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Abstract. The multileaf collimator sequencing problem is an important com-
ponent of the effective delivery of intensity modulated radiotherapy used in the
treatment of cancer. The problem can be formulated as finding a decomposition
of an integer matrix into a weighted sequence of binary matrices whose rows
satisfy a consecutive ones property. In this paper we extend the state-of-the-art
optimisation methods for this problem, which are based on constraint program-
ming and decomposition. Specifically, we propose two alternative hybrid meth-
ods: one based on Lagrangian relaxation and the other on column generation.
Empirical evaluation on both random and clinical problem instances shows that
these approaches can out-perform the state-of-the-art by an order of magnitude in
terms of time. Larger problem instances than those within the capability of other
approaches can also be solved with the methods proposed.

1 Introduction

Radiation therapy represents one of the main treatments against cancer, with an esti-
mated 60% of cancer patients requiring radiation therapy as a component of their treat-
ment. The aim of radiation therapy is to deliver a precisely measured dose of radiation to
a well-defined tumour volume whilst sparing the surrounding normal tissue, achieving
an optimum therapeutic ratio. At the core of advanced radiotherapy treatments are hard
combinatorial optimisation problems. In this paper we focus on the multileaf collimator
sequencing in intensity-modulated radiotherapy (IMRT).

What is Intensity-Modulated Radiotherapy? IMRT is an advanced mode of high-
precision radiotherapy that utilises computer controlled x-ray accelerators to deliver
precise radiation doses to a malignant tumour. The treatment plan is carefully devel-
oped based on 3D computed tomography images of the patient, in conjunction with
computerised dose calculations to determine the dose intensity pattern that will best
conform to the tumour shape. There are three optimisation problems relevant to this
treatment. Firstly, the geometry problem considers the best positions for the beam head
from which to irradiate. Secondly, the intensity problem is concerned with computing
the exact levels of radiation to use in each area of the tumour. Thirdly, the realisation
problem, tackled in this paper, deals with the delivery of the intensities computed in
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(a) A multileaf collimator. (b) A multileaf collimator sequencing problem.

Fig. 1. A simplified view of the optimisation problem associated with sequencing multileaf colli-
mators in IMRT, Figure 1(b) has been adapted from [3].

the intensity problem. Combinatorial optimisation methods in cancer treatment plan-
ning have been reported as early as the 1960s [5] and a recent interesting survey on
the topic can be found in [14]. There is a large literature on the optimisation of IMRT,
which has tended to focus on the realisation problem [18]. Most researchers consider
the sequencing of multileaf collimators (Figure 1(a)). The typical formulation of this
problem considers the dosage plan from a particular position as an integer matrix, in
which each integer corresponds to the amount of radiation that must be delivered to a
particular region of the tumour. The requisite dosage is built up by focusing the radi-
ation beam using a multileaf collimator, which comprises a double set of metal leaves
that close from the outside inwards. Therefore, the collimator constrains the possible set
of shapes that can be treated at a given time. To achieve a desired dosage, a sequence of
settings of the collimator must be used. One such sequence is presented in Figure 1(b).
The desired dosage is presented on the left, and it is delivered through a sequence of
three settings of the multileaf collimator, which are represented by three matrices. Each
matrix is exposed for a specific amount of time, corresponding to the weight associated
with the matrix, thus delivering the requisite dosage.

Contribution of this Paper. In our earlier work in this area we presented a novel ap-
proach to multileaf collimator sequencing using an approach based on shortest paths [10].
It was shown that such a model significantly out-performed the state-of-the-art and
brought clinical-sized instances of the problem within the reach of constraint program-
ming (CP). We now show that the shortest path idea can be exploited to give greater
scalability by coupling the CP model with Lagrangian relaxation and column genera-
tion techniques. Our shortest-path approach to this problem uniquely provides a basis
for benefitting from these techniques. The results presented define the current state-of-
the-art for this challenging problem from the domain of cancer treatment planning.

The CP model presented in [10], is briefly introduced in Section 2. We show how to
strengthen the CP model with a Lagrangian relaxation in Section 3. An alternative for-
mulation in which the paths are represented explicitly, along with a column generation
(CG) model, is presented in Section 4. Section 5 demonstrates that these approaches
significantly out-perform the state-of-the-art for this problem.



2 Formulation of the Multileaf Collimator Sequencing Problem

Let I represent the dosage intensity matrix to be delivered. I is an m × n (rows ×
columns) matrix of non-negative integers. We assume that the maximum dosage that
is delivered to any region of the tumour is M units of radiation. Therefore, we set
Iij ≤ M, 1 ≤ i ≤ m, 1 ≤ j ≤ n. To ensure that each step in the treatment se-
quence corresponds to a valid setting of the multileaf collimator, we represent each step
using a 0/1 matrix over which a row-wise consecutive ones property (C1) must hold.
Informally, the property requires that if any ones appear in a row, they appear together
in a single block. A C1 matrix is a binary matrix in which every row satisfies the con-
secutive ones property. Formally, X is an m× n C1 matrix if and only if for any line i,
1 ≤ a < b < c ≤ n, Xia = 1 ∧Xic = 1 → Xib = 1. A solution to the problem is a
sequence of C1 matrices, Ω, in which each Xk is associated with a positive integer bk
such that: I =

∑
k∈Ω(bk ·Xk). LetB andK be the sum of coefficients bk and the num-

ber of matrices Xk used in the decomposition of I , respectively. Then B =
∑
k∈Ω bk

and K = |Ω|. B is referred to as the total beam-on time of the plan and K is its car-
dinality; see Figure 1(b) for an example with K = 3 and B = 6. The overall objective
is to minimise the time needed for the complete treatment and the parameters B and K
both affect that. Typical problems are to minimise B or K independently (known as the
decomposition time and decomposition cardinality problem, respectively) or a linear
combination of both: w1K + w2B. We will tackle this general formulation where w1

accounts for the time needed by the operator to change the settings of the machine and
w2 accounts for the time to deliver one unit of radiation.

