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Abstract. A domino portrait is an approximation of an image using a
given number of sets of dominoes. This problem was first formulated in
1981 by Ken Knowlton in a patent application, which was finally granted
in 1983. Domino portraits have been generated most often using integer
linear programming techniques that provide optimal solutions, but these
can be slow and do not scale well to larger portraits. In this paper we
propose a new approach that overcomes these limitations and provides
high quality portraits. Our approach combines techniques from opera-
tions research, artificial intelligence, and computer vision. Starting from
a randomly generated template of blank domino shapes, a subsequent
optimal placement of dominoes can be achieved in constant time when
the problem is viewed as a minimum cost flow. The domino portraits one
obtains are good, but not as visually attractive as optimal ones. Combin-
ing techniques from computer vision and large neighborhood search we
can quickly improve the portraits. Empirically, we show that we obtain
many orders of magnitude reduction in search time.

1 Introduction

In 1981 Kenneth Knowlton filed for a United States Patent entitled “Repre-
sentation of Designs” [4] in which he proposed the use of dominoes to render
monochrome images. Twenty five years later, at the 2006 Conference on Con-
straint Programming, Artificial Intelligence and Operations Research (CP-AI-
OR 2006), Robert Bosch gave an invited talk on “OptArt”, focusing on how
optimisation could be used to create pictures, portraits, and other works of art.
In that talk, Bosch not only demonstrated the beauty of computer-generated
art, but also the technical challenges involved in producing it. A domino por-
trait is simply a rendering of an image using a given number of sets of dominoes.
Generally he uses “double nine” domino sets, which contain all dominoes from
the “double blank” to the “double nine”, giving fifty five dominoes in all.

The nice property of “double nine” domino sets is that they give a wide range
of shades from complete black (the blank domino) to a bright white (the double
nine domino). A set of dominoes gives us a constrained palette of monochrome
shades, which we can use to produce images. We say that the palette is con-
strained for two reasons. Firstly, each set of dominoes contains only one domino



(a) George Boole. (b) 1 set of dominoes.

(c) 4 sets of dominoes. (d) 16 sets of dominoes.

Fig. 1. Domino portraits of George Boole.

of each type. Secondly, we are not allowed to break dominoes into two parts, but
rather use the entire domino.

Several examples of domino portraits based on a well known portrait of
George Boole are presented in Figure 1. It is clear that as we increase the number
of dominoes we have at our disposal, the domino portrait we obtain is a better
approximation of the target input image. In Figure 2 a much larger domino por-
trait of Boole is presented, which is sufficiently large for the reader to see each
of the individual dominoes that comprise the portrait.

A problem with current approaches to generating domino portraits is that
they do not scale very well. This is mostly due to the fact that Bosch has been
interested in finding optimal domino portraits; we will explain how the notion
of optimality is defined later in this paper. We set out to develop a scalable ap-



Fig. 2. A domino portrait of George Boole generated by our approach using 49 sets of
“double nine” dominoes, i.e. 49× 55 = 2695 individual dominoes.



proach to generating domino portraits that would not be concerned with whether
the portraits found were optimal or not, but be concerned with whether the por-
traits were sufficiently good visually to be used for teaching and communication
purposes.

In this paper we present a new approach to building approximations of a
target image using a specified number of complete sets of “double nine” domi-
noes [2, 3]. We adopt an approach similar to Knowlton’s [4] (and to Knuth’s [5]),
in which the image is divided up into blank domino outlines to which we as-
sign dominoes. Rather than treating this problem as a traditional assignment
problem, which can be solved using the Hungarian Method, and other similar
algorithms, we formulate it as a minimum cost flow. The advantage is that the
assignment step becomes constant time, allowing us to scale to arbitrary sized
portraits. However, because we predetermine the orientations of the dominoes,
we are unlikely to find an optimal domino configuration. Therefore, we adopt
a heuristic approach to identifying regions of the domino placement that, if re-
designed, would improve the quality of the resultant portrait. This last step is
performed using a large neighborhood search. An empirical evaluation demon-
strates the utility of our approach.

