
Decomposition and learning for a hard real time
task allocation problem

Hadrien Cambazard1, Pierre-Emmanuel Hladik2,
Anne-Marie Déplanche2, Narendra Jussien1, Yvon Trinquet2

email: {hcambaza,jussien}@emn.fr,
{hladik,deplanche,trinquet}@irccyn.ec-nantes.fr

1 École des Mines de Nantes, LINA CNRS
4 rue Alfred Kastler – BP 20722 - F-44307 Nantes Cedex 3, France

2 IRCCyN, UMR CNRS 6597
1 rue de la Noë – BP 92101 - F-44321 Nantes Cedex 3, France

Abstract. We present a cooperation technique using an accurate man-
agement of nogoods to solve a hard real-time problem which consists
in assigning periodic tasks to processors in the context of fixed priori-
ties preemptive scheduling. The problem is to be solved off-line and our
solving strategy is related to the logic based Benders decomposition. A
master problem is solved using constraint programming whereas sub-
problems are solved with schedulability analysis techniques coupled with
an ad hoc nogood computation algorithm. Constraints and nogoods are
learnt during the process and play a role close to Benders cuts.

1 Introduction

Real-time systems are at the heart of embedded systems and have applications
in many industrial areas: telecommunication, automotive, aircraft and robotics
systems, etc. Today, applications (e.g. cars) involve many processors to serve dif-
ferent demands (cruise control, ABS, engine management, etc.). These systems
are made of specialized and distributed processors (interconnected through a net-
work) which receive data from sensors, process appropriate answers and send it
to actuators. Their main characteristics lie in functional as well as non-functional
requirements like physical distribution of the resources and timing constraints.
Timing constraints are usually specified as deadlines for tasks which have to be
executed. Serious damage can occur if deadlines are not met. In this case, the
system is called a hard real-time system and timing predictability is required.
In this field, some related works are based on off-line analysis techniques that
compute the response time of the constrained tasks. Such techniques have been
initiated by Liu and al. [15] and consist in computing the worst-case scenario
of execution. Extensions have been introduced later to take into account shared
resources, distributed systems [23] or precedence constraints [7].

Our problem consists in assigning periodic and preemptive tasks with fixed
priorities (a task is periodically activated and can be preempted by a higher

priority task) to distributed processors. A solution is an allocation of the tasks
on the processors which meets the schedulability requirements. The problem
of assigning a set of hard preemptive real-time tasks in a distributed system
is NP-Hard [14]. It has been tackled with heuristic methods [6, 17], simulated
annealing [22, 4] and genetic algorithms [6, 19]. However, these techniques are
often incomplete and can fail in finding any feasible assignment even after a
large computation time. New practical approaches are still needed.

We propose here a decomposition based method which separates the alloca-
tion problem itself from the scheduling one. It is related to the Benders decompo-
sition and especially to the logic Benders based decomposition. On the one hand,
constraint programming offers competitive tools to solve the assignment prob-
lem, on the other hand, real-time scheduling techniques are able to achieve an
accurate analysis of the schedulability. Our method uses Benders decomposition
as a way of generating precise nogoods in constraint programming.

This paper is organized as follows: Section 2 introduces the problem. Related
work and solving strategies are discussed in Section 3. The logical Benders de-
composition scheme is briefly introduced and the links with our approach are put
forward. Section 4 is dedicated to the master/subproblems and communication
between them thanks to nogoods. Experimental results are presented in Section
5 and finally, a discussion of the technique is made in Section 6.

2 Problem description

2.1 The real-time system architecture

The hard real-time system we consider can be modeled with a software archi-
tecture (the set of tasks) and a hardware architecture (the physical execution
platform for the tasks). Such a model is used by Tindell [22].

(a) Hardware architecture (b) Software architecture

Fig. 1. Main parameters of the problem

Hardware architecture. The hardware architecture is made of a set P =
{p1, . . . , pk, . . . , pm} of m identical processors with a fixed memory capacity µk,
connected to a network. All the processors from P have the same processing
speed. They are connected to a network with a transit rate of δ and a token ring
protocol. A token travels around the ring allowing processors to send data only
if they hold the token. It stays at the same place during a fixed maximum period
of time large enough to ensure all messages waiting on processors are sent.

Software architecture. To model the software architecture, we consider a
valued, oriented and acyclic graph (T , C). The set of nodes T = {t1, ..., tn}
corresponds to the tasks whereas the set of edges C ⊆ T × T refers to message
sending between tasks.