The problem of minimising B alone has been widely studied, starting with Bortdeld
et al. [7] and Ahuja et al. [2] until a method in linear time was found by Baatar et al.
and Engel [4, 15]. Minimising K alone was shown to be strongly NP-Hard [4] even for
a single row or column [11] and received a lot of attention [6, 20]. Many heuristics were
designed as the problem proved to be very difficult [1, 4]. The problem of minimising
K while constraining B (lexicographic objective function) to its optimal value B∗ was
tackled by Engel and Kalinowski [15, 20]. Exact algorithms were proposed based on
dynamic programming, Kalinowski [19], mixed integer linear programming, Langer
[21, 26] and Constraint Programming Baatar et al., Ernst et al. and Cambazard et al. [3,
9, 10, 16]. Exact algorithms dealing with a more general objective function as the one
used in this paper are designed by Wake et al, Caner Taskin et al [25, 26].

2.1 The Single Row Problem as a Shortest Path

In this section we study a restriction of the minimum cardinality problem DC to a single
row. This will help to design efficient inference mechanisms for the general multi-row
case. We show a simple construction representing the row problem as a shortest path.

C1 DECOMPOSITION CARDINALITY PROBLEM (DC)
Instance: A row matrix of n integers, I = 〈I1, . . . , In〉, a positive integer K.
Question: Find a decomposition of I into at most K C1 row matrices.

In any solution of the DC problem, there must be a subset of the weights of the
decomposition that sum to every element Ij of the row. In other words, the decom-



position must contain an integer partition of every intensity. We will represent inte-
ger partitions with the following notation: P (a) is the set of partitions of integer a,
p ∈ P (a) is a particular partition of a, and |p| the number of integer summands in p.
We denote by occ(v, p) the number of occurrences of value v in p. For example, P (5) =
{〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉, 〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}, and if p = 〈3, 1, 1〉 then
|p| = 3 and occ(1, p) = 2. Observe that the DC problem can be formulated as a shortest
path problem in a weighted directed acyclic graph, G, which we refer to as a partition
graph. A partition graph G of a row matrix I = 〈I1, . . . , In〉 is a layered graph with
n+2 layers, the nodes of each layer j corresponding to the set of integer partitions of the
row matrix element Ij . The size of this graph is therefore exponential in the maximum
intensity. Source and sink nodes, located on layers 0 and n+ 1 respectively, are associ-
ated with the empty partition ∅. Two adjacent layers form a complete bipartite graph and
the cost added to an edge, pu → pv , between two partitions, pu and pv of adjacent lay-
ers, represents the number of additional weights that need to be added to the decompo-
sition to satisfy the C1 property when decomposing the two consecutive elements with
the corresponding partitions. The cost of each edge pu → pv in the partition graph is:
c(pu, pv) =

∑M
b=1 c(b, pu, pv) where c(b, pu, pv) = max(occ(b, pv) − occ(b, pu), 0).

Figure 2 shows the partition graph I = [3, 2, 3, 1].
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Fig. 2. A partition graph showing transition weights for the single row I = [3, 2, 3, 1].

By following the path {{2, 1}, {1, 1}, {2, 1}, {1}}, we build a decomposition:

[3, 2, 3, 1] = 2[1, ?, ?, ?] + 1[1, ?, ?, ?] (choice of {2, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, ?, ?] + 1[0, 1, ?, ?] (choice of {1, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, 0, 0] + 1[0, 1, 1, ?] + 2[0, 0, 1, 0] (choice of {2, 1});
[3, 2, 3, 1] = 2[1, 0, 0, 0] + 1[1, 1, 0, 0] + 1[0, 1, 1, 1] + 2[0, 0, 1, 0] (choice of {1}).

The length of the path represents the cardinality of the decomposition and a shortest
path therefore provides a decomposition with minimum cardinality. The key idea is that
as one moves along a path in this graph, the partition chosen to decompose the element
at layer j contains the only weights that can be reused to decompose the element at layer
j+1 because of the C1 property. Consider the previous example and the solution given.
A coefficient 2 is used by the first partition but not by the second and thus becomes
forbidden to decompose any other intensity values. The previous partition alone tells



us the available coefficients to decompose the present intensity value. This is why the
cardinality cost can be defined between consecutive partitions and the whole problem
mapped to a shortest path. We could also restrict the cost to a given weight b to obtain
the cardinality of this particular coefficient. We will use this idea in the CP model.

2.2 Shortest Path Constraint Programming Model

We present a CP model for the general multi-row case that takes advantage of the
property identified for a single row. We index, in lexicographic order, the integer par-
titions of each element Iij of the intensity matrix, and use an integer variable Pij
to denote the index of the partition used to decompose element Iij . For example, if
Iij = 5 the domain of Pij is {1, ..., 7} corresponding to {〈5〉, 〈4, 1〉, 〈3, 2〉, 〈3, 1, 1〉
,〈2, 2, 1〉, 〈2, 1, 1, 1〉, 〈1, 1, 1, 1, 1〉}. Thus, Pij = 4 means that the coefficients 3, 1 and
1 are used to sum to 5 in the decomposition. We also have a variable Nb giving the
number of occurrences of weight b in the decomposition.

