2-cycle. Proceeding in this fashion, the search constructs
the partition {2, 2, 2, 2, 2...} first (with the final cycle being of length 2 or 3 de-
pending on n). Hence, the first permutation constructed leads to the optimal
solution (except when n = 5).

Once the optimal solution has been found, the search continues to consider
other choices for the pi variables in order to prove optimality. The bounds
derived earlier are sufficiently strong that not all possible partitions of n need
be considered. Whenever a complete permutation is constructed during the
search the calculation of the upper bound on S using Algorithm 1 shows that
it is worse than the solution already found, and the search backtracks.

5 Experimental results

The improved constraint model is also implemented in Choco, and the results
are given in Table 2. As before, we give the optimal value found, the run time
(in seconds), the number of nodes, the number of backtracks and the optimal
partition. We also give the number of complete partitions of n that have been
explored and the total number of partitions that do not give a cycle of size
one. The difference between these counts measures the propagation achieved
by the upper bound on S: the larger the difference, the more search reduction

17

we are getting from polynomial-time constraint propagation.

The advanced model is a significant improvement on the basic model: it solves
n = 20 more quickly and with much less search than the basic model requires
when n = 5.

While no direct comparison with the Prolog approach presented in [3] has been
made, we can say that the constraint programming approach presented here
is more scalable. The Prolog approach generates a representative permutation
for every partition of n, in order to find the one that gives the maximum total,
and the number of partitions increases exponentially with n. Our results show
that the proportion of complete partitions explored by the advanced model
decreases as n increases, so that when n = 55, fewer than 5% of the partitions
need be considered.

Except when n = 5, the optimal partition found has always the form {2, 2, 2, ..., 2}
or {2, 2, ..., 2, 3}, depending on whether n is even or odd, which is consistent
with the theoretical results we obtained (Properties 2 and 3), suggesting that
small cycles allow us to get more distinct values and a higher objective total.
The exception when n = 5 is because the partition {2, 3} does not allow a solu-
tion that satisfies C1 and C2. It could undoubtedly be proved that, for n > 5,
the optimal partition is always {2, 2, 2, ..., 2} or {2, 2, ..., 2, 3}, thus showing
the problem to be polynomial. This is, however, not the focus of this paper,
where we use the puzzle as a modelling exercise to illustrate an alternative
approach to that based on Prolog.

6 Conclusion

A constraint programming approach has been presented for the Enigma 1225
puzzle, giving a complementary view to that presented in [3]. In particular,
properties presented about permutations and partitions in [3] have been in-
corporated in a constraint model with few constraints, and without the need
to enumerate partitions of integers. Other interesting properties have been ex-
hibited and used to go a step further than [3] on the optimization side, taking
advantage of the strength of constraint propagation.

With our improved model, large instances of the problem can be solved quickly;
the search strategy finds the optimal solution immediately, and propagation
of a strong upper bound on the objective allows optimality to be proved while
considering only a small proportion of the possible partitions of n.

Finally, we believe that puzzles such as this are very interesting for teaching.
The basic CP model exhibits very poor performance and successfully solving

18

Table 2
Empirical results using the advanced model.

Objective Time Back- Explored Total Optimal

n value (sec.) Nodes tracks partitions partitions partition

3 15 0.01 1 0 1 1 {3}

4 40 0.01 2 1 2 2 {2, 2}

5 55 0.02 2 2 2 2 {5}

6 180 0.06 4 4 3 4 {2, 2, 2}

7 275 0.04 5 6 4 4 {2, 2, 3}

8 544 0.09 9 12 6 7 {2, 2, 2, 2}

9 753 0.09 9 12 7 8 {2, 2, 2, 3}

10 1,300 0.2 15 22 7 12 {2, 2, 2, 2, 2}

11 1,703 0.12 18 27 12 14 {2, 2, 2, 2, 3}

12 2,664 0.15 28 43 14 21 {2, 2, 2, 2, 2, 2}

13 3,365 0.19 31 49 19 24 {2, 2, 2, 2, 2, 3}

14 4,900 0.28 45 71 19 34 {2, 2, 2, 2, 2, 2, 2}

15 6,027 0.24 52 84 29 41 {2, 2, 2, 2, 2, 2, 3}

16 8,320 0.32 72 116 28 55 {2, 2, 2, 2, 2, 2, 2, 2}

17 10,025 0.23 78 125 41 66 {2, 2, 2, 2, 2, 2, 2, 3}

18 13,284 0.25 108 174 39 88 {2, 2, 2, 2, 2, 2, 2, 2, 2}

19 15,743 0.35 125 204 60 105 {2, 2, 2, 2, 2, 2, 2, 2, 3}

20 20,200 0.46 167 274 57 137 {2, 2, 2, ..., 2, 2, 2, 2}

21 23,613 0.42 175 287 76 165 {2, 2, 2, ..., 2, 2, 2, 3}

22 29,524 0.52 229 376 70 210 {2, 2, 2, ..., 2, 2, 2, 2}

23 34,115 0.53 244 400 100 253 {2, 2, 2, ..., 2, 2, 2, 3}

24 41,760 0.87 343 572 100 320 {2, 2, 2, ..., 2, 2, 2, 2}

25 47,777 1.08 349 583 133 383 {2, 2, 2, ..., 2, 2, 2, 3}

30 101,700 3.38 881 1,483 204 1,039 {2, 2, 2, ..., 2, 2, 2, 2}

35 185,327 8.84 1,591 2,691 446 2,573 {2, 2, 2, ..., 2, 2, 2, 3}

40 320,800 30.44 3,600 6,170 642 6,153 {2, 2, 2, ..., 2, 2, 2, 2}

45 508,677 66.24 5,688 9,750 1,230 13,959 {2, 2, 2, ..., 2, 2, 2, 3}

50 782,500 208.89 11,865 20,540 1,672 30,701 {2, 2, 2, ..., 2, 2, 2, 2}

55 1,137,827 405.3 17,614 30,577 3,059 65,121 {2, 2, 2, ..., 2, 2, 2, 3}

19

the problem requires a careful analysis of problem symmetries, propagation
and search strategies. The paper demonstrates how important it is to incorpo-
rate problem-specific knowledge into a constraint model, and also how this can
be done. Such an analysis is very helpful in teaching constraint programming
and highlights a number of key concepts for a student.

Acknowledgments

This work was supported by Science Foundation Ireland under Grant No.
05/IN/I886. This work was completed while the third author was employed
at the Cork Constraint Computation Centre.

References

[1] K. Austin. Enigma 1225: Rows are columns. New Scientist, 55, 8 February 2003.

[2] D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith. Symmetry
Definitions for Constraint Programming. Constraints, 11:115–137, 2006.

[3] A. Csenki. Enigma 1225: Prolog-assisted solution of a puzzle using discrete
mathematics. Computers and Mathematics with Applications, 52:383–400, 2006.

[4] I. P. Gent, K. E. Petrie, and J.-F. Puget. Symmetry in constraint programming.
In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, chapter 10. Elsevier, 2006.

[5] Willem-Jan Hoeve and Irit Katriel. Global constraints. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 6. Elsevier,
2006.

[6] F. Laburthe and the OCRE group. CHOCO: implementing a CP kernel. In
CP00 Post Conference Workshop on Techniques for Implementing Constraint
programming Systems (TRICS), Singapore, September 2000.

[7] J.C. Régin. Generalized arc consistency for global cardinality constraint. In
National Conference on Artificial Intelligence (AAAI’96), pages 209–215, 1996.

[8] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

20