A task ti is defined by its temporal characteristics and resource needs: its
period, Ti (a task is periodically activated); its worst-case execution time without
preemption, WCETi and its memory need, mi. Edges cij = (ti, tj) ∈ C are valued
with the amount of exchanged data: dij . Communicating tasks have the same
activation period. Moreover, they are able to communicate in two ways: a local
communication with no delay using the memory of the processor (requiring the
tasks to be located on the same processor) and a distant communication using
the network. In any case, we do not consider precedence constraints. Tasks are
periodically activated in an independent way, they read and write data at the
beginning and the end of their execution.

Finally, each processor is scheduled with a fixed priority strategy. A priority,
prioi = i is given to each task. tj has priority over ti if and only if prioj < prioi

and a task execution may be pre-empted by higher priority tasks.

2.2 The allocation problem

An allocation is an application A : T → P mapping a task ti to a processor pk:

ti 7→ A(ti) = pk (1)

The allocation problem consists in finding the application A which respects the
constraints described below.

Timing constraints. They are expressed by the means of deadlines for the
tasks. Timing constraints enforces the duration between the activation date of
any instance of the task ti and its completion time to be bounded by its deadline
Di (the constraint on Di is detailed in 4.2).

Resource constraints. Three kinds of constraints are considered:

– Memory capacity: The memory use of a processor pk cannot not exceed
its capacity (µk):

∀k = 1..m,
∑

A(ti)=pk

mi 6 µk (2)

– Utilization factor: The utilization factor of a processor cannot exceed its
processing capacity. The ratio ri = WCETi/Ti means that a processor is
used ri% of the time by the task ti. The following inequality is a simple
necessary condition of schedulability:

∀k = 1..m,
∑

A(ti)=pk

WCETi/Ti 6 1 (3)

– Network use: To avoid overload, the amount of data carried along the
network per unit of time cannot exceed the network capacity:

∑

cij = (ti, tj)
A(ti) 6= A(tj)

dij/Ti 6 δ (4)

Allocation constraints. Allocation constraints are due to the system archi-
tecture. We distinguish three kinds of constraints: residence, co-residence and
exclusion.

– Residence: A task sometimes needs a specific hardware or software resource
which is only available on specific processors (e.g. a task monitoring a sensor
has to run on a processor connected to the input peripheral). It is a couple
(ti, α) where ti ∈ T is a task and α ⊆ P is the set of available processors for
the task. A given allocation A must respect:

A(ti) ∈ α (5)

– Co-residence: This constraint enforces several tasks to be placed on the
same processor (they share a common resource). Such a constraint is defined
by a set of tasks β ⊆ T and any allocation A has to fulfil:

∀(ti, tj) ∈ β2, A(ti) = A(tj) (6)

– Exclusion: Some tasks may be replicated for fault tolerance and therefore
cannot be assigned to the same processor. It corresponds to a set γ ⊆ T of
tasks which cannot be placed together. An allocation A must satisfy:

∀(ti, tj) ∈ γ2, A(ti) 6= A(tj) (7)

An allocation is said to be valid if it satisfies allocation and resource con-
straints. It is said to be schedulable if it satisfies timing constraints. A solution
for our problem is a valid and schedulable allocation of the tasks.

3 About related decomposition approaches

Our approach is based to a certain extent on a Benders decomposition [2] scheme.
We will therefore introduce it to highlight the underlying concepts. Benders
decomposition can be seen as a form of learning from mistakes. It is a solving
strategy that uses a partition of the problem among its variables: x, y. The
strategy can be applied to a problem of this general form:

P : Min f(x) + cy
s.t : g(x) + Ay ≥ a with : x ∈ D, y ≥ 0

A master problem considers only a subset of variables x (often integer vari-
ables, D is a discrete domain). A subproblem (SP) tries to complete the assign-
ment on y and produces a Benders cut added to the master problem. This cut

has the form z ≥ h(x) and constitutes the key point of the method, it is inferred
by the dual of the subproblem. Let us consider an assignment x∗ given by the
master, the subproblem (SP) and its dual (DSP) can be written as follows:

SP : Min cy DSP : Max u(a− g(x∗))
s.t Ay ≥ a− g(x∗) with : y ≥ 0 s.t uA ≤ c with : u ≥ 0