The remainder of the paper is organised as follows. Section 2 presents the
domino portrait problem and explains in detail how it is defined. We then briefly
summarise an existing linear model for finding optimal domino portraits in Sec-
tion 3, as well as other heuristic approaches that have been studied. Section 4
describes the two-step approach we employ here, and our innovation based on a
minimum cost flow formulation. In Section 5 we outline a practical improvement
to our basic approach that involves locally perturbing the portrait. Section 6
presents and discusses the results. Concluding remarks are made in Section 7.

2 The Domino Portrait Generation Problem

A domino portrait can be generated for any target image. The first step in the
process is to convert the target image into a grayscale graphic image using, for
example, the UNIX pgm command. Each pixel in a grayscale image is given a
grayscale value between 0 (black) and 255 (white).

We consider rendering images using sets of “double nine” dominoes. There
are 55 dominoes in a complete set: 10 dominoes with equal face values in both
halves, i.e. all dominoes with face valuations (0, 0), (1, 1) . . . , (9, 9) along with
an additional 45 non-equal face dominoes with face values in {(v1, v2)|v1 ∈
{0, . . . , 8}, v2 ∈ {v1 + 1, . . . , 9}}. The area covered by a single set of dominoes is
110 square units, since we have 55 dominoes each with 2 units. Therefore, given
s2 sets of dominoes, the grayscale image is divided into 11s × 10s cells and for
each cell in row ri and column ci the mean grayscale value is computed and
scaled to an integer between 0 and 9 called gij . The values in each cell defines
the perfect half domino value to place in that cell.

Each domino with equal valued halves has two possible orientations, vertical
and horizontal, whereas each non-equal valued dominoes have 4 orientations



since such a domino can be flipped along its vertical and horizontal axes. For
k = s2 sets of dominoes we can use a canvas of size 11s × 10s to be filled with
the 55×k dominoes, but in practice we can represent any canvas of size 110×k.
The following notation will be used throughout the paper:

– k is the number of sets of dominoes, and N = 55 × k is the number of
individual dominoes.

– di = (p1
i , p

2
i ) for domino number i, with pq

i ∈ {0, . . . , 9}
– gij is the grey value of cell (ri, cj) between 0 and 9. The whole matrix of

grey values is refered to as the grey matrix in the following.

The cost of positioning a half-domino pq
l on a cell (ri, cj) is equal to (pq

l − gij)2.
Notice that it is quadratic so that the cost grows faster than the error and
large errors are strongly penalised. The problem is to place the dominoes on the
canvas so that the overall cost (the sum of the costs of each cell of the canvas)
is minimised and every domino is used exactly once. A graphical representation
of the process is presented in Figure 3.

(a) The grayscale values
are scaled to 0 . . . 9.

(b) The result of the
scaling process.

(c) An example place-
ment of dominoes.

Fig. 3. A summary of the process of generating a domino portrait from an image.

3 An Integer Linear Programming Model

Robert Bosch proposed an integer linear programming formulation of the domino
portrait generation problem in [3]. His model is based on boolean variables that
specify if a given domino is placed with a given orientation with respect to
its reference square (the top left corner of each horizontally placed domino in
Bosch’s model) in a given cell of the canvas. Constraints then stipulate that
each domino has to be used exactly once, and that each cell has to be covered by
a domino. The resulting integer programs are quite large, with more than one
million decision variables and five thousand constraints for k = 49, but Bosch



reports that they are relatively easy to solve, requiring almost two hours when
k = 49.

We used this model in our experiments as a baseline, with a very simple
improvement not described by Bosch in his papers, but used by Knowlton, which
involves keeping only the optimal orientation for each domino. A domino can be
placed in two orientations at a given position but one often dominates the other
in terms of cost, and it is only necessary to consider the best orientation; this
can be seen as a form of symmetry breaking over individual dominoes. The
scalability of this model is, however, very limited and we will present a non-
optimal, but much more efficient, approach to generating domino portraits in
the next section, and then follow this presentation with an improvement based
on large neighbourhood search.

