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Abstract. The state-of-the-art global constraint for bin packing is due to Shaw.
We compare two linear continuous relaxations of the bin packing problem, based
on the DP-flow and Arc-flow models, with the filtering of the bin packing con-
straint. Our experiments show that we often obtain significant improvements in
runtime. The DP-flow model is a novel formulation of the problem.

1 Introduction

The one-dimensional bin packing problem is ubiquitous in operations research. It is
typically defined as follows. Given a set S = {s1, . . . , sn} of n indivisible items each
of a known positive size si, and m bins each of capacity C, can we pack all n items into
the m bins such that the sum of sizes of the items in each bin does not exceed C? The
one-dimensional bin packing problem is NP-Complete. Amongst the many applications
of this problem are timetabling, scheduling, stock cutting, television commercial break
scheduling, and container packing.

Our motivation comes from a real-world timetabling problem in the Dental School
at University College Cork. An interesting characteristic of this problem is that the
core challenge relates to solving one-dimensional bin packing problems. This contrasts
with many other school timetabling problems which often have challenging list colour-
ings at their core. Our objective is to compare two continuous relaxations of the bin
packing problem with the state-of-the-art filtering algorithm used in the constraint pro-
gramming community [9]. Continuous relaxations have been developed for many global
constraints including cumulative [6], all-different, element and others [5]. We believe
that continuous relaxations can be successfully used for the bin packing and knapsack
constraints [9, 10]. This paper presents our initial results in this direction.

2 Linear Programming Formulations for Bin Packing

Numerous linear programming models have been proposed for the bin packing prob-
lem [3]. A standard linear model is the following. For each bin j ∈ {1, . . . ,m} we
introduce a binary variable yj which we set to 1 if bin j is used in the packing, and 0

? This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).



10 2 2 3 5 5

7

0

2

3

4

5

s

Fig. 1. An example of the graph used by the DP-FLOW model on S = {2,2,3,5,5}, C = 7.

otherwise. For each item i ∈ {1, . . . , n} and each bin j we introduce a binary variable
xij which we set to 1 if item i is packed into bin j, and 0 otherwise. The full model is:

minimize
∑m

j=1 yj∑m
j=1 xij = 1, ∀i ∈ {1, . . . , n}∑n
i=1 si × xij ≤ Cyj , ∀j ∈ {1, . . . ,m}

xij ∈ {0, 1}, yi ∈ {0, 1}

(1)

The lower bound on the number of bins obtained by solving the continuous relax-
ation of this model is referred to as L1 in the literature. It has been shown to be equal to
d
∑n

i=1 si/Ce. Many other lower bounds have been designed, amongst which the most
widely used is the one due to Martello and Toth [7], referred to as L2. In the remain-
der of this section we will present two alternative formulations that give better lower
bounds on the number of bins. The first one, referred to the DP-FLOW model, is novel.
The second one is known as the ARC-FLOW model [2].

The DP-FLOW Model. We consider the directed graph construction used by Trick [10]
to build a propagator for the knapsack constraint using dynamic programming; an ex-
ample is presented in Figure 1. Consider a layered graph G(V,A) with n + 1 layers
labelled from 1 to n+ 1, and a sink node, s. The nodes are labelled ib where i denotes
the layer and b a value between 0 and C. A path from the node of the first layer to a node
of the last layer represents a packing, i.e. a set of items assigned to the same bin. More
specifically a path using an edge starting at layer i between two nodes ib and (i+1)b+si

represents a packing that includes item i, whereas the use of the edge (ib, (i+ 1)b) ex-
cludes item i from the packing. Edges are added between the nodes of the last layer of
the graph and the sink node, s. An example of such a graph is shown Figure 1 for the
instance S = {2, 2, 3, 5, 5}, C = 7. The packing 2, 3 is the path shown in dashed line.