Duality theory ensures that cy ≥ u(a − g(x∗)). As feasibility of the dual
is independent of x∗, cy ≥ u(a − g(x)) and the following inequality is valid:
f(x) + cy ≥ f(x) + u(a − g(x)). Moreover, according to duality, the optimal
value of u∗ maximizing u(a − g(x∗)) corresponds to the same optimal value of
cy. Even if the cut is derived from a particular x∗, it is valid for all x and
excludes a large class of assignments which share common characteristics that
make them inconsistent. The number of solutions to explore is reduced and the
master problem can be written at the Ith iteration:

PM : Min z
s.t : z ≥ f(x) + u∗i (a− g(x)) ∀i < I

From all of this, it can be noticed that dual variables need to be defined to
apply the decomposition. However, [8] proposes to overcome this limit and to
enlarge the classical notion of dual by introducing an inference dual available
for all kinds of subproblems. He refers to a more general scheme and suggests a
different way of thinking about duality: a Benders decomposition based on logic.
Duality now means to be able to produce a proof, the logical proof of optimality
of the subproblem and the correctness of inferred cuts. In the original Benders
decomposition, this proof is established thanks to duality theorems.

For a discrete satisfaction problem, the resolution of the dual consists in com-
puting the infeasibility proof of the subproblem and determining under what
conditions the proof remains valid. It therefore infers valid cuts.
The success of the decomposition depends on both the degree to which decompo-
sition can exploit structures and the quality of the cuts inferred. [8] suggests to
identify classes of structured problems that exhibit useful characteristics for the
Benders decomposition. Off-line scheduling problems fall into such classes and
[10] demonstrates the efficiency of such an approach on a scheduling problem
with dissimilar parallel machines.

Our approach is strongly connected to Benders decomposition and the related
concepts. It is inspired from methods used to integrate constraint programming
into a Benders scheme [21, 3]. The allocation and ressource problem will be
considered on one side and schedulability on the other side. The subproblem
checks the schedulability of an allocation, finds out why it is unschedulable and
design a set of constraints (both symbolic and arithmetic) which rule out all
assignments that are unschedulable for the same reason. Our approach concurs
therefore the Benders decomposition on this central element: the Benders cut.
The proof proposed here is based on off-line analysis techniques from real-time
scheduling. One might think that a fast analytic proof could not provide enough
relevant information on the inconsistency. As the speed of convergence and the

success of the technique greatly depends on the quality of the cut, a conflict
detection algorithm will be coupled with analytic techniques: QuickXplain [11].
Moreover, the master problem will be considered as a dynamic problem to avoid
redundant computations as much as possible.

4 Solving strategy

The solving process requires a tight cooperation between master and subprob-
lem(s). Both problems share a common model introduced in the next section in
order to easily exchange nogoods. They will be presented before examining the
cooperation mechanisms and the incremental resolution of the master.

4.1 Master problem

The master problem is solved using constraint programming techniques. The
model is based on a redundant formulation using three kinds of variables: x,
y, w. At first, let us consider n integer variables x (our decision variables) cor-
responding to each task and representing the processor selected to process the
task: ∀i ∈ {1..n}, xi ∈ [1..m]. Secondly, boolean variables y indicate the pres-
ence of a task onto a processor: ∀i ∈ {1..n}, ∀p ∈ {1..m}, yip ∈ {0, 1}. Finally,
boolean variables w are introduced to express the fact that a pair of tasks ex-
changing a message are located on the same processor or not: ∀cij = (ti, tj) ∈
C, wij ∈ {0, 1}. Integrity constraints (channeling constraints) are used to en-
force the consistency of the redundant model. Links between x, y and w are
made using element constraints. One of the main objectives of the master prob-
lem is to efficiently solve the assignment part. It handles two kinds of constraints:
allocation and resources.

– Residence (cf. eq (5)): it consists of forbidden values for x. A constraint
is added for each forbidden processor p of ti: xi 6= p

– Co-residence (cf. eq (6)): ∀(ti, tj) ∈ β2, xi = xj

– Exclusion (cf. eq (7)): alldifferent(xi|ti ∈ γ)
– Memory capacity (cf. eq (2)): ∀p ∈ {1..m}, ∑

i∈{1..n} yip ×mi ≤ µp

– Utilization factor (cf. eq (3)): Let lcm(T) be the least common multiple
of periods of the tasks. The constraint can be written as follows:

∀p ∈ {1..m},
∑

i∈{1..n}
lcm(T)×WCETi × yip/Ti ≤ lcm(T)

– Network use (cf. eq (4)): The network capacity is bounded by δ. There-
fore, the size of the set of messages carried on the network cannot exceed
this limit: ∑

i∈{1..n}
lcm(T)× dij × wij/Ti ≤ lcm(T)× δ

Utilization factor and network use are reformulated with the lcm of tasks
periods because our constraint solver cannot currently handle constraints with
real coefficients and integer variables.