4 A Two-Step Approximation

In his original patent, Knowlton outlined a two-stage process for generating
domino portraits. The first step in his approach involved generating an initial
pattern of empty domino holders (rectangles) on the canvas, i.e. pairs of adjacent
cells, which were later “filled” using dominoes. In this step he maximised the
average unbalance of each domino holder by maximising the average difference
between the two brightness values it contained. The second step involved assign-
ing dominoes to the holders computed from the first step in order to minimise the
error between the brightness provided by a domino and the brightness required
in the domino holder computed from the first step. Donald Knuth subsequently
recast Knowlton’s method as an assignment problem [5], but because the two
steps are independent, there is no guarantee the the resulting domino portrait
will be close to optimality.

Here, we use another modification of Knowlton’s method in which the initial
pattern of empty dominoes is generated randomly, the dominoes are then placed
into this pattern using an assignment problem formulation. This approach relies
on the observation that the problem becomes polynomial if the pattern of the
dominoes is known, since the assignment step is itself polynomial. This suggests
that restricting ourselves to searching over alternative patterns is enough to
generate optimal domino portraits. In practice we will show that any random
pattern provides can generally provide a good upper bound on the cost of the
domino portrait. We will present the details of each step in detail.

4.1 Generating the Pattern of Empty Domino Holders

We generate a random packing of empty domino holders on the canvas using
Algorithm 1. We refer to this arrangement of empty domino holders as a pattern.
Generating the pattern can be regarded as a packing problem. An example
pattern is presented in Figure 4.

Algorithm 1 proceeds by filling the grid from the bottom to the top, line by
line from the left to the right (lines 2 and 3). At each step it randomly assigns
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Fig. 4. An example of a pattern on the right that covers the grey matrix on the left.

a rectangle vertically or horizontally (line 4) before going into a propagation
step. Once a cell is surrounded (orthogonally) by three cells already covered by
a domino holder, the orientation of the rectangle covering this cell is known and
can be propagated (lines 5–6). This is performed until a fixed-point is reached,
or a contradiction is met. A contradiction is raised when an odd number of
connected cells remains in the grid, since dominoes cover pairs of cells. Each
time a contradiction is met a restart step is performed. A small sub-region of
the pattern is wiped out by removing a given number of lines.

Algorithm 1 Random pattern generator
1: while there exists an empty cell in the grid do
2: i← the first row containing an empty cell
3: j ← the first column such that (i, j) is empty
4: Place a rectangle randomly at position (i, j), (i + 1, j) or (i, j), (i, j + 1)
5: while there exists (i, j), an empty cell with three occupied orthogonal neighbours

and all regions of empty connected cells are of even size do
6: Place a rectangle to cover (i, j) and the empty cell next to (i, j)
7: end while
8: if there is a region of an odd number of connected empty cells in the grid then
9: Wipe out part of the grid

10: end if
11: end while

This non-deterministic approach to random pattern generation performs very
well in practice. In particular, we found this approach much faster than a com-
plete backtracking algorithm for a large number of dominoes.

4.2 Solving the Assignment Problem as a Min-Cost Flow

Once the pattern is known, placing the dominoes optimally is a polynomial
problem – it is an optimal assignment problem. Figure 5 presents an example of



the assignment problem. Notice that the cost c(di, 〈a, b〉) of assigning a domino
di = (p1

i , p
2
i ) in a given rectangle of grey values 〈a, b〉 is defined as the best cost

among the two possible orientations of the domino:

c(di, 〈a, b〉) = min((p1
i − a)2 + (p2

i − b)2, (p1
i − b)2 + (p2

i − a)2). (1)

6 3
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3

8

55× k rectangles

(6− 4)2 + (3− 1)2 = 8

55× k dominos

Fig. 5. An example of the assignment problem to be solved once the pattern is known.

Solving the assignment problem can be done very efficiently using the Hun-
garian method in O(n3) time. However, in our setting n denotes the number
of individual dominoes, which can quickly become very large. A good portrait
often requires at least 100 sets of dominoes, giving 5500 individual dominoes.
The Hungarian method is quickly unable to scale beyond those sizes.

We propose a novel formulation of this step as a min-cost flow. Observe that
in the bipartite graph in Figure 5, dominoes on the left side are repeated k times
and many rectangles on the right side have identical costs. In fact as the number
of points varies from 0 to 9 on each square, there is only 55 possible pairs of
points (for two adjacent squares) in the portrait. We can take advantage of these
symmetries using the following formulation. We define the following notation:

– An area is a set of all rectangles with identical pairs of costs in the pattern.
Area j corresponds to a rectangle of cost 〈j1, j2〉 and the number of such
rectangles is denoted capaj . Moreover, the total number of areas is denoted
by nbArea and nbArea ≤ 55.



