
Bin Packing with Linear Usage Costs – An Application
to Energy Management in Data Centres?

Hadrien Cambazard1, Deepak Mehta2, Barry O’Sullivan2, and Helmut Simonis2

1 G-SCOP, Université de Grenoble; Grenoble INP; UJF Grenoble 1; CNRS, France
hadrien.cambazard@grenoble-inp.fr

2 Cork Constraint Computation Centre, University College Cork, Ireland
{d.mehta|b.osullivan|h.simonis}@4c.ucc.ie

Abstract. EnergeTIC is a recent industrial research project carried out in Greno-
ble on optimizing energy consumption in data-centres. The efficient management
of a data-centre involves minimizing energy costs while ensuring service quality.
We study the problem formulation proposed by EnergeTIC. First, we focus on a
key sub-problem: a bin packing problem with linear costs associated with the use
of bins. We study lower bounds based on Linear Programming and extend the bin
packing global constraint with cost information. Second, we present a column
generation model for computing the lower bound on the original energy manage-
ment problem where the pricing problem is essentially a cost-aware bin packing
with side constraints. Third, we show that the industrial benchmark provided so
far can be solved to near optimality using a large neighborhood search.

1 Introduction

Energy consumption is one of the most important sources of expense in data centers.
The ongoing increase in energy prices (a 50% increase is forecasted by the French sen-
ate by 2020) and the growing market for cloud computing are the main incentives for the
design of energy efficient centers. We study a problem associated with the EnergeTIC3

project which was accredited by the French government (FUI) [2]. The objective is to
control the energy consumption of a data center and ensure that it is consistent with ap-
plication needs, economic constraints and service level agreements. We focus on how
to reduce energy cost by taking variable cpu requirements of client applications, IT
equipment and virtualization techniques into account.

There are a variety of approaches to energy management in data centres, the most
well-studied of which is energy-aware workload consolidation. A Mixed Integer Pro-
gramming (MIP) approach to dynamically configuring the consolidation of multiple
services or applications in a virtualised server cluster has been proposed in [16]. That
work focused on power efficiency and considered the costs of turning on/off the servers.

? The authors acknowledge their industrial partners (Bull, Schneider Electric, Business & Deci-
sion and UXP) as well as several public research institutions (G2Elab, G-SCOP and LIG). The
authors from UCC are supported by Science Foundation Ireland Grant No. 10/IN.1/I3032.

3 Minalogic EnergeTIC is a Global competitive cluster located in Grenoble France and fostering
research-led innovation in intelligent miniaturized products and solutions for industry.

However, workloads were entirely homogeneous and there was little uncertainty around
the duration of tasks. Constraint Programming is used in [8] with a different cost model.

A combinatorial optimisation model for the problem of loading servers to a desired
utilisation level has, at its core, a bin packing (BP) problem [20]. In such a model each
server is represented by a bin with a capacity equal to the amount of resource available.
Bin packing is a very well studied NP-Hard problem. A significant amount of work has
been conducted on lower bounds [13], approximation and exact algorithms. Although
this research is still very active as demonstrated by the recent progress [17], researchers
have started to look at variants involved in industrial applications.

In Section 2 we present an extension of bin packing which is a key sub-problem
of the application domain and we show how to handle it efficiently with Constraint
Programming (CP). In Section 3 we study the formulation of the EnergeTIC problem. In
particular a lower bound computation technique is designed to assert the quality of the
upper bounds found by a large neighborhood search. Section 4 reports the experiments
on a real data-set followed by conclusions in Section 5.

2 Bin Packing with Linear Usage Costs

We consider a variant of the Bin Packing problem (BP) [20], which is the key sub-
problem of the application investigated here. We denote by S = {w1, . . . ,wn} the integer
sizes of the n items such that w1 ≤ w2 ≤ . . .wn. A bin j is characterized by an integer
capacity C j, a non-negative fixed cost f j and a non-negative cost c j for each unit of used
capacity. We denote by B = {{C1, f1, c1}, . . . , {Cm, fm, cm}} the characteristics of the m
bins. A bin is used when it contains at least one item. Its cost is a linear function f j+c jl j,
where l j is the total size of the items in bin j. The total load is denoted by W =

∑n
i=1 wi

and the maximum capacity by Cmax = max1≤ j≤mC j. The problem is to assign each item
to a bin subject to the capacity constraints so that we minimize the sum of the costs of
all bins. We refer to this problem as the Bin Packing with Usage Cost problem (BPUC).
BP is a special case of BPUC where all f j are set to 1 and all c j to 0. The following
example shows that a good solution for BP might not yield a good solution for BPUC.

Example 1. In Figure 1, Scenario 1, B ={(9,0,1),(3,0,2),(3,0,2),(3,0,2),(3,0,2)} and S =

{2,2,2,2,3,3,3}. Notice that ∀ j, f j = 0. The packing (P1) : {{2,2,2,2}, {3}, {3}, {3}, {}} is
using the minimum number of bins and has a cost of 26 (8*1 + 3*2 + 3*2 + 3*2). The
packing (P2): {{3,3,3}, {2}, {2}, {2}, {2}} is using one more bin but has a cost of 25 (9 +

2*2 + 2*2 + 2*2 + 2*2). Here, (P2) is better than (P1) and using the minimum number
of bins is not a good strategy. Now change the last unit cost to c5 = 3 (see Figure 1,
Scenario 2). The cost of (P1) remains unchanged since it does not use bin number 5 but
the cost of (P2) increases to 27, and thus (P1) is now better than (P2).