4.2 Subproblem(s)

An assignment provided by the master problem is a valid allocation of tasks.
The problem is here to rule on its schedulability to determine why it may be
unschedulable.

Fig. 2. Illustration of a schedulability analysis. The task t4 does not meet its deadline.
The sub-set {t1, t3, t4} is identified to explain the unschedulability of the system.

Independent tasks. The first schedulability analysis has been initiated by Liu
and Layland [15] for mono-processor real-time systems with independent and
fixed priority tasks. The analysis consists in computing for each task ti its worst
response time, WCRTi. The aim is to build the worst execution scenario which
penalizes as much as possible the execution of ti.
For independent tasks, it has been proved that the worst execution scenario for a
task ti happens when all tasks with a higher priority are awoken simultaneously
(date d on Figure 2). The worst-case response time of ti is:

WCRTi = WCETi +
∑

tj∈hp(A,ti)

dWCRTi/TjeWCETj (8)

hp(A, ti) corresponds to the set of tasks with a higher priority than ti and
located on the processor A(ti) for a given allocation A. WCRTi is easily obtained
by looking for the fix-point of equation (8). Then, it is sufficient to compare for
each task its worst case response time with its deadline Di to know if the system
is schedulable. In this case, the deadline of a task is equal to its period (Di = Ti).

Communicating tasks on a token ring. The result computed by a task must be
made available before its next period to ensure regular data refreshment between
tasks. The messages must reach their destination within the time allowed. With
the token ring protocol, the maximum delay of transmission on the network
is bounded and the TRT is proved to be an upper bound. This duration is
computed by taking into account all the messages to be sent on the network:

TRT =
∑

{cij = (ti, tj)|
A(ti) 6= A(tj)}

dij/δ (9)

The deadline for tasks sending data to non co-located tasks becomes Di =
Ti − TRT . A sufficient condition of scheduling is written:

∀i = 1..n, WCETi +
∑

tj∈hp(A,ti)

dDi/TjeWCETj 6 Di (10)

4.3 Cooperation between master and subproblem(s)

A complete or partial assignment of variables x, y, w will be now considered. The
key point is to find an accurate explanation that encompasses all values of x for
which the infeasibility proof (obtained for particular values of x) remains valid.
We know at least that the current assignment is contradictory, in other words,
a nogood is identified. The links between the concept of nogood [20] introduced
in constraint programming and the Benders cut are underlined in [9].

Independent tasks. m independent subproblems for each processor are solved.
The schedulability of a processor k is established by applying equation (8) to
each task ti located on k (xi = k) in a descendent order of priority until a contra-
diction occurs. For instance, in Figure 2, the set (t1, t2, t3, t4) is unschedulable. It
explains the inconsistency but is not minimal. However the set (t1, t3, t4) is suffi-
cient to justify the contradiction. In order to compute more precise explanations
(i.e. achieve a more relevant learning), a conflict algorithm, QuickXplain [11],
has been used to determine the minimal involved set of tasks (w.r.t. inclusion).
The propagation algorithm considered here is equation (8). Tasks are added from
t1 until a contradiction occurs on tc, the last added task tc belongs to the mini-
mal conflict c. The algorithm re-starts by initially adding the tasks involved in
c. When c is inconsistent, it represents the minimal conflict among the initial
set (t1, . . . , tc). The subset of tasks T ⊂ T corresponds to a NotAllEqual3 on x:

NotAllEqual(xi|ti ∈ T)

It is worth noting that the constraint could be expressed as a linear com-
bination of variables y. However, NotAllEqual(x1,x3,x4) excludes the solutions
that contain the tasks 1,2,3 gathered on any processor.

Communicating tasks on a token ring. The difficulty is to avoid incriminating
the whole system:

1. At first, the network is simply not considered. If a processor is unschedulable
without taking additional latency times due to the exchange of messages, it
is still true in the general case. We can again infer: NotAllEqual(xi|ti ∈ T).