– xij is the number of dominoes of kind i assigned to area j.
– c(di, j) is the cost of assigning a domino of kind di into area j. c(di, j) is

the same cost as previously so that c(di, j) = c(di, 〈j1, j2〉) as defined by
Equation 1.

In the pattern given in Figure 4, we would have nbArea = 6 where each area
would be defined by one of the six rectangles {〈6, 3〉, 〈2, 1〉, 〈2, 0〉, 〈4, 4〉, 〈1, 1〉, 〈9, 9〉}.
The optimal assignment can be reformulated as follows:

Minimize
∑

i,j cijxij

subject to∑
j xij = k, ∀i ≤ 55∑
i xij ≤ capaj ,∀j ≤ nbArea

(2)

The first constraint of this linear program ensures that exactly k dominoes
of each kind are assigned. The second constraint ensures that no more than
capaj dominoes are placed in the same area. In practice, there are exactly capaj

dominoes to fill the area as we have
∑

j capaj = 55 × k. This problem can be
better understood, and more efficiently solved, as a min-cost flow problem on
the graph presented in Figure 6, where the x variables can be interpreted as the
amount of flow from a domino i to an area j.

6 3

6 3 6
3

6
3

55 Dominos At most 55 areas

capaj

k

k

k

k

55× k units of flow through the network

c(di, j)
xij ?

Fig. 6. The assignment problem translated as a min-cost flow problem.

There are two key observations to be made about this formulation. Firstly,
we only need to know the area where a domino is assigned and not specifically



where it is placed in this area. Secondly, we only need to know how many domi-
noes of each kind are assigned in each area and not where each specific domino
is assigned.1 The min-cost flow formulation takes these symmetries into account
and provides a much more efficient way of solving the previous assignment prob-
lem. Notice that the size of the graph (number of nodes and edges) supporting
the flow is independent of k; only the flow and capacities are increasing, making
the approach robust to increases in k.

Once reduced to a min-cost flow formulation the problem can be solved in
a variety of ways. It is easy, for example, to formulate it as a linear program
(see Model 2). Fortunately this linear program has the quality of integrality,
thus only the linear relaxation needs to be solved. Alternatively, there exist
many algorithms to solve min-cost flow, e.g. the Successive Shortest Path [1]
algorithm which sends the largest possible flow along the shortest path from
source to sink, found by Dijkstra’s algorithm, at each iteration. The complexity
of this algorithm with a small optimisation is O(n ×maxj∈{1...nbArea}(capaj))
where n is the number of nodes.

An alternate algorithm, the Enhanced Capacity Scaling algorithm [1], is a
strongly polynomial improvement on the Successive Shortest Path algorithm. It
has a complexity of O((m log n)(m + n log n)), where n is the number of nodes
and m is the number of arcs. This means that for our min-cost flow formulation
the algorithm runs in constant time as the number of nodes and the number of
arcs are constant and not dependent on the number of sets of dominoes used to
generate the portrait.

5 Improving the Pattern using Local Search

Using the min-cost flow formulation we can solve the assignment step of the
domino portrait generation problem in constant time. The only obstacle to gen-
erating optimal domino portraits is the choice of pattern to provide to the flow
step. Notice that the pattern only matters where the grey values are unbalanced;
the pattern in uniform areas has almost no effect on the final cost. In terms of
the flow formulation, it means that a change of the pattern that would not affect
the size of the areas of the flow graph, the capaj values, has no effect on the
optimal assignment. Therefore, we consider perturbing the pattern slightly in a
local search approach to affect the capaj values in order to improve the flow.

The algorithm we implemented can be described as a Large Neighborhood
Search [8] over patterns. It proceeds as follows:

1. Identify the regions of the canvas where the grey values are unbalanced and
thus, where the pattern might benefit from improvement. We denote as X
the set of points (i, j) corresponding to those regions.