A solution to the bin packing problem corresponds to a minimum flow problem in
this graph, with an additional constraint stating that exactly one oblique edge from each
layer must be used. We consider a variable xk,l per edge (k, l) ∈ A, 10 being the node
of the first layer, and the number of bins is represented by xs,10 , i.e. the flow circulating



in the graph:

minimise xs,10∑
(j,ib)∈A xj,ib −

∑
(ib,k)∈A xib,k =

−xs,10 if ib = 10,
0 if ib s.t i ∈ [2, n+ 1], b ∈ [0, C]
xs,10 if ib = s∑

(ib,(i+1)b+si
)∈A x(ib,(i+1)b+si

) = 1 i ∈ [1, n]

xk,l ≥ 0, integer ∀(k, l) ∈ A

A solution to the bin packing problem can be obtained by decomposing the result-
ing flow into paths connecting the source node to the nodes of the final layer. This flow
decomposition is possible because the graph is acyclic. The number of variables and
constraints in this model isO(nC) since each node in the graph has at most two outgo-
ing edges. Notice that the formulation depends on the ordering of the items used to order
the layers of the graph; the size of the graph as well as the strength of the formulation
are also affected by this ordering.

The ARC-FLOW Model. Carvalho introduced an elegant ARC-FLOW model for the bin
packing problem [2, 3]. His model, which we present below, makes explicit the capacity
of the bins, and its size depends on the number of items of different sizes rather than
the total number of items.

Consider a graph G(V,A) with C + 1 nodes labelled from 0 to C in which there is
an edge (i, j) ∈ A if there exists an item of size j − i in S. Additional edges (i, i+ 1)
are added between consecutive pair of nodes. An example of such a graph is shown in
Figure 2 for S = {2, 2, 3} with C = 5. Any path in this graph corresponds to a packing
of a single bin. For example, the path shown in dotted lines in Figure 2 corresponds to
a packing of two items of size 2, leaving the remaining capacity of the bin unused (the
last edge is a loss edge). More formally, a packing for a single bin corresponds to a flow
of one unit between vertices 0 and C. A larger flow corresponds to the same packing
into multiple bins.

Such a formulation has many symmetries since the same solution can be encoded
by many different flows. Some reduction rules were given by Carvalho that help reduce
such symmetries [2]. The graph presented in Figure 3 is a simplied graph for the same
example as the one used for the DP-FLOW model. Firstly one can notice that the pack-
ings are ordered by decreasing value of the sizes of the items. Secondly, the loss edges
before Node 2, which is the smallest item size, have been removed as well. Finally,
the number of consecutive edges of a given size is bounded by the number of items of
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Fig. 2. An example of the graph underlying the ARC-FLOW model for S = {2, 2, 3} and C = 5.
The packing 2, 2 is shown with dotted lines.
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Fig. 3. An example of the graph underlying the ARC-FLOW model for S = {2,2,3,5,5}, C = 7.

this size. This is why no edges of size 2 are outgoing from Node 4 as this would not
correspond to any valid packing. However, all the symetries have not been eliminated.

The bin packing problem can be formulated as a minimum flow between vertex 0
and vertex C with constraints enforcing that the number of edges of a given length used
by the flow must be greater than or equal to the number of items of the corresponding
size. Variables xij are associated with the edges (i, j). xC0 denotes the flow variable
corresponding to the number of bins used. We will denote by S

′
= {s′

1, . . . , s
′

n′} the
set of different item sizes, and bi the number of items of size s

′

i. n
′

is the number of
items of different sizes. The model is as follows:

minimise xC0∑
(i,j)∈A xij −

∑
(j,k)∈A xjk =

−xC0 if j = 0,
0 if j = 1, 2, . . . , C − 1,
xC0 if j = C∑

(k,k+s
′
i)∈A xk,k+s

′
i
≥ bi i = 1, 2, . . . , n

′

xi,j ≥ 0, integer ∀(i, j) ∈ A

A solution can be obtained again by decomposing the flow. The number of variables
in this model is O(n′

C). However there are only C flow conservation constraints, as
opposed to the nC of our model, which makes this formulation clearly more compact.

3 Dealing with Partial Assignments

The bounds we have presented can be applied during search by transforming a partial
assignment into a reduced bin packing problem. Once items are assigned to bins we
have a bin packing problem in which some item sizes are missing, since they have
already been assigned, and not all bins have the same remaining capacity. Both previous
formulations can be modified to handle these cases.

For the DP-FLOW model we can simply add capacities to the edges between the
last layer of the graph and the sink node. These capacities express the number of bins
that have enough capacity to accommodate the corresponding size. For example, if we
dispose of three bins of capacity 10 and an item of size 2 has been assigned to each of
the first two bins, then sizes of value 9 and 10 are given a capacity of 1. Additionally, the
flows in the oblique edges corresponding to taking items already assigned are enforced
to zero. For the ARC-FLOW model a back edge, adding to the overall flow to minimize,
can be added from each node corresponding to an available capacity in the reduced bin



Table 1. Comparing the quality and time of various lower bounds on the B1 benchmark.