Our CP model uses the constraint SHORTESTPATH(G, {P1, . . . , Pn}, U ) [10]. Once
instantiated {P1, . . . , Pn} defines a path in the original partition graph. This constraint
states that U must be greater than or equal to the length of this path using the cost
information G. We refer to it as SHORTESTPATH because it does not enforce U to be
equal to the length of the path but rather greater than or equal to it, and the support for
the lower bound on U is a shortest path. A layer j of the graph corresponds to variable
Pj and the nodes of each layer to the domain values of Pj . Our CP model posts the
SHORTESTPATH constraint over three different cost definitions G1(i), G2(i, b), G3(i)
(the partition graphs of a line i are topologically identical). Denoting pu the partition
corresponding to value u of Pij and pv the partition corresponding to value v of Pi,j+1,
the transition costs are as follows: c1(pu, pv) =

∑M
b=1 c2(b, pu, pv), c2(b, pu, pv) =

max(occ(b, pv) − occ(b, pu), 0) and c3(pu, pv) =
∑M
b=1 b × c2(b, pu, pv). Therefore,

our CP model is as follows:

minimise w1K + w2B with K ∈ {0, . . . , ub}, B ∈ {B∗, ..., ub}
∀b ≤M Nb ∈ {0, . . . , ub}
∀i ≤ m, j ≤ n, Pij ∈ {1, . . . , |P (Iij)|}

CP1 :
PM

b=1 b×Nb = B

CP2 :
PM

b=1Nb = K
CP3 : ∀i ≤ m, SHORTESTPATH(G1(i), {Pi1, . . . , Pin},K)
CP4 : ∀i ≤ m, b ≤M SHORTESTPATH(G2(i, b), {Pi1, . . . , Pin}, Nb)
CP5 : ∀i ≤ m, SHORTESTPATH(G3(i), {Pi1, . . . , Pin}, B)
CP6 : ∀i ≤ m, ∀j < m s.t Iij = Ii,j+1 Pij = Pi,j+1

The C1 property of the decomposition is enforced by constraints CP4. The number
of weights of each kind, b, needed so that a C1 decomposition exists for each line i is
maintained as a shortest path in G2(i, b). CP3 acts as a redundant constraint and pro-
vides a lower bound on the cardinality needed for the decomposition of each line i. CP5

is another useful redundant shortest path constraint that maintains the minimum value
of B associated with each line, which can provide valuable pruning by strengthening
CP1. Finally CP6 breaks some symmetries. We refer the reader to [10] for more details
in particular related to the SHORTESTPATH constraint.



3 A Hybrid Model based on Lagrangian Relaxation

Once the partition variables of a given line i are instantiated, they define a path in the
original partition graph of the line. Constraints CP3, CP4, CP5 constrain the length of
this path, each with a different transition cost structure for the edges. The M + 2 path
problems stated by constraintsCP3, CP4, CP5 on a given line define together a resource-
constrained path problem. In this section we design a propagator to consider these paths
simultaneously in order to achieve a higher degree of consistency for a single line. The
underlying optimisation problem is the Resource Constrained Shortest Path Problem
(RCSPP). The problem is to find a shortest path between a given source and sink so that
the quantity of resources accumulated on each arc for each resource do not exceed some
limits. Two approaches are often used to solve this problem: dynamic programming and
Lagrangian relaxation. We base our propagator on the RCSPP and the multicost-regular
constraint [23, 24].

We present one possible mapping of the problem stated by constraintsCP3, CP4, CP5

for line i to a RCSPP. We state it as a binary linear formulation where xjuv is a 0/1 vari-
able denoting whether the edge between partition pu and pv of Pij and Pi,j+1 is used.
Layer 0 denotes the layer of the source and n+1 the one of the sink (Pi0 = Pi,n+1 = ∅).
The problem formulation is as follows:

z = min
∑
j≤n

∑
u,v∈Pij×Pi,j+1

c3(pu, pv)× xjuv
∀ 1 ≤ b ≤M

∑
j≤n

∑
u,v∈Pij×Pi,j+1

c2(b, pu, pv)× xjuv ≤ Nb∑
j≤n

∑
u,v∈Pij×Pi,j+1

c1(pu, pv)× xjuv ≤ K
∀ 1 ≤ j ≤ n, u ∈ Pij

∑
v∈Pi,j−1

xj−1
vu −

∑
v∈Pi,j+1

xjuv = 0∑
v∈Pi,1

x0
1v = 1∑

u∈Pi,n
xnu1 = 1

xjuv ∈ {0, 1}

(1)

If the optimal value of the RCSPP, z∗, is less than or equal to B, then there is a
solution to constraints CP3, CP4, and CP5, otherwise there is an inconsistency. The
first two constraints in the formulation are resource constraints and the last three are the
flow conservation constraints enforcing that the x variables define a path.