1 When rendering the solution to the assignment problem, we place the dominoes
with the lowest costs for each area in the centre of the image and work outwards.
We found that this heuristic gave more pleasing portraits, while having no effect on
the cost of the solution.



2. Select a point x ∈ X and remove it from X. If X is empty then select a
point randomly.

3. Remove M dominoes around x; x can be seen as the centre of the new empty
region.

4. Enumerate all possible patterns that can fill the empty region. For each
of those patterns incrementally update the capaj values and compute the
corresponding new min-cost flow denoting the cost of the overall resulting
pattern. Note that this is a global optimization step as the dominoes that
were previously assigned in the region might now be in a different place.

5. Return to Step 2 (above) as long as the average improvement (in percentage
of the initial cost given by the random pattern) over the last I iterations
remains above a threshold T (set very low in practice).

The points in the set X are weighted in such a way that any points of interest
adjacent to one already chosen for improvement are less likely to be selected
than those that are independent of already chosen points. This is to maximize
the impact of the improvements during the initial runs and to ensure an overall
faster convergence.

The first point is performed using an algorithm from computer vision that
performs corner detection, or interest point detection, to extract certain kinds
of features to infer the contents of an image. We used the FAST (Features from
Accelerated Segment Test) algorithm from [6, 7]. This approach seems very suited
to portrait generation as it highlights the important characteristics of the face
(eyes, mouth, hair, etc.) which matter in the final domino portrait. Figure 7(b)
shows the result of FAST on the “Girl with a Pearl Earring”.

(a) Vermeer’s “A Girl with a Pearl Ear-
ring”.

(b) The X region detected by the FAST
algorithm for k = 225.

Fig. 7. Selecting the interesting region to focus on in the local search step.



The neighborhood explored is defined by all the possible patterns for a small
region of 2×M squares of the grid (M = {15, 20, 25} is the setting used in our
experiments). The enumeration is performed using the propagation described in
Algorithm 1 in a complete backtracking search. Finally, the problem of finding
the optimal flow due to small changes in capaj is a sensitivity analysis problem
on the min-cost flow and can be performed incrementally [1]. The optimal flow
is maintained while performing a local search on the capaj values reflecting the
changes in the pattern. This is possible due to the efficiency of the flow model
and its incremental behaviour.

6 Experiments

Robert Bosch proposed an integer linear programming (ILP) approach to solving
this problem, which we discussed earlier in the paper. We used his approach as
a baseline in our experiments. We used Vermeer’s “A Girl with a Pearl Earring”
(Figure 7(a)) as our main benchmark image since Bosch used it to report many
of his results. However, we also considered ten other images to demonstrate the
utility of our methods.

The times quoted in our experiments are the totals taken to generate and
solve the respective models, but they do not include the time taken to convert the
solution into a viewable image. Our experiments were run in a single thread on
a Dual Quad Core Xeon CPU @ 2.66GHz with 12MB of L2 cache per processor
and 16GB of RAM overall, running Linux 2.6.25 x64.

6.1 The Linear Programming Model

We show results obtained using Bosch’s ILP model discussed in Section 3 which
was solved using CPLEX (version 10.0.0). The ability of CPLEX to solve such
large integer formulations is quite impressive, so we were also able to compare
the quality of the linear relaxation (LP) and the performance of the ILP. Table
1 shows the results for different values of k on the “A Girl with a Pearl Earring”.

Table 1. Comparing the ILP and LP on the “Girl with a Pearl Earring”.

LP ILP
k Cost Time (s) Cost Time (s) Nodes

1 1,192 0.33 1,192 0.44 0
4 4,844 1.75 4,844 3.46 0
9 11,254 6.86 11,255 76.43 70

25 33,673 47.78 33,673 81.22 0
49 69,585 148.01 69,585 328.47 0
64 98,906 273.54 98,908 263,152.71 12838

121 171,960 815.43 171,961 11,413.08 121
225 374,393 8,616.12 374,393 22,390.44 0
256 463,814 16,310.84 463,814 25,693.15 0