3 A NotAllEqual on a set V of variables ensures that at least two variables among V
take distinct values.

2. Secondly, we only consider the network. When the sending tasks have a
period less than TRT , the token does not come back early enough to allow
the end of their execution. In this case, equation (10) will never be satisfied.
A set of inconsistent messages M ⊂ C is obtained:

∑

cij∈M

wij < |M |

3. The last test consists in checking equation (10). A failure returns a set T ⊆ T
of tasks which is inconsistent with a set of messages M ⊆ C. It corresponds to
a nogood. We use a specific constraint to take advantage of symmetries and
to forbid this assignment as well as permutations of tasks among processors.
It can be written as a disjunction between the two previous cuts:

nogood(xi|ti ∈ T, wij |cij ∈ M) = NotAllEqual(xi|ti ∈ T)
∨ ∑

cij∈M

wij < |M |

QuickXplain has been used again to refine information given in point 2 and
3. Let us now continue with the question of how information learnt from the
previous failures can be integrated efficiently ? [21] outlines this problem and
notices a possible significant overhead with redundant calculations. To address
this issue, we considered the master problem as a dynamic problem.

Incremental resolution. Solving dynamic constraint problems has led to
different approaches. Two main classes of methods can be distinguished: proac-
tive and reactive methods. On the one hand, proactive methods propose to
build robust solutions that remain solutions even if changes occur. On the other
hand, reactive methods try to reuse as much as possible previous reasonings
and solutions found in the past. They avoid restarting from scratch and can be
seen as a form of learning. One of the main methods currently used to perform
such learning is a justification technique that keeps trace of inferences made
by the solver during the search. Such an extension of constraint programming
has been recently introduced [12]: explanation-based constraint programming
(e-constraints).

Definition 1 An explanation records information to justify a decision of the
solver as a reduction of domain or a contradiction. It is made of a set of con-
straints C ′ (a subset of the original constraints of the problem) and a set of
decisions dc1, ..., dcn taken during search. An explanation of the removal of
value a from variable v will be written: C ′ ∧ dc1 ∧ dc2 ∧ · · · ∧ dcn ⇒ v 6= a.

When a domain is emptied, a contradiction is identified. An explanation for
this contradiction is computed by uniting each explanation of each removal of
value of the variable concerned. At this point, dynamic backtracking algorithms
that only question a relevant decision appearing in the conflict are conceivable.
By keeping in memory a relevant part of the explanations involved in conflicts,
a learning mechanism can be implemented [13].

Here, explanations allow us to perform an incremental resolution of the mas-
ter problem. At each iteration, the constraints added by the subproblem generate
a contradiction. Instead of backtracking to the last choice point as usual, the cur-
rent solution of the master problem is repaired by removing the decisions that
occur in the contradiction as done by the MAC-DBT algorithm [12]. Tasks as-
signed at the beginning of the search can be moved without disturbing the whole
allocation. In addition, the model reinforcement phase tries to transform a learnt
set of elementary constraints that have been added at previous iterations into
higher level constraints. Explanations offer facilities to easily dynamically add
or remove a constraint from the constraint network [12].

Notice that the master problem is never re-started. It is solved only once but
is gradually repaired using the dynamic abilities of the explanation-based solver.

Model reinforcement. Pattern recognition among a set of constraints that
expresses specific subproblems is a critical aspect of the modelisation step. Con-
straint learning deals with the problem of automatically recognizing such pat-
terns. We would like to perform a similar process in order to extract global
constraints among a set of elementary constraints. For instance, a set of differ-
ence constraints can be formulated as an all-different constraint by looking for
a maximal clique in the induced constraint graph. It is a well-known issue to
this question in constraint programming and a version of the Bron/Kerbosh al-
gorithm [5] has been implemented to this end (difference constraints occur when
NotAllEquals involve only two tasks). In a similar way, a set of NotAllEqual
constraints can be expressed by a global cardinality constraint (gcc) [18]. It cor-
responds now to a maximal clique in a hypergraph (where hyperarcs between
tasks are NotAllEquals). However, it is still for us an open question that could
significantly improve performances.