Lagrangian relaxation is a technique that moves the “complicating constraints” into
the objective function with a multiplier, λ ≥ 0, to penalise their violation. For a given
value of λ, the resulting problem is the Lagrangian subproblem and, in the context of
minimisation, provides a lower bound on the objective of the original problem. The
typical approach is to relax the resource constraints, so the Lagrangian function is:

f(x, λ) =
∑
j

∑
u,v c3(pu, pv)× xjuv + λ0(

∑
j

∑
u,v c1(pu, pv)× xjuv −K)

+
∑

1≤b≤M λb(
∑
j

∑
u,v c2(b, pu, pv)× xjuv −Nb)

(2)

The Lagrangian subproblem in this setting is, therefore, a shortest path problem
w(λ) = minxf(x, λ) and the Lagrangian dual is to find the set of multipliers that
provide the best possible lower bound by maximising w(λ) over λ. A central result in
Lagrangian relaxation is that w(λ) is a piecewise linear concave function, and various
algorithms can be used to optimise it efficiently.



Solving the Lagrangian Dual. We followed the approach from [23] and used a sub-
gradient method [8]. The algorithm iteratively solves w(λ) for different values of λ,
initialised to 0 at the first iteration. The values of λ are updated by following the direc-
tion of a supergradient of w at the current value λ for a given step length µ. The step
lengths have to be chosen to guarantee convergence (see [8]). We refer the reader to
[23] for more details. At each iteration t, we solved the shortest path problem with the
penalised costs on the edges:

c(pu, pv) = c3(pu, pv) + λt0c1(pu, pv) +
∑

1≤b≤M

λtbc2(b, pu, pv).

This is performed by a traversal of the partition graph; as a byproduct we obtain the
values of all shortest paths SOa from the source to any node a. We can update the
lower bound on B using:

SOsink − λt0K −
∑

1≤b≤M

λtbNb.

Then we perform a reversed traversal from the sink to the source to get the values of the
shortest path SDa from all nodes a to the sink. At the end of the iteration we mark all
the nodes (partitions) that are infeasible in the current Lagrangian subproblem, i.e.:

SOa + SDa > B + λt0K +
∑

1≤b≤M

λtbNb.

At the end of the process, all nodes marked during the iterations are pruned from the
domains. This is Lagrangian relaxation-based filtering [24]: if a value is proven in-
consistent in at least one Lagrangian subproblem, then it is inconsistent in the original
problem. The Lagrangian relaxation is incorporated into the constraint model as a global
constraint for each line. The independent path constraints are kept and propagated first,
whereas the propagation of the resource constrained path constraint is delayed since it
is an expensive constraint to propagate.

4 A Column Generation Approach

Numerous linear models have been designed for this problem, see e.g. [14], but the
shortest path approach [10] opens the door for a totally new formulation of the prob-
lem to be considered. In [10] we designed a linear model representing every integer
partition. We now consider an alternative formulation that, rather than representing the
partition graph, explicitly encodes the set of possible paths in the partition graph of
each line. The resulting formulation is very large, but such models are typical in many
settings, e.g. vehicle routing problems. The optimisation of these models can be per-
formed using column generation [12]. The key idea is that the Simplex algorithm does
not need to have access to all variables (columns) to find a pivot point towards an im-
proving solution. The Simplex algorithm proceeds by iterating from one basic solution
to another while improving the value of the objective function. At each iteration, the



algorithm looks for a non-basic variable to enter the basis. This is the pricing problem.
Typically, for a linear minimisation problem written

min
∑
i

cixi | ∀j
∑
i

aijxi ≥ bj , xi ≥ 0,

the pricing problem is to find the i (a variable or column) that minimises ci−
∑
j πjaij

where πj is the dual variable associated with constraint j. The explicit enumeration of
all i is impossible when the number of variables is exponential. Therefore, the column
generation works with a restricted set of variables, which define the restricted master
problem (RMP) and evaluates reduced costs by implicit enumeration e.g., by solving a
combinatorial problem. We now apply these concepts to our shortest path model.

4.1 Column Generation for the Shortest Path Model

We denote by ptki the kth path in the partition graph of line i. A path is a sequence
of partitions 〈p0, . . . , pn+1〉 characterised by three costs: the cardinality cost cki1 =∑j=n
j=0 c1(pj , pj+1), the beam-on time cost cki3 =

∑j=n
j=0 c3(pj , pj+1) and the beam-on

time cost restricted to a given coefficient b, ckib2 =
∑j=n
j=0 c2(b, pj , pj+1). The restricted

master problem where a subset Ω of the columns are present is denoted RMP(Ω), and
can be formulated as follows:

RMP (Ω) : minimise w1K + w2B
C0

∑
b≤M Nb = K

C1

∑
b≤M b×Nb = B

C2 ∀i,
∑
k∈Ωi

ptki = 1
C3 ∀i,

∑
k∈Ωi

cki1 × ptki ≤ K
C4 ∀i,∀b

∑
k∈Ωi

ckib2 × ptki ≤ Nb
C5 ∀i,

∑
k∈Ωi

cki3 × ptki ≤ B
K ≥ 0, B ≥ 0, ∀b Nb ≥ 0

∀i, k ∈ Ωi ptki ∈ {0, 1}

This master problem optimises over a set of paths Ωi per line i. The task of gener-
ating improving columns or paths is delegated to the sub-problem which is partitioned
into m problems. The reduced cost of a path in a given line does not affect the compu-
tation of the reduced cost on another line. This is a typical structure for Danzig-Wolfe
decomposition, and the constraints of the RMP involving the Nb variables are the cou-
pling, or complicating, constraints. An improving column for line i is a path of negative
reduced cost where the reduced cost is defined by ci −

∑
j πjaij . This translates as

follows in our context. The M different costs on each edge are modified by a multiplier
corresponding to the dual variables of constraints C3 – C5. We denote by δi, πi1, πib2,
and πi3 the dual variables associated with constraints C2 to C5, respectively. The re-
duced cost of a path variable is equal to 0− (πi1 × (−cki1) +

∑
b≤M πib2 × (−ckib2) +

πi3 × (−cki3)). The subproblem of line i, PP (i) is a shortest path problem where the
cost of an edge c(pu, pv) is computed as follows:

c(pu, pv) = πi1 × c1(pu, pv) +
∑
b

πib2 × c2(b, pu, pv) + πi3 × c3(pu, pv).