Clearly, the LP provides the optimum value in all cases but three, where a
very small gap remains. The k = 64 instance is particularly difficult for CPLEX,
which needs around 3 days to solve it optimally. However, when the LP cost
is equal to the optimal value, the solution found is still not integer. In these
situations, CPLEX applies a heuristic to compute the first upper bound (before
branching) and obtains the integer optimal solution without branching (thus the
values of 0 for the nodes). The formulation is, therefore, clearly not unimodular.
We considered whether the small gaps observed in the three exceptional cases
could be due to rounding mistakes, and ran further experiments on 10 other
images using two values of k (9 and 25). On the new 20 instances, all of them,
except the four presented in Table 2, have an LP cost equal to the optimal value
and were solved in 0 nodes by CPLEX. The four exceptions show two new cases:
picture 4 (k = 9) has an LP cost less than the optimal value but the problem is
solved without branching, and picture 7 (k = 25) has an LP cost equal to the
optimal value but branching is needed to find an integer solution.

Table 2. Comparing the LP and ILP on various images.

LP ILP
picture k Cost Time (s) Cost Time (s) Nodes

1 9 2,018 2.83 2,019 18.64 5
4 9 12,215.33 10.26 12,216 17.31 0
3 25 7,721 12.94 7,722 823.21 510
7 25 42,757 64.70 42,757 471.15 10

The LP was also solved using the Barrier algorithm which gave the exact same
answer than the Simplex thus making more unlikely the scenario of rounding
mistakes. Despite all our efforts we have not been able to show that the problem
is NP-hard, nor that it is polynomial.

6.2 Evaluating the Approximate Methods

Comparing the Assignment and Min-Cost Flow Formulations. We
sought to compare the performance of the min-cost flow and Hungarian method
to demonstrate the scalability of the flow algorithm (Table 3). The flow algo-
rithm used is Successive Shortest Path (SSP), mentioned previously, which was
efficient enough for our purposes and easy to implement. Clearly, the Hungarian
method does not scale, while the min-cost flow does very well.

The min-cost flow behaves in a constant-time manner in this setting (al-
though we are using the SSP algorithm). The small variation in time for different
settings of k is due to the time spent generating the problem.

Evaluating the Quality of a Random Pattern. We show on Table 4 the
average quality of a random pattern for different number of sets of dominoes on



Table 3. Comparing the Hungarian and Min-Cost Flow approaches to solving the
assignment phase of domino portrait generation.

#Sets of Time (in seconds)
Dominoes Min-Cost Flow Hungarian

9 0.06 0.22
25 0.07 4.50
49 0.06 36.25

121 0.07 536.00
2500 0.12 -

10000 0.21 -

“A Girl with a Pearl Earring”. We present both the average and best costs for
the random pattern approach over 1000 runs. It is interesting to note that as the
number of sets of dominoes is increased, the quality of the portrait generated
from a random pattern improves; we can find portraits that are 2.65% worse
than the optimal cost found using ILP when using 256 sets of dominoes. A
very important difference between methods here, of course, is that the random
pattern-based portrait is generated in a fraction of a second, while the ILP takes
several hours for larger numbers of dominoes. Table 5 presents the same data on
10 different images2 for 225 sets of dominoes. On the 11 pictures evaluated the
random pattern generally provides a good bound on the quality of the domino
portrait with an average gap of 11.8 % to the optimum for 225 dominoes.

Table 4. Comparing the quality and speed of ILP and random patterns on “A Girl
with a Pearl Earring”.

ILP Two phase (1000 runs) Gap (%)
k Cost Time (s) Avg Cost Best Cost Time (s) Avg Best

1 1,192 0.44 1,263 1,212 0.01 5.96 1.68
4 4,844 3.46 5,231 5,105 0.02 7.99 5.39
9 11,255 76.43 12,185 11,931 0.04 8.26 6.01

25 33,673 81.22 36,270 35,868 0.06 7.71 6.52
49 69,585 328.47 74,070 73,523 0.06 6.45 5.66

121 171,961 11,413.08 181,793 180,990 0.07 5.72 5.25
225 374,393 22,390.44 386,874 386,022 0.08 3.33 3.11
256 463,814 25,693.15 476,121 475,429 0.08 2.65 2.50

Evaluating the parameters of the LNS Approaches. We first evaluated
the impact of the two main parameters of the local search approach, namely the

2 The grid of grey values corresponding to the pictures (and the pic-
tures themselves) used as benchmark are available at this address :
http://www.4c.ucc.ie/datasets/dominoes



Table 5. Comparing the quality and speed of ILP against random patterns for 10
different images for 225 dominoes.