5 First experimental results

For the allocation problem, specific benchmarks are not provided in real-time
scheduling. Experiments are usually done on didactic examples [22, 1] or ran-
domly generated configurations [17, 16]. We opted for this last solution. Our
generator takes several parameters into account:

– n, m, mes: the number of tasks, processors (experiments have been done on
a fixed size: n = 40 and m = 7) and messages;

– %global: the global utilization factor of processors;
– %mem: the over-capacity memory, i.e. the amount of additionnal memory

avalaible on processors with respect to the memory needs of all tasks;
– %res: the percentage of tasks included in residence constraints;
– %co−res: the percentage of tasks included in co-residence constraints;
– %exc: the percentage of tasks included in exclusion constraints;
– %msize : the size of a message is evaluated as a percentage of the period of

the tasks exchanging it.

Task periods and priorities are randomly generated. However, worst-case execu-
tion time are initially randomly chosen and evaluated again to respect:∑n

i=1 WCETi/Ti = m%global. The memory need of a task is proportional to
its worst-case execution time. Memory capacities are randomly generated but
must satisfy:

∑m
k=1 µk = (1 + %mem)

∑n
i=1 mi.

The number of tasks involved in allocation constraints is given by the pa-
rameters %res, %co−res, %exc. Tasks are randomly chosen and their number
(involved in co-residence and exclusion constraints) can be set through specific
levels. Several classes of problems have been defined depending on the difficulty
of both allocation and schedulability problems. The difficulty of schedulabil-
ity is evaluated using the global usage factor %global which varies from 40 to
90 %. Allocation difficulty is based on the number of tasks included in resi-
dence, co-residence and exclusion constraints (%res, %co−res, %exc). Moreover,
the memory over-capacity, %mem has a significant impact (a very low capacity
can lead to solve a packing problem, sometimes very difficult). The presence of
messages impacts on both problems and the difficulty has been characterized
by the ratios mes/n and %msize. As we consider precedence chains, we can not
have more than one message per task and the ratio mes/n is always less than
1. %msize reflects the impact of messages on schedulability analysis by linking
periods and message sizes.

The table 1 describes the parameters and difficulty class of the considered
problems. For instance, a class 2-1-4 indicates a problem with an allocation
difficulty in class 2, a schedulability difficulty in class 1 and a network difficulty
in class 4.

Table 1. Details on classes of difficulty

Alloc. %mem %res %co−res %exc Sched. %global Mes. mes/n %msize

1 80 0 0 0 1 40 1 0.5 40
2 40 15 15 15 2 60 2 0.5 70
3 30 25 25 25 3 75 3 0.75 70
4 15 35 35 35 4 90 4 0.875 150

5.1 Independent tasks

Table 2 summarizes the results of our experiments. Iter is the number of it-
erations between master and subproblems, NotAllEq and Diff are the number
of NotAllEqual and difference constraints inferred. CPU is the resolution time
in seconds and Xplain expresses if the QuickXplain algorithm has been used.
Finally % Success gives the number of instances successfully solved (a schedula-
ble solution has been found or the proof of inconsistency has been done) within
the time limit of 10 minutes per instance. The data are obtained in average (on
instances solved within the required time) on 100 instances per class of difficulty
with a pentium 4, 3 GigaHz and the Java version of PaLM [12].

Table 2. Average results on 100 instances randomly generated into classes of problems

Cat(Alloc/Sched) Xplain Iter NotAllEq Diff CPU (s) % Success

1-1 N 46,35 91,29 4,45 0,58 100%
1-1 Y 10,59 39,79 12,41 0,28 100%
1-2 Y 26,75 96,93 28,50 3,46 99%
1-3 Y 65,23 213,87 39,21 28,70 94%
1-4 Y 100,88 373,08 57,82 93,40 40%
2-2 Y 46,00 168,27 23,13 34,51 91%
2-3 Y 58,89 233,63 37,06 71,18 81%
3-4 Y 138,29 131,22 40,65 62,12 91%

The class 1-4 represents the hardest class of problem. Without the allocation
problem, the initial search space is complete and everything has to be learnt.
Moreover, these problems are close to inconsistency due to the hardness of the
schedulability. Limits of our approach seem to be reached in such a case without
an efficient re-modeling of NotAllEquals constraints into gcc (see 4.3). The cuts
generated seem actually quite efficient. A relevant learning can be made in the
case of independent tasks by solving m independent subproblems. Of course, if
the symetry of the processors does not hold, this could be questionnable.
The execution of a particular and hard instance of class 2-3 is outlined on Fig-
ure 3. Resolution time and learnt constraints at each iteration are detailed. The
master problem adapts the current solution to the cuts due to its dynamic abili-
ties and the learning process is very quick at the beginning. The number of cuts
decreases until a hard satisfaction problem is formulated (a-b in Fig. 3). The
master is then forced to question a lot of choices to provide a valid allocation
(b). The process starts again with a quick learning of nogoods (b-c, c-d).