Algorithm 1: ColumnGeneration
Data: Intensity Matrix – A matrix of positive integers
Result: A lower bound on the optimal decomposition.

1 Ω = ∅, DB = −∞, UB = +∞, ε = 10−6;
2 for i ≤ m do
3 add the path made of {1,. . . ,1} partitions for each integer of line i to Ω;
4 set πi1 = πi3 = πib2 = −1 for all b, solve PP (i) and add the shortest path to Ω
5 repeat
6 add the paths in Ω to the restricted master problem, RMP;
7 solve RPM, set UB to the corresponding optimal value and record the dual values

(δi, πi1, πi3, πib2);
8 Ω = ∅;
9 for i ≤ m do

10 solve the pricing problem PP (i) and record its optimal value γi;
11 if (γi − δi) < −ε then
12 add the optimal path to Ω

13 DB = max(DB,Σi≤mγi));

until dDB − εe = dUBe or Ω = ∅;
14 return dUB − εe

The column generation procedure is summarised in Algorithm 1. Notice that the
bound provided by column generation is no better than the one given by the compact
linear model because the pricing problem has the integrality property. The utility of this
formulation is to give better scaling in terms of memory as we can achieve a tradeoff in
the subproblem. We briefly explain the main phases of the algorithm.
Main Process. The algorithm must start with an initial set of columns that contain a
feasible solution to obtain valid dual values. Lines 1 to 4 define the initialisation step
where two paths, the unit path and the shortest path, are computed per line. Lines 6 to 14
specify the main column generation process. First, the new columns are added to the
RMP, which is a continuous linear problem, and solved to optimality. UB denotes the
upper bound provided by the optimal value of the RMP at each iteration. The pricing
problem is then solved for each line using the dual values that are recorded (Line 7).
Line 11 checks if a path of negative reduced cost has been found; γi− δi is the reduced
cost of the path solution of PP (i). Then, a lower bound on the original problem, the dual
boundDB, is computed. The algorithm stops as soon as no path of negative reduced cost
can be found (Ω = ∅), or the lower and upper bounds have met (dDB − εe = dUBe).
Dual Lower Bound. The dual solution of the RMP, completed by the best reduced cost,
forms a feasible solution of the dual of the original problem and, therefore, provides a
lower bound. This dual bound DB is computed on Line 13 and we have:

DB =
∑
i≤m

δi +
∑
i≤m

(γi − δi) =
∑
i≤m

γi,

i.e., the sum of the dual objective function and the best reduced cost (see [12]). The dual
bound provides a lower bound on the original problem and can be used for termination.



Typically, we can stop as soon as the optimal value is known to be in the interval ]a, a+
1], in which case one can immediately return a + 1 as the integer lower bound on the
original problem (Condition dDB − εe = dUBe). This last condition is useful to avoid
a convergence problem and saves many calls to the subproblems. The use of an ε is to
avoid rounding issues arising from the use of continuous values.
Solving the Pricing Problem. The pricing problem involves solving a shortest path in
a graph whose size is exponential in the maximum element, M . Storing the partition
graph explicitly requiresO(n×P 2) space, where P is the (exponentially large) number
of partitions of M . Memory remains an issue for the column generation if we solve the
pricing problems by explicitly representing the complete graph. To save memory as M
increases, the column generation procedure can avoid representing the whole graph by
only storing the nodes, thus consuming only O(nP ) space. In this case the costs on
each edge must be computed on demand as they cannot be stored. In practice, the pre-
vious compromise with O(nP ) space consumption is perfectly acceptable as instances
become very hard before the space again becomes an issue. In our implementation we
use a combined approach whereby we store the edges when the two consecutive layers
are small enough and only recompute the cost on the fly if it is not recorded.
Speeding up the Column Generation Procedure. The column generation process is
known to suffer from convergence problems [12]. In our case, an increase in the value
of M implies more time-consuming pricing problems, and the bottleneck lies entirely
in this task in practice. We obtained some improvement with a simple stabilisation tech-
nique [13, 22] to reduce degeneracy. We added surplus variables, y, to each constraint
(except for the convexity constraints) so that constraints C3 to C5 read as:∑
k∈Ωi

cki1×ptki−y3i ≤ K;
∑
k∈Ωi

ckib2×ptki−y4ib ≤ Nb;
∑
k∈Ωi

cki3×ptki−y5i ≤ B.

We also added slack variables, z, to constraintsC0 andC1 which now read
∑
b≤M Nb−

y0 + z0 = K and
∑
b≤M b × Nb − y1 + z1 = B. The slack and surplus variables are

constrained in a box : y ≤ ψ, z ≤ ψ and they are penalised in the objective function by
a coefficient ρ. The objective function then reads as:

w1K + w2B +
∑
a

ρya + ρz0 + ρz1.

This tries to avoid the dual solutions jumping from one extreme to another by restrain-
ing the dual variables in a box as long as no relevant dual information is known.
ρ and ψ are updated during the process and must end with ρ = ∞ or ψ = 0 to
ensure the sound termination of the algorithm. We simply fix the value of ψ to a
small constant (10% of the upper bound given by the heuristic [15]) and we update
ρ when the column generation algorithm stalls, using a predefined sequence of values:
[0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1,∞].