ILP Two phase (1000 runs) Gap (%)
Image Cost Time (s) Avg Cost Best Cost Time (s) Avg Best

1 134,974 3,134 157,691 156,026 0.05 16.83 15.6
2 131,025 2,465 147,922 146,825 0.04 12.9 12.06
3 71,440 4,486 93,492 92,168 0.05 30.87 29.01
4 166,709 3,455 185,390 184,193 0.06 11.21 10.49
5 152,538 17,152 169,161 168,102 0.04 10.9 10.2
6 124,073 3,019 137,284 136,347 0.03 10.65 9.89
7 313,529 6,553 321,985 321,309 0.04 2.7 2.48
8 141,171 16,443 150,111 149,474 0.02 6.33 5.88
9 68,740 15,602 82,319 81,360 0.03 19.75 18.36

10 238,139 8,567 248,075 247,297 0.03 4.17 3.85

number dominoes removed to define the size of the neighborhood (M), and the
number of iterations (I). It is on the parameter I that we compute the average
improvement of the objective function, as compared with the initial starting cost
of a random pattern, to stop the algorithm if this value drops below a threshold
(T ). We set T to a very small value (6.10−5) so that most of time, the algorithm
stops after I non-improving iterations. T is not set to 0 because we met a few
cases of very slow convergence. We ran this experiment on Picture 3 where the
random pattern gives the worse performance. Table 6 reports the results. As
expected, as M increases, so does the running time and image quality. The
parameter I, for a given M also improves the quality of the resultant image.

Table 6. Evaluation of the impact of the parameters of the LNS with algorithm on a
portrait of Astor Piazolla (picture number 3).

LNS patterns (100 runs) Gap (%)
M I Avg Cost Best Cost Time (s) Avg Best

10 10 92,713 90,860 0.44 29.78 27.18
10 20 90,283 83,172 1.44 26.38 16.42
10 30 86,601 80,100 2.92 21.22 12.12
15 10 89,913 81,618 7.39 25.86 14.25
15 20 80,940 77,298 27.67 13.3 8.2
15 30 78,806 77,268 34.37 10.31 8.16
20 10 80,865 76,392 202.58 13.19 6.93
20 20 77,257 76,392 264.42 8.14 6.93
20 30 77,129 76,382 274.08 7.96 6.92
25 10 78,023 75,440 2,344.88 9.21 5.6
25 20 76,022 75,430 2,693.78 6.41 5.59



Comparing the ILP and the LNS Approach. In Table 7 we show the
results of the ILP formulation and the flow-based approach using local search
over patterns which provide very good portraits within a few percent of the
optimal value with orders-of-magnitude of speed-up in search time. The resulting
images for “A Girl with a Pearl Earring” are shown in Figure 8. We show three
portraits using 49 sets of dominoes corresponding to the optimal value obtained
by the ILP, random pattern and local search approaches. For interesting sizes
(between 9 and 256 sets of dominoes), the local search approach outperforms
the ILP model in time without losing any relevant quality in the picture (gap
no more than 2.45%).

Table 7. Comparing the quality and speed of ILP against the flow-based approach
(M = 15, I = 30) using local search to improve the pattern on “A Girl with a Pearl
Earring”.

ILP LNS M = 15 I = 30 Gap (%)
k Opt Cost Time (s) Avg Cost Best Cost Time (s) Avg Best

1 1,192 0.44 1,207 1,206 4.49 1.26 1.17
4 4,844 3.46 4,906 4,879 7.51 1.28 0.72
9 11,255 76.43 11,529 11,359 6.64 2.43 0.92

25 33,673 81.22 34,498 34,264 7.8 2.45 1.76
49 69,585 328.47 70,952 70,587 9.22 1.96 1.44

121 171,961 11,413.08 175,615 175,098 14.19 2.12 1.82
225 374,393 22,390.44 380,313 378,858 16.84 1.58 1.19
256 463,814 25,693.15 470,799 468,285 12.91 1.51 0.96

We performed a final experiments on the 10 different images by fixing the
number of sets to 225 and running the LNS with two sets of parameters (M =
15, I = 30 and M = 20, I = 20) which offer different tradeoff in time and quality.
The resulting algorithm can produce portraits in average within 5 and 7 % of the
optimal one in around 10 seconds or within 4 and 5 % in around 2 minutes. We
generated many portraits in various circumstances using this software (science
discovery event, lab visitors, etc.) using the fast setting M = 15, I = 30.