L1 L2 DP-FLOW ARC-FLOW ARC-FLOW+red
sum 74650.49 77945.76 78114.48 78099.66 78113.4

avg time (in s) 0 0 2.96 0.07 0.02

packing problem. In the previous example an edge would leave Node 8 as well as 10 to
go back to Node 0. The bi values of the linear model are also updated accordingly to
reflect the remaining items available.

It is possible to propagate with the LP lower bounds using a similar approach to
that adopted by Shaw [9]; that is, we simply commit items to bins, compute the corre-
sponding reduced problem and check whether the bound raises a contradiction or not, in
which case the item can be pruned from the corresponding bin. However, that approach
is suitable for very fast filtering rules only, but otherwise leads to significant overheads.

4 Experimental Results

We conducted a series of experiments on a single thread on a Dual Quad Core Xeon
CPU, 2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, run-
ning Linux 2.6.25 x64. We put a 3GB limit on memory. CPLEX 12 was used for all
the linear models. We used two sets of publicly available instances as benchmarks. The
Falkenauer benchmark [4] comprises two classes of instances U and T with four sets of
20 instances in each class containing 120 to 1000 items. Class U comprises item sizes
uniformly distributed in [20, 100] to be packed into bins of size 150. Class T consists of
triplets of items from [25, 50] to be packed into bins of size 100. Four sets are in class
T and instances were generated so that there is no slack. The second benchmark suite
used are the B1 and B2 sets studied in [8], made of 720 and 480 instances, respectively.
The number of items in these sets vary from 50 to 500; the capacity can reach 1000 in
the B2 set. We used the first 350 instances of B2. When quoting a benchmark we will
use either U, T or B as prefixes followed by the number of items to be packed, unless it
is otherwise obvious.

Experiment 1: Comparison of the Lower Bounds on the Number of Bins. We com-
pared four lower bounds: (a) L1 is the continuous lower bound, (b) L2 is the well known
bound due to Martello and Toth [7], (c) the linear relaxation of the DP-FLOW model
where the ordering of the layers in the graph is done by non-decreasing item size, (d) the
linear relaxation of the ARC-FLOW model without the simplifications of the graph, and
(e) with the reductions. The lower bounds obtained on the Falkenauer benchmark at
the root node are not interesting, and mostly equal to the continuous bound L1 with
few exceptions. The second benchmark, B1, exhibits more variety and we report in Ta-
ble 1 the sum of the lower bounds found on all the instances of the B1 set by the five
lower bounds. The linear relaxation of DP-FLOW is the strongest but does not improve
ARC-FLOW+red significantly and is also significantly more expensive to compute.

Experiment 2: Comparison with the Bin Packing Constraint. We embedded the
ARC-FLOW+red bound within a bin packing global constraint to evaluate the strength
of the pruning we would get compared to that obtained using the state-of-the-art global



constraint designed by Shaw [9]. We compared these three methods by optimally solv-
ing the bin packing problem: “CP Shaw” denotes the constraint described in [9]; “CP
Arc-flow” refers to a constraint that simply solves the linear relaxation of the ARC-
FLOW model with reductions and uses this lower bound to detect contradiction; “CP
Shaw+Arc-flow” first applies the filtering of Shaw’s bin packing constraint and then
computes the lower bound of the ARC-FLOW model.

Table 2. Comparison between different variants of the bin packing constraint.

benchmark u120 u250 u500 u1000 t60 t120 t249 t501 B1 B2
CP Backt Med 0.00 3.13M 8.68M 2.95M 147.00 5518.00 1.79M 2.41M 0.00 0.00
Sh Avg 1.41M 4.83M 9.10M 3.01M 216.15 1.54M 2.81M 2.37M 1.15M 3.21M

Time(s) Med 0.15 3600.00 3600.07 3600.09 0.07 3.06 3600.07 3600.09 0.34 0.06
Avg 371.61 1981.41 2992.87 3600.10 0.13 741.78 3265.10 3600.09 497.11 726.09

StDev 1038.75 1835.99 1302.88 0.06 0.14 1467.85 1033.12 0.06 1224.44 1439.92
NS 19 9 4 0 20 16 2 0 625 280

