
Integrating Benders decomposition within
Constraint Programming

Hadrien Cambazard, Narendra Jussien
email: {hcambaza,jussien}@emn.fr

École des Mines de Nantes, LINA CNRS FRE 2729
4 rue Alfred Kastler – BP 20722 - F-44307 Nantes Cedex 3, France

1 Introduction

Benders decomposition [1] is a solving strategy based on the separation of the
variables of the problem. It is often introduced as a basis for models and tech-
niques using the complementary strengths of constraint programming and opti-
mization techniques. Hybridization schemes have appeared recently and provided
interesting computational results [4, 5, 7, 8]. They have been extended [2, 3, 6] to
take into account other kinds of sub-problems and not only the classical lin-
ear programming ones. However, decomposition has never been proposed to our
knowledge in a generic constraint programming approach. This paper discusses
the way a decomposition framework could be embedded in a constraint solver,
taking advantage of structures for a non expert user. We explore the possibility
of deriving logic Benders cuts using an explanation-based framework for CP and
describe Benders decomposition as a nogood recording strategy. We propose a
tool implemented at the top of an explained constraint solver that could offer
such a systematic decomposition framework.

2 Context

Explanations for constraint programming. An explanation records infor-
mation to justify a decision of the solver as a domain reduction or a contra-
diction. It is made of a set of constraints C ′ (a subset of the original con-
straints) and a set of decisions dc1, dc2, . . . dcn taken during search. An expla-
nation of the removal of value a from variable v, expl(v 6= a) will be written
C ′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v 6= a. An explanation is computed for any contra-
diction during the search and intelligent backtracking algorithms that question
a relevant decision appearing in the conflict are then conceivable.

Principles of Benders decomposition. Benders decomposition can be seen
as a form of learning from mistakes. It is based on a partition of the variables
into two sets: x, y. The strategy can be applied to a problem of the form P :

P : Min f(y) + cx SP : Min cx DSP : Max u(a− g(y))
s.t : g(y) + Ax ≥ a s.t : Ax ≥ a− g(y) s.t : uA ≤ c
with : y ∈ D,x ≥ 0 with : x ≥ 0 with : u ≥ 0



A master problem considers only the y variables. A sub-problem (SP) tries
to complete the assignment on x. If it is possible, the problem is solved, but
if not, a cut (a constraint rejecting at least the current assignment on y) is
produced and added to the master problem: it is called a Benders cut. This
cut is the key point of the method, it has the form z ≥ h(y) (z represents the
objective function – z = f(y) + cx) and is inferred by the dual of the sub-
problem (DSP). So, even if the cut is derived from a particular y, it is valid
for all y and excludes a large class of assignments. From all of this, it can be
noticed that duals variables or multipliers1 need to be defined to apply the
decomposition. However, a generalized scheme has been proposed in 1972 by
Goeffrion [2]. Hooker [3] proposed also to enlarge the classical notion of dual
by introducing an inference dual available for all kinds of sub-problems. They
suggest a different way of thinking about duality: a Benders decomposition based
on logic. For a discrete satisfaction problem, the resolution of the dual consists
in computing the infeasibility proof and determining under what conditions the
proof remains valid: this is exactly what explanations are designed for.

3 A decomposition approach in CP

In this paper, we consider problems which can be represented by P :

P : Min obj MP : Min z SP k : Min szk

s.t : Ct(x, y) s.t : Cti(x, y) s.t : Ct(xk, y)
with : x ∈ Dx, y ∈ Dy z < z xk ∈ Dx

y ∈ Dy

Ct(x, y) denotes a set of constraints on variables x, y and obj can be equal to
{f(x, y), f(y), 0}. The problem P will be denoted {Pxy, Py, P0} according to the
corresponding objective functions. The decomposition scheme is done among x
and y. We suppose that the remaining problem over x can be formulated using n
sub-problems exhibiting strong intra-relationships and weak inter-relationships.
Ideally, they should be as small and independent as possible to ensure the re-
maining sub-problem to be easy. So we make the assumption for the sub-problem
to offer such an ideal (denoted by P ) or approximate structure (denoted P

′
, so

we get in the same way {P ′

xy, P
′

y, P
′

0}). Master problem and sub-problems have
then the generic form MP and SP (where Cti(x, y) is the union of Ct(x, y) and
the benders cut gathered at iteration i).