We could not solve the ILP model for portraits requiring more than 256 sets
of dominoes because of memory problems. However, even portraits requiring
10, 000 sets of dominoes (55, 000 dominoes) are not a challenge for our approach.
In fact, the larger the number of domino sets we use, the less we need to optimize
the pattern using local search. In Figure 9 we show a very complex portrait of
Alan Turing generated using 361 sets of dominoes, and report the times required
by the min-cost flow and local search phases in its caption. We also report that
using 10, 000 sets of dominoes we can generate portraits even faster because we
have a much shorter local search step.



(a) Optimal (ILP)

(b) Random Pattern + Min Cost Flow (c) Large Neightbourhood Search

Fig. 8. Comparing the output of the ILP versus our full approach combining min-cost
flow and local search.

7 Conclusion

We have proposed a new solving technique for the domino portrait problem which
is based on an original and efficient reformulation of part of the problem as a
min-cost flow problem combined with local search. We showed that we can obtain
several orders-of-magnitude of speed-up to get high quality portraits within a few
percent of the optimal value. This approach does not provide optimal solutions
but produces high quality solutions quickly. It is moreover very robust to the
increase of the size of the problem. However, the computational complexity class
of the domino portrait generation problem remains open.

Interesting ideas have been explored that might be useful in the context of
packing problems with a positioning cost. The packing problem here is easy, as



Fig. 9. A domino portrait of Alan Turing generated by our approach using 361 sets
of “double nine” dominoes, i.e. 19,855 individual dominoes. The min-cost flow phase
for this portrait required 0.175 seconds, and the local search phase required 16.07
seconds. We also generated a much larger portrait using 10,000 sets of dominoes (55,000
individual dominoes), which required 0.335 seconds and 9.265 seconds for the min-cost
flow and local search phases, respectively. This portrait is not included in the paper
since it would look almost like a standard grayscale image.



Table 8. Comparing the ILP and LNS (two sets of parameters) on 10 images for 225
sets of dominoes on 100 runs.

ILP LNS M=15 I=30 LNS M=20, I=20
Gap (%) Gap (%)

Cost Time (s) Time(s) Avg Best Time(s) Avg Best

1 134,974 3,134 12.54 9.15 6.05 107.64 6.9 5.64
2 131,025 2,465 11.42 8.52 3.52 143.06 4.5 3.07
3 71,440 4,486 32.22 10.31 8.16 254.76 8.14 6.93
4 166,709 3,455 5.42 9.7 2.72 141.95 4.24 1.97
5 152,538 17,152 2.67 10.19 9.22 65.99 8.82 4.17
6 124,073 3,019 11.66 4.96 3.65 97.77 3.74 3
7 313,529 6,533 1.2 2.53 2.37 8.03 2.51 2.36
8 141,171 16,443 6.73 3.84 2.87 59.79 3.16 2.7
9 68,740 15,602 19.93 7.07 5.9 148.65 5.91 5.09

10 238,139 8,567 2.14 3.55 2.82 24.79 3.1 1.61

average 8085.6 10.59 6.98 4.73 105.24 5.10 3.65
median 5509.5 9.08 7.80 3.59 101.51 4.37 3.04

it comprises rectangles of the same size, but the approach might be interesting in
more complex and real-life applications where the objects are of different shapes.

Our application involves well known OR algorithms (Hungarian, Min-cost
flow and sensitivity analysis of the flow), search techniques (large neighbourhood
search, depth first search with constraint propagation) as well as an algorithm
from the computer vision area (FAST) and is, thus, well suited for teaching Op-
erations Research. It has been also successfully used at the Discovery Exhibition
in 2007 in Cork3, a science outreach event for pupils aged between 10 and 16.
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