Literature Review. A first relevant extension of BP for the current paper is called Vari-
able Size Bin-Packing, where bins have different capacities and the problem is to mini-
mize the sum of the wasted space over all used bins [15]. It can be seen as a special case
of BPUC where all f j = C j and c j = 0. Recent lower bounds and an exact approach are
examined in [11]. A generalization to any kind of fixed cost is presented in [5], which
can be seen as a special case of BPUC where all c j = 0. Concave costs of bin utilization

Fig. 1. Example of optimal solutions in two scenarios of costs. In Scenario 1, the best solution
has no waste on the cheapest bin. In Scenario 2, it does not fill completely the cheapest bin.

studied in [12] are more general than the linear cost functions of BPUC. However [12]
does not consider bins of different capacities and deals with the performance of classical
BP heuristics whereas we are focusing on lower bounds and exact algorithms. Secondly,
BP with general cost structures have been introduced [3] and studied [9]. The authors
investigated BP with non-decreasing and concave cost functions of the number of items
put in a bin. They extend it with profitable optional items in [4]. Their framework can
model a fixed cost but does not relate to bin usage.

2.1 Basic Formulation and Lower Bounds

Numerous linear programming models have been proposed for BP [7]. We first present
a formulation for BPUC. For each bin a binary variable y j is set to 1 if bin j is used in
the packing, and 0 otherwise. For each item i ∈ {1, . . . , n} and each bin j ∈ {1, . . . ,m}
a binary variable xi j is set to 1 if item i is packed into bin j, and 0 otherwise. We add
non-negative variables l j representing the load of each bin j. The model is as follows:

Minimize z1 =
∑m

j=1(f jy j + c jl j)
(1.1)

∑m
j=1 xi j = 1, ∀i ∈ {1, . . . , n}

(1.2)
∑n

i=1 wi xi j = l j, ∀ j ∈ {1, . . . ,m}
(1.3) l j ≤ C jy j, ∀ j ∈ {1, . . . ,m}
(1.4) xi j ∈ {0, 1}, y j ∈ {0, 1}, l j ≥ 0 ∀ j ∈ {1, . . . ,m},∀i ∈ {1, . . . , n}

(1)

Constraint (1.1) states that each item is assigned to one bin whereas (1.2) and (1.3)
enforce the capacity of the bins. We now characterize the linear relaxation of the model.
Let r j = f j/C j + c j be a real number associated with bin j. If bin j is filled completely,
r j is the cost of one unit of space in bin j. We sort the bins by non-decreasing r j:
ra1 ≤ ra2 ≤ . . . ≤ ram ; a1, . . . , am is a permutation of the bin indices 1, . . . ,m. Let k be
the minimum number of bins such that

∑k
j=1 Ca j ≥ W.

Proposition 1. Let z∗1 be the optimal value of the linear relaxation of the formula-
tion (1). We have z∗1 ≥ Lb1 with Lb1 =

∑k−1
j=1 Ca j ra j + (W −

∑k−1
j=1 Ca j)rak .

Proof. z∗1 =
∑m

j=1(f jy j + c jl j) ≥
∑m

j=1(f j
l j

C j
+ c jl j) because of the constraint l j ≤ C jy j,

so z∗1 ≥
∑m

j=1(f j

C j
+ c j)l j ≥

∑m
j=1 r jl j. Lb1 is the quantity minimizing

∑m
j=1 r jl j under the

constraints
∑

j l j = W where each l j ≤ C j. To minimize the quantity we must split W
over the l j related to the smallest coefficients r j. Hence, z∗1 ≥

∑m
j=1 r jl j ≥ Lb1. ut

Lb1 is a lower bound of BPUC that can be easily computed. Also notice that Lb1 is the
bound that we get by solving the linear relaxation of formulation (1).

Proposition 2. Lb1 is the optimal value of the linear relaxation of the formulation (1).

Proof. For all j < k, we set each ya j to 1 and la j to C j. We fix lak to (W −
∑k−1

j=1 Ca j) and
yak to lak/Cak . For all j > k we set ya j = 0 and la j = 0. Constraints (1.3) are thus satisfied.

Finally we fix xi,a j =
la j

W for all i, j so that constraints (1.2) and (1.1) are satisfied. This
is a feasible solution of the linear relaxation of (1) achieving an objective value of Lb1.
We have, therefore, Lb1 ≥ z∗1 and consequently z∗1 = Lb1 from Proposition 1. ut

Adding the constraint xi j ≤ y j for each item i and bin j, strengthens the linear relaxation
only if W < Cak . Indeed, the solution given in the proof is otherwise feasible for the

constraint, (∀ j < k, xi,a j =
la j

W ≤ ya j = 1 and for j = k we have
lak
W ≤

lak
Cak

if W ≥ Cak).