Fig. 3. Execution of a hard instance of class 2-3. Resolution time and a floating average
of step 10 of the number of cuts (in dotlines) inferred at each iteration are shown. (310
iterations, 1192 NotAllEqual, 75 differences partially re-modeled into 12 alldifferent)

5.2 Communicating tasks on a token ring.

We chose to experiment the technique on a well-known instance of real-time
scheduling: the Tindell instance [22], solved thanks to simulated annealing. This
instance exhibits a particular structure: the network plays a critical part and
feasible solutions have a network utilization almost minimal. We were forced to

specialize our generic approach on this particular point through the use of an
allocation heuristic that try to gather tasks exchanging messages. One can obtain
the solution of Tindell very quickly (less than 10 seconds) if minimizing the
network at each iteration. Moreover, we experimented our approach on random
problems involving messages:

Table 3. Average results on 100 instances randomly generated into classes of problems

Cat(A/S/M) Iter NotAllEq Diff NetCuts Nogoods CPU (s) %Succ

2-1-1 34,7 47,7 24 23,5 8,6 24,7 98%
2-1-2 40,1 56,9 25,4 36,2 8,4 18,6 93%
2-1-3 91,9 64,2 23,5 134,3 27,2 106,6 56%
2-2-1 58,9 118,4 47,5 11,2 2,7 72,7 82%
2-2-2 55,3 116,5 46,9 45,2 9,2 60,5 74%
2-2-3 77,6 97,3 39,1 96,2 43,1 142,1 38%

One can see on the table 3 that when several hardness aspects compete on
the problem, the difficulty increases (2-2-3 compared to 1-1-3). The presence of
messages make the problem much more complex for our approach because inde-
pendency of subproblems (a key point of Benders) is lost and the network cut is a
weak one. Determining what tasks should be or not together becomes a difficult
question when a tigth overall memory is combined to a difficult schedulability
and a lot of medium size messages. However, simple heuristics approachs have
received a lot of attention from the real-time community and could be used to
guide the search efficiently in CP. We hope to achieve better results with a more
efficient heuristic inspired from the best one designed in real-time systems and
coupled with the learnt information of the cuts. More experiments have to be
carried out to clearly establish the difficulty frontier.

6 Discussion on the approach

Our approach tries to use logic based Benders as a mean of generating rele-
vant nogoods. It is not far from the hybrid framework Branch and Check of [21]
which consists in checking the feasibility of a delayed part of the problem in a
subproblem. In our case, the schedulability problem is gradually converted into
the assignment problematic. The idea is that the first problem could be dealt
with efficiently with constraint programming, and especially, with an efficient
re-modeling process. In addition, it avoids thrashing on schedulability inconsis-
tencies. As with explanation based algorithms (MAC-DBT or Decision-repair
[13]), it tries to learn from its mistakes.

The technique is actually complete but it could be interesting to relax its
completeness (from this point, we step back from Benders). One current prob-
lem is the overload of the propagation mechanism because of the accumulation
of low power filtering constraints. We could use a tabu list of benders cuts and
decide to keep permanently in memory the most accurate nogoods or only those
contributing to a stronger model (a fine management of memory can be imple-
mented due to dynamic abilities of the master problem).

One could also think building a filtering algorithm on equation (8). However,
the objective is to show how precise nogoods could be used and to validate an
approach we intend to implement on complex scheduling models. As analysis
techniques quickly become very complex, a contradiction raised by a constraint
encapsulating such an analysis seems to be less relevant than a precise explana-
tion of failure.

The idea is to take advantage of the know-how of real-time scheduling com-
munity in a decomposition scheme such as the Benders one where constraint
programming could efficiently solve the allocation problem.

7 Conclusion and future work

We propose in this paper, a decomposition method built to a certain extent on
a logic Benders decomposition as a way of generating nogoods. It implements a
logical duality to infer nogoods, tries to enforce the constraint model and finally
performs an incremental resolution of the master problem. It is also strongly re-
lated to a class of algorithms which intends to learn from mistakes in a systematic
way by managing nogoods.