4.2 Branch and Price

We went a step further and designed a Branch and Price algorithm by coupling the
CP algorithm with the Column Generation approach. The column generation procedure



provides a valuable lower bound at the root node which can be often optimal in practice.
To benefit from this bound during the search, we will now briefly describe a branch and
price algorithm where column generation is called at each node of the CP search tree.
Branching on Nb raises an issue from the column generation perspective: the subprob-
lem becomes a shortest path with resource constraints, one resource per b ≤M limited
by the current upper bound on the Nb variables of the CP model. This also means that
finding a feasible set of columns to initialise the master problem becomes difficult.

Interaction with CP. Solving the shortest path problem with multi-resource constraints
is far too costly. Recall that the original CP model is relaxing the multi-resource path
into a set of independent paths. The propagation obtained from this relaxation removes
partitions in the partition graph. We can therefore take advantage of this information to
prune the graph used by the subproblem of the column generation and solve a short-
est path in a restricted graph. We therefore solve a relaxation of the real subproblem
that we obtained from the CP propagation. The current bounds on the domains of the
Nb variables are also enforced in the master problem RMP. Propagation allows us to
strengthen both the master and the subproblems of the column generation.

Initialisation. The initialisation issue can be easily solved by adding slack variables
for constraints C0, C1, C3, C4, and C5 of the RMP and adding them to the objective
function with a sufficiently large coefficient to ensure they will be set to 0 in an optimal
solution. Then one simply needs to independently find a path in the current filtered
partition graph of each line to obtain a feasible solution.

Column Management. From one node of the search tree to another, we simply keep
the columns that are still feasible based on the domains of the Nb and Pij variables
and remove all the others. In addition to these removals, if the number of columns
increases beyond a threshold (set to 10000 columns in practice), we delete half of the
pool starting with the oldest columns to prevent the linear solver from stalling due to
the accumulation of too many variables.

Reduced cost propagation. The CG provides a lower bound on the objective function
but also the set of optimal reduced costs for the Nb variables. Propagation based on
these reduced costs can be performed in the CP model following [17]. At a given node,
once the RMP has been solved optimally, we denote by ub and lb the currents bounds
on the objective variable. ub+ 1 corresponds to the value of the best solution found so
far and lb is the optimal value of the RMP at the corresponding node. We denote by rcb,
the reduced cost of variable Nb at the optimal solution of the RMP. rcb represents the
increase in the objective function for an increase of one unit of Nb. The upper bound on
each Nb in the CP model can be adjusted to lb(Nb) + bub−lbrcb

c.

5 Experimental Results

We evaluated our methods using both randomly generated and clinical problem in-
stances.1 We used the randomly generated instances of [3, 9], which comprise 17 cate-
gories of 20 instances ranging in size from 12×12 to 40×40 with anM between 10 and

1 All the benchmarks are available from http://www.4c.ucc.ie/datasets/imrt



Table 1. Comparing quality and time of LP/CG/CG-STAB on the Lex objective function

Inst Gap (%) LP CG Stabilised CG
Time Time NbPath NbIter Gain Time NbPath NbIter Gain

mean 0.64 109.08 40.28 849.10 147.54 10.83 20.42 579.53 62.47 14.97
median 0.30 14.73 1.44 660.18 123.30 10.58 1.13 434.35 54.48 14.32

min 0.00 0.81 0.12 262.75 65.95 6.45 0.12 198.95 38.85 6.72
max 5.00 1196.51 762.31 1958.10 297.60 21.96 368.90 1404.80 104.60 34.46

15, which we denote as m-n-M in our results tables. We added 9 additional categories
with matrix sizes reaching 80 × 80 and a maximum intensity value, M , of 25, giving
520 instances in total. The suite of 25 clinical instances we used are those from [25].
The experiments ran as a single thread on a Dual Quad Core Xeon CPU, 2.66GHz with
12MB of L2 cache per processor and 16GB of RAM overall, running Linux 2.6.25 x64.
A time limit of two hours and a memory limit of 3GB was used for each run.

Experiment 1: Evaluation of the LP Model. Firstly, we examine the quality and speed
of the linear models (solved with CPLEX 10.0.0). We use a lexicographic objective
function to perform this comparison, i.e. seek a minimum cardinality decomposition
for the given minimum beam on-time. In the result tables LP refers to the continuous
relaxation of the linear model representing every partition [10], CG to the model based
on paths and CG-STAB to its stabilised version. Table 1 reports the average gap (in
percentage terms) to the optimal value, the average times for the three algorithms as
well as the number of iterations and paths for CG and CG-STAB. The improvement
in time over LP is also given (column Gain). The mean, median, min and max across
all categories are finally reported as well. The linear relaxation leads to excellent lower
bounds but LP becomes quite slow as M grows and could not solve the instances with
M = 25 due to memory errors. CG improves the resolution time significantly and
offers better scalability in terms of memory. Its stabilised version clearly performs fewer
iterations and proves to be approximately twice as fast on average.

Experiment 2: Evaluation of the Lagrangian Model. We consider the Lagrangian
relaxation and its effect on the CP model.2 We use a lexicographic objective function.
Table 2 reports for the hardest categories the number of instances solved (column NS)
within the time limit, along with the median, average and maximum time as well as the
average number of nodes. The Lagrangian relaxation reduces the search space by an
order-of-magnitude but turns out to be very slow when M grows.