CP Backt Med 15.00 76.00 175.00 285.00 313.00 1093.00 3604.00 8535.50 0.00 0.00
AC Avg 25.75 87.80 177.85 268.45 318.20 1100.80 14676.05 16240.85 15.76 132.40

Time(s) Med 0.29 0.71 0.96 1.45 13.18 58.10 142.51 208.05 0.21 29.26
Avg 0.34 0.73 1.02 1.45 13.34 64.92 379.02 408.70 0.54 246.49

StDev 0.12 0.11 0.15 0.08 4.37 37.95 788.56 757.92 0.96 631.00
NS 20 20 20 20 20 20 19 19 720 343

CP Backt Med 0.00 7.50 21.00 40.50 7.00 33.00 173.50 645.00 0.00 0.00
Sh+AC Avg 3.95 23.10 24.15 46.10 7.50 39.65 4420.00 3981.50 3.65 68.29

Time(s) Med 0.40 1.38 4.44 48.86 3.73 5.65 29.10 76.75 0.48 19.56
Avg 0.39 1.53 4.86 61.84 3.72 17.43 221.79 272.69 2.28 150.39

StDev 0.07 0.40 0.93 25.06 1.98 15.10 796.55 785.83 3.92 421.52
NS 20 20 20 20 20 20 19 19 720 349

We use similar settings to those in [9]. The standard search heuristic decreasing best
fit is used, packing items in non-increasing size into the first bin with the least possible
space sufficient for the item. On backtracking a bin is removed from the domain of
an item and two symmetry breaking rules are used: the bin is also removed from the
domain of all equivalent items (items of the same size), and all equivalent bins (bins
with same load) are also pruned from the domains of these items. Two dominance rules
are also added. The first is applied before creating a new choice point: if all the bins are
equivalent for any item it is assigned to the first available one. The second ensures that
if an item can fit exactly in the remaining space of a bin it is assigned to this bin.

Our algorithms are implemented with Choco and CPLEX. Shaw’s bin packing con-
straint is available in Choco, which we used as a baseline. It differs from Shaw’s im-
plementation by using several dual feasible functions [1] that subsume the L2 bound
of Martello and Toth. The results presented in [9] are detailed for the T60 and U120
categories where all instances are solved, but U12019 requires 15 hours. We observed
a similar behavior: U12019 was the only instance not solved within the one hour time
limit allowed for the Choco implementation of the bin packing constraint. Table 2 re-
ports the comparison giving for each category the median and average number of back-
tracks, time (in seconds), as well as the standard deviation in time and the number of
instances solved to optimality within the time limit (NS). Clearly the approach pre-
sented here significantly improves over Shaw’s bin packing constraint. In Figure 4 we
present an instance by instance comparison for each benchmark suite using both Shaw’s
global constraint and our hybrid approach. Our approach tends to have a less variation
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Fig. 4. A detailed comparison of our approach (x-axis) against the bin packing constraint of Shaw
on the y-axis - time and backtracks are presented.

in the effort required to solve a bin packing problem. Finally, in Figure 5 we compare
the reasoning capabilities of the ARC-FLOW relaxation against that of Shaw’s global
constraint. A point below the diagonal means that Shaw has fewer backtracks than the
ARC-FLOW relaxation. The ARC-FLOW alone is usually better than Shaw, by capturing
most of the benefits of more sophisticated filtering while achieving orders of magnitude
improvements in time.

5 Conclusion

We have presented a novel direction for handling bin packing constraints in constraint
programming. Our approach can give significant improvements in running time. The
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Fig. 5. Comparison of the reasoning capabilities of Shaw’s global constraint against ours.

DP-FLOW and ARC-FLOW models remain to be compared theoretically. A deeper
study of the DP-FLOW model focusing on the impact of the ordering of the layers
and graph reduction criteria is still to be carried out, although the ARC-FLOW model
appears to be much more promising. Furthermore we believe that the graph underlying
the ARC-FLOW model scales to much larger problems than the one used by the DP-
FLOW model. This immediately suggests that we could apply the same idea to knapsack
constraints. The resulting formulation would not be able to provide GAC for the knap-
sack constraint as opposed to [10] but should allow a very strong propagation in practice
while scaling to much bigger knapsacks.
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