For independent tasks, the use of QuickXplain is critical to speed up the
convergence but the limits seem to be reached for highly constrained and incon-
sistent problems. Nevertheless, we believe that the difficulty can be overcome
through an efficient re-modeling process. The use of an efficient heuristic to guide
the CP search is needed on communicating tasks when several hardness aspect
compete on the problem. As lot of traditionnal approaches in real time systems
are based on heuristics, we hope to benefit from them and more experiments
have to be carried out on this point.

Our next step would be to compare our approach with other methods such as
traditional constraint and linear programming. We believe it should be also in-
teresting to extend our study to other kinds of network protocols (CAN, TDMA,
etc.) and precedence constraints. Moreover, another kind of constraints some-
times occur: disjunction between set of tasks. The disjunction global constraint
has not been studied a lot and it could provide accurate modeling and solving
tools to tackle the assignment problem with more complex allocation constraints.

Our approach gives a new answer to the problematic of real-time task alloca-
tion. It opens new perspectives on integrating techniques coming from a broader
horizon than optimization, within CP in a Benders scheme.

References

1. Peter Altenbernd and Hans Hansson. The Slack Method: A New Method for Static
Allocation of Hard Real-Time Tasks. Real-Time Systems, 15:103–130, 1998.

2. J. F. Benders. Partitionning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

3. T. Benoist, E. Gaudin, and B. Rottembourg. Constraint programming contribution
to benders decomposition: A case study. In CP’02, pages 603–617, 2002.

4. G. Borriello and D. Miles. Task Scheduling for Real-Time Multiprocessor Simula-
tions. 11th Workshop on RTOSS, pages 70–73, 1994.

5. Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, 1973.

6. E. Ferro, R. Cayssials, and J. Orozco. Tuning the Cost Function in a Ge-
netic/Heuristic Approach to the Hard Real-Time Multitask-Multiprocessor As-
signment Problem. Proceeding of the Third World Multiconference on Systemics
Cybernetics and Informatics, pages 143–147, 1999.

7. M. González Harbour, M.H. Klein, and J.P. Lehoczky. Fixed Priority Scheduling of
Periodic Tasks with Varying Execution Priority. Proceeding of the IEEE Real-Time
Systelms Symposium, pages 116–128, December 1991.

8. J.N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

9. J.N. Hooker, G. Ottosson, E. S. Thorsteinsson, and H. Kim. A scheme for unifying
optimization and constraint satisfaction methods. Knowledge Engineering Review,
special issue on AI/OR, 15(1):11–30, 2000.

10. Vipul Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

11. Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propaga-
tion algorithms. In IJCAI’01 Workshop on Modelling and Solving problems with
constraints (CONS-1), Seattle, WA, USA, August 2001.

12. Narendra Jussien. The versatility of using explanations within constraint program-
ming. RR 03-04-INFO, École des Mines de Nantes, France, 2003.

13. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

14. E. L. Lawler. Recent Results in the Theory of Machine Scheduling. Mathematical
Programming: The State of the Art, pages 202–233, 1983.

15. C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real Time Environment. Journal ACM, 20(1):46–61, 1973.

16. Y. Monnier, J.-P. Beauvais, and A.-M. Déplanche. A Genetic Algorithm for
Scheduling Tasks in a Real-Time Distributed System. 24th Euromicro Confer-
ence, 2, 1998.

17. K. Ramamritham. Allocation and Scheduling of Complex Periodic Tasks. 10th
International Conference on Distributed Computing Systems, pages 108–115, 1990.

18. J.C. Régin. Generalized arc consistency for global cardinality constraint. AAAI /
IAAI, pages 209–215, 1996.

19. F. E. Sandnes. A hybrid genetic algorithm applied to automatic parallel controller
code generation. 8th IEEE Euromicro Workshop on Real-Time Systems, 1996.

20. Thomas Schiex and Gérard Verfaillie. Nogood recording for static and dynamic
constraint satisfaction problem. IJAIT, 3(2):187–207, 1994.

21. Erlendur S. Thorsteinsson. Branch-and-check: A hybrid framework integrating
mixed integer programming and constraint logic programming. In CP’01, 2001.

22. K. Tindell, A. Burns, and A. Wellings. Allocation Hard Real-Time tasks: An
NP-Hard Problem Made Easy. The Journal of Real-Time Systems, 4(2):145–165,
1992.

23. K. Tindell and J. Clark. Holistic scheduling Analysis for Distributed Hard Real-
Time Systems. Euromicro Journal, pages 40–117, 1994.