3.1 Benders cuts as explanations

The Benders cut is a logic expression over the y variables, generated from the
sub-problem solution. The cut must ensure that the algorithm terminates and
finds the optimal solution. At iteration k, the added Benders cut must have the
following properties:
1 Referring to linear programming duality.



1. It is valid; it does not exclude any feasible solution over the x, y variables of
the original problem (according to the current upper bound of z).

2. It must exclude at least the current instantiation y of the master that has
been proved as sub-optimal or inconsistent

(2) ensures the termination of the algorithm and (1) ensures optimality as the
master problem is proved to remain a valid relaxation and to provide a lower
bound of P . As the explanation is a subset of the decisions taken by the master, it
excludes at least the current assignment. An empty set indicates an infeasible P
whereas the complete set excludes only y. The explanation is proved to be valid as
long as constraints compute valid explanations as they perform a valid pruning.
Note that the structure of the dual is used through the explanation algorithms
embedded within constraints. In fact, the computation of explanations is lazy2.
Therefore, such an inference dual provides an arbitrary3 dual solution but not
necessarily the optimal one.

3.2 Decomposition scheme

One of the key point of Benders decomposition is to be able to derive a master
problem that provides a valid lower bound for the original P . We used the
following master problems for initial problems Py, P0 and Pxy :

MPy : Min f(y) MP0 : Min 0 MPxy : Min r(y) = relax(f(x, y))
s.t : Cti(x, y) s.t : Cti(x, y) s.t : Cti(x, y)
y ∈ Dy y ∈ Dy y ∈ Dy

One can notice here that MPy provides a valid lower bound as it is a relax-
ation of Py. It is also the case for P0 as it is a satisfaction problem. However, it
is not true in the general case of Pxy where a specific master problem must be
designed. In fact, a new objective function called r(y) defined on y variables and
providing a lower bound has to be defined by the user.

There are some cases where the original function is itself a relaxation (e.g. a
coloring problem) but in a generic case, the master problem take the form of a
feasibility problem where the cuts added can be seen as expl(z ≥ z∗) ⇒ z ≥ z∗.

4 A Benders decomposition algorithm for CP

Figure 1 presents our algorithm4. It has been implemented as a library of the Java
version of the PaLM solver embedded within the choco (see http://choco.sf.net)
constraints solver. The standard CP model is only enriched by indicating for
each variable the problem to which it belongs (the master or the index of the
sub-problem).
2 Not all possible explanations are computed when removing a value for scalability

reasons. Only the one corresponding to the solver actual reasoning is kept.
3 It is also the case for linear duality as any dual solution is a bound for the primal.
4 Line 8 is used in the case of P

′
0 and P

′
y whereas lines 5, 11, 13, and 14 concerns Pxy.

The case of P
′
xy is not yet included.



input : an initial solution to the master problem y,
(1) begin

(2) repeat

(3) Cut = ∅
(4) for each sub-problem spbk do

(5) Pxy : update upper bound of spbk with computeUb(k) using {z, szi, ∀i < k})
(6) solve spbk on (y, xk) to optimality
(7) add its inconsistency (if spbk is infeasible)/optimality explanation to Cut

(8) P
′
0 , P

′
y : spbk+1 =

S
i≤k,i>k′ spbi, with k′, the last infeasible sub-problem.

(9) endfor

(10) if (Cut 6= ∅) then

(11) Pxy : Cut = computeCut(Cut)
(12) add all explanations ∈ Cut to the master problem
(13) Pxy : update the upper bound of z with computeUb(0) using {z, sz1, . . . , szn})
(14) Pxy : store (x, y) if it is an improving solution
(15) solve the master problem to optimality
(16) endif

(17) until the master problem is infeasible
W

Cut = ∅
(18) Py, P0, P

′
0 , P

′
y : the solution (y, x) is optimal if Cut = ∅ otherwise, P is infeasible.