Experiment 3: Evaluation of the Branch and Price Model. We evaluate the Branch
and Price algorithm against the previous CP models with the lexicographic objective
function and also using the more general objective function to perform a direct com-
parison with [25] on clinical instances. Following [25] we set w1 = 7 and w2 = 1.
The upper bound of the algorithm is initialised using the heuristic given in [15] whose
running time is always well below a second. Table 3 compares the shortest path CP
model (CPSP) with two versions of the Branch and Price using the lex objective func-
tion. The first version referred to as Branch and Price (light) only solves the CG during
the first branching phase on the Nb variables whereas the other version solves the CG

2 All CP models were implemented in Choco 2.1 – http://choco.emn.fr



Table 2. Comparing the effect of the Lagrangian filtering on the Shortest Path Model CPSP .

Inst
CPSP CP + Lagrangian relaxation

Time (seconds) Nodes Time (seconds) Nodes
NS med avg max avg NS med avg max avg

12-12-20 20 35.30 64.38 395.18 816 20 405.22 796.33 4,532.17 481
12-12-25 18 1,460.39 2,242.19 6,705.01 8,966 0 - - - -
15-15-15 20 14.49 28.39 94.74 938 20 80.76 120.57 399.37 389
18-18-15 20 19.79 65.97 586.65 1,366 20 80.36 180.69 807.63 413
20-20-15 20 66.13 192.72 725.90 4,436 20 353.09 559.73 2,328.94 762
20-20-20 18 1,379.72 1,876.12 6,186.78 7,628 6 1,190.96 1,605.77 5,041.88 572
30-30-15 14 115.83 698.37 2,638.54 691,318 12 308.04 839.37 3,942.70 937
40-40-10 20 6.89 495.90 3,848.14 130,309 20 19.21 410.94 2,706.02 1,517
40-40-15 10 512.88 1,555.49 5,687.44 488,133 8 1,003.10 1,645.86 5,029.01 1,189
50-50-10 15 82.04 888.52 5,275.96 4,022,156 16 85.36 784.76 5,216.68 10,534
60-60-10 11 1,100.92 1,967.51 6,079.23 8,020,209 15 426.73 1,378.31 5,084.95 34,552
70-70-10 7 2,374.97 2,503.82 3,980.76 11,102,664 9 2,534.44 2,894.94 5,970.91 131,494
80-80-10 2 464.57 464.57 737.78 14,274,026 5 1,877.76 2,193.92 4,147.88 118,408

at each node of the search tree, including when the branching is made on the partition
variables. The Branch and Price significantly improves the CP model and is able to op-
timally solve the integrality of the benchmark whereas the CPSP solves 455 out of the
520 instances. The light version is often much faster but does not scale to the last two
larger sets of instances (70×70 and 80×80 matrices). Both branch and price algorithms
outperform CPSP on hard instances by orders of magnitude in search space reduction.

Table 3. Comparing the CP and Branch and Price

Inst
CPSP Branch and Price (light) Branch and Price

Time (seconds) Time (seconds) Nodes Time (seconds) Nodes
NS med avg NS med avg max avg NS med avg max avg

12-12-20 20 35.30 64.38 20 33.32 41.01 88.46 90 20 67.99 75.68 176.40 83
12-12-25 18 1,460.39 2,242.19 20 1,353.34 1,684.32 4,826.52 157 20 2,767.06 2,748.22 5,112.66 141
15-15-15 20 14.49 28.39 20 7.86 8.95 24.96 142 20 20.44 21.86 38.18 127
18-18-15 20 19.79 65.97 20 10.34 10.23 16.12 202 20 34.03 33.64 45.31 167
20-20-15 20 66.13 192.72 20 14.76 15.61 27.25 283 20 47.82 52.74 115.09 218
20-20-20 18 1,379.72 1,876.12 20 235.42 230.21 387.14 325 20 823.16 855.54 1,433.07 221
30-30-15 14 115.83 698.37 20 38.13 42.85 108.88 2,420 20 322.95 335.43 683.56 492
40-40-10 20 6.89 495.90 20 5.10 6.04 18.44 5,932 20 97.56 95.28 128.47 753
40-40-15 10 512.88 1,555.49 20 85.49 97.53 224.71 23,755 20 1,101.48 1,172.91 2,354.53 818
50-50-10 15 82.04 888.52 20 14.80 27.12 178.79 48,216 20 280.11 265.71 393.71 1,194
60-60-10 11 1,100.92 1,967.51 20 67.06 252.60 3,337.60 638,157 20 471.39 492.44 705.08 1,724
70-70-10 7 2,374.97 2,503.82 17 686.33 1,443.46 7,118.74 5,778,692 20 1,153.71 1,147.24 2,243.58 2,408
80-80-10 2 464.57 464.57 8 812.35 1,983.79 6,671.28 11,546,885 20 1,854.04 2,069.52 3,830.13 3,059

Finally, we evaluate the CPSP and the light Branch and Price on 25 clinical instances
with the general objective function. Table 4 reports the resolution time, the number
of nodes explored (Nodes) and the value of the objective function (Obj). The times
reported in [25] are quoted in the table and were obtained on a Pentium 4, 3 Ghz.3.
The CP model alone already brings significant improvements over the algorithm of

3 Two optimal values reported in [25] (for c3b5 and c4b5) are incorrect. The corresponding
solutions are pruned by their algorithms during search although it accepts them as valid solu-
tions if enforced as hard constraints



Table 4. Comparing the shortest path CP model, the Branch and Price algorithm against [25].