(19) Pxy : the solution (y, x) is the optimal solution of P otherwise P is infeasible.
(20) end

Fig. 1. A Generic Benders algorithm for P0, Py (P
′
0 , P

′
y) and Pxy

4.1 Specific handling for problems P0 and Py

P0 and Py are closely related because they both use satisfaction problems as sub-
problems. Backjumping algorithms are used to compute explanations (to provide
dual informations) on the sub-problems. Moreover, the use of backjumping for
the master is possible for P0 (which is a traditional CSP) and allows the partial
avoidance of thrashing on the master problem when adding the cuts. This is a
response to Thorsteinsson [5] concerns about possible significant overhead due to
redundant computations. Concerning approximated structures: at any iteration
k, the next sub-problem k+1 considered is chosen according to the rule described
line 8. So if one sub-problem is consistent, the next one starts from its solution
and consider for branching the variables of both problems. Such a strategy hopes
to benefit from the relative independency of sub-problems (it does not imply
any overhead compared to solving one single sub-problem) to derive disjoint
cuts. There is obviously a compromise between the time spent for solving sub-
problems and the accuracy of the retrieved information.

4.2 Specific handling for problem Pxy

To keep isolated sub-problems, we do not add the objective function as a con-
straint which could propagate from one sub-problem to another. Instead, we
provide a way to compute the bound of one problem according to other known
bounds (master and slaves) with an empty explanation. So the propagation is
done at hand to only incriminate the master problem solution using:



– computeCut(Explanation[] expls) (line 11): computes the explanation(s) to
be added to the master according to the objective function. A sum would
lead to a union among explanations for example;

– computeUb(int k) (line 5,13): computes an upper bound on zk according to y
and known zi with i < k. In the case k = 0 (the master problem) it computes
the upper bound of the overall objective function z if every SPk was feasible.

At each iteration, a lower bound is obtained once the master problem has
been solved. The algorithm stops once the lower bound meets the upper bound
computed after the slaves. One can notice that the upper bound does not neces-
sarily follow a decreasing trend whereas the lower bound is only growing ensuring
the termination of the algorithm as long as variables have finite domains.

5 Conclusion

We have investigated in this paper how to derive logic Benders cuts using an
explanation based framework for Constraint Programming. Accuracy of cuts us-
ing explanations is nevertheless questionnable. Indeed, remaining sub-problems
are not polynomial (compared to a traditional MILP approach for Benders and
assuming that LP is polynomial) and explanations constitute a weaker cut as
a lazy computation is used. First experimental results using structured random
binary problems show that Benders becomes advantageous in case of hard sub-
problems compared to a branching using the same structure information within
a backjumping algorithm. Moreover, we believe that the presence of subset of
variables exhibiting a strong impact over the whole problem could be efficiently
used by such an approach. Our next step is to apply the technique on hard
academical problems and we are currently investigating how hard latin square
instances could be decomposed.

References

1. J. F. Benders. Partitionning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. A. M. Geoffrion. Generalized Benders Decomposition. Journal of Optimization
Theory And Practice, Vol. 10, No. 4, 1972.

3. J.N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

4. Vipul Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

5. Erlendur S. Thorsteinsson. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. In CP’01, 2001.

6. John N. Hooker A Hybrid Method for Planning and Scheduling. In CP’04, pages
305–316, 2004.

7. T. Benoist, E. Gaudin, and B. Rottembourg. Constraint programming contribution
to benders decomposition: A case study. In CP’02, pages 603–617, 2002.

8. H. Cambazard, P. E. Hladik, A. M. Déplanche, N. Jussien, and Y. Trinquet. De-
composition and learning for a real time task allocation problem. In CP’04, pages
153–167, 2004.