Inst Caner et al. CPSP Branch and Price light
m n M Time Time Nodes Obj Time Nodes Obj

c1b1 15 14 20 1.10 8.85 1,144 111 5.26 144 111
c1b2 11 15 20 0.80 0.38 222 104 1.36 77 104
c1b3 15 15 20 11.40 5.90 534 108 3.06 70 108
c1b4 15 15 20 37.00 7.87 389 110 7.10 77 110
c1b5 11 15 20 4.30 0.23 46 104 1.11 37 104
c2b1 18 20 20 26.50 29.68 3,304 132 11.08 665 132
c2b2 17 19 20 20.10 75.30 3,822 132 9.31 255 132
c2b3 18 18 20 14.70 1.86 116 140 6.69 101 140
c2b4 18 18 20 87.30 559.16 42,177 149 64.23 373 149
c2b5 17 18 20 395.60 16.74 911 132 23.39 402 132
c3b1 22 17 20 310.00 21.00 888 132 25.16 322 132
c3b2 15 19 20 4,759.80 48.30 1,527 144 25.82 178 144
c3b3 20 17 20 10,373.90 570.25 12,353 140 617.23 1,228 140
c3b4 19 17 20 524.90 2.18 136 127 13.18 96 127
c3b5 15 19 20 3.30 1.05 0 125 3.24 0 125
c4b1 19 22 20 34.90 0.47 367 152 1.43 356 152
c4b2 13 24 20 20,901.00 42.87 1,183 181 50.83 391 181
c4b3 18 23 20 44.70 17.35 4,059 139 4.99 131 139
c4b4 17 23 20 164.30 13.57 1,069 142 13.85 285 142
c4b5 12 24 20 14,511.40 2,003.76 75,284 192 533.36 1,455 192
c5b1 15 16 20 0.50 0.10 83 96 0.33 60 96
c5b2 13 17 20 14.30 13.33 4,420 125 18.82 248 125
c5b3 14 16 20 3.10 0.56 106 104 2.43 52 104
c5b4 14 16 20 2.20 168.18 19,747 124 37.95 636 124
c5b5 12 17 20 51.90 1.77 547 130 2.27 49 130

Mean 2,091.96 144.43 6,977.36 131.00 59.34 307.52 131.00
Median 34.90 13.33 911.00 132.00 9.31 178.00 132.00

Min 0.50 0.10 0.00 96.00 0.33 0.00 96.00
Max 20,901.00 2,003.76 75,284.00 192.00 617.23 1,455.00 192.00

[25]. The Branch and Price algorithm shows even more robustness by decreasing the
average, median and maximum resolution times.

6 Conclusion

We have provided new approaches to solving the Multileaf Collimator Sequencing
Problem. Although the complexity of the resulting algorithms depends on the num-
ber of integer partitions of the maximum intensity, which is exponential, it can be used
to design very efficient approaches in practice as shown on both random and clinical
instances. The hybrid methods proposed in this paper offer performance significantly
beyond the current state-of-the-art and rely on a rich exchange of information between
OR and CP approaches.

References

1. Nzhde Agazaryan and Timothy D. Solberg. Segmental and dynamic intensity-modulated ra-
diotherapy delivery techniques for micro-multileaf collimator. Medical Physics, 30(7):1758–
1767, 2003.

2. Ravindra K. Ahuja and Horst W. Hamacher. A network flow algorithm to minimize beam-
on time for unconstrained multileaf collimator problems in cancer radiation therapy. Netw.,
45(1):36–41, 2005.



3. D. Baatar, N. Boland, S. Brand, and P.J. Stuckey. Minimum cardinality matrix decomposition
into consecutive-ones matrices: CP and IP approaches. In CPAIOR, pages 1–15, 2007.

4. D. Baatar, H.W. Hamacher, M. Ehrgott, and G.J. Woeginger. Decomposition of integer ma-
trices and multileaf collimator sequencing. Discrete Applied Mathematics, 152(1-3):6–34,
2005.

5. G.K. Bahr, J.G. Kereiakes, H. Horwitz, R. Finney, J. Galvin, and K. Goode. The method of
linear programming applied to radiation therapy planning. Radiology, 91:686–693, 1968.

6. N. Boland, H. W. Hamacher, and F. Lenzen. Minimizing beam-on time in cancer radiation
treatment using multileaf collimators. Networks, 43(4):226–240, 2004.

7. T. R. Bortfeld, D. L. Kahler, T. J. Waldron, and A. L. Boyer. X-ray field compensation
with multileaf collimators. International Journal of Radiation Oncology Biology Physics,
28(3):723–730, 1994.

8. Stephen Boyd, Lin Xiao, and Almir Mutapic. Subgradient methods. In Notes for EE392o,
Standford University, 2003.

9. S. Brand. The sum-of-increments constraints in the consecutive-ones matrix decomposition
problem. In SAC’09: 24th Annual ACM Symposium on Applied Computing, 2009.

10. Hadrien Cambazard, Eoin O’Mahony, and Barry O’Sullivan. A shortest path-based approach
to the multileaf collimator sequencing problem. In Procs of CPAIOR, pages 41–55, 2009.

11. Michael J. Collins, David Kempe, Jared Saia, and Maxwell Young. Nonnegative integral
subset representations of integer sets. Inf. Process. Lett., 101(3):129–133, 2007.

12. Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column Generation.
Springer, 2005.

13. Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized
column generation. Discrete Math., 194(1-3):229–237, 1999.
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