2.2 Two Extended Formulations of BPUC

The Cutting Stock Model. The formulation of Gilmore and Gomory for the cutting
stock problem [10] can be adapted for BPUC. The items of equal size are now grouped
and for n

′

≤ n different sizes we denote the number of items of sizes w
′

1, . . . ,w
′

n′
by

q1, . . . , qn′ respectively. A cutting pattern for bin j is a combination of item sizes that
fits into bin j using no more than qd items of size w

′

d. In the i-th pattern of bin j,
the number of items of size w

′

d that are in the pattern is denoted gdi j. Let I j be the
set of all patterns for bin j. The cost of the i-th pattern of bin j is therefore equal to
coi j = f j + (

∑n
′

d=1 gdi jw
′

d)c j. The cutting stock formulation is using a variable pi j for the
i-th pattern of bin j:

Minimize z2 =
∑m

j=1
∑

i∈I j
coi j pi j

(2.1)
∑m

j=1
∑

i∈I j
gdi j pi j = qd ∀d ∈ {1, . . . , n

′

}

(2.2)
∑

i∈I j
pi j = 1 ∀ j ∈ {1, . . . ,m}

(2.3) pi j ∈ {0, 1} ∀ j ∈ {1, . . . ,m}, i ∈ I j

(2)

Constraint (2.1) states that each item has to appear in a pattern (thus in a bin) and (2.2)
enforces one pattern to be designed for each bin (convexity constraints). A pattern pi j

for bin j is valid if
∑n

′

d=1 gdi jw
′

d ≤ C j and all gdi j are integers such that qd ≥ gdi j ≥ 0.
The sets I j have an exponential size so the linear relaxation of this model can be solved
using column generation. The pricing step is a knapsack problem that can be solved
efficiently by dynamic programming if the capacities are small enough.

The Arc-FlowModel. Carvalho introduced an elegant Arc-Flow model for BP [6,7].
His model explicitly uses each unit of capacity of the bins. In the following we show
how to adapt it for BPUC. Consider a multi-graph G(V, A), where V = {0, 1, ...,Cmax} ∪

{F} is the set of Cmax + 2 nodes labeled from 0 to Cmax and a final node labeled F, and
A = I∪ J is the set of two kinds of edges. An edge (a, b) ∈ I between two nodes labelled
a ≤ Cmax and b ≤ Cmax represents the use of an item of size b−a. An edge of (a, F) ∈ J
for each bin j represents the usage a of the bin j, and therefore a ≤ C j. An example of

Fig. 2. (a) An example of the graph underlying the Arc-Flow model for S = {2, 2, 3, 5}, B =

{{3, 1, 2}, {4, 3, 1}, {7, 3, 3}} so that Cmax = 7. A packing is shown using a dotted line: {3} is put in
the first bin for a cost of 7, {2, 2} is in the second bin for a cost of 7 and {5} in the last bin for a
cost of 18. (b) The graph underlying the Arc-Flow model after the elimination of symmetries.

such a graph is shown in Figure 2(a). Notice that this formulation has symmetries since
a packing can be encoded by many different paths. Some reduction rules were given by
Carvalho [6], which help in reducing such symmetries (see Figure 2(b)).

BPUC can be seen as a minimum cost flow between 0 and F with constraints en-
forcing the number of edges of a given length used by the flow to be equal to the number
of items of the corresponding size. We have variables xab for each edge (a, b) ∈ I as well
as variables ya j for each pair of bin j ∈ {1, . . . ,m} and a ∈ V . The cost of using an edge
(a, F) ∈ J for bin j with a > 0 is coa j = f j +a ·c j and co0 j = 0. The model is as follows:

Minimize z3 =
∑m

j=1
∑k=Cmax

k=0 cok jyk j

(3.1)
∑

(a,b)∈A xab −
∑

(b,c)∈A xbc −
∑m

j=1 yb j =

{
0 ∀b ∈ {1, 2, . . . ,Cmax}

−m for b = 0
(3.2)

∑C j
a=0 ya j = 1 ∀ j ∈ {1, . . . ,m}

(3.3)
∑

(k,k+w′d)∈A xk,k+w′d
= qd ∀d ∈ {1, 2, . . . , n

′

}

(3.4) ya j = 0 ∀(j, a) ∈ {1, . . . ,m} × {C j + 1, . . . ,Cmax}

(3.5) xab ∈ N ∀(a, b) ∈ A
(3.6) ya j ∈ {0, 1} ∀(j, a) ∈ {1, . . . ,m} × {0, . . . ,Cmax}

(3)

Constraint (3.1) enforces the flow conservation at each node, and Constraint (3.2) states
that each bin should be used exactly once. Constraint (3.3) ensures that all the items
are packed, while Constraint (3.4) enforces that bin j is not used beyond its capacity
C j. A solution can be obtained again by decomposing the flow into paths. The number
of variables in this model is in O((n

′

+ m) · Cmax) and the number of constraints is
O(Cmax + m + n

′

). Although its LP relaxation is stronger than that of Model (1), it
remains dominated by that of Model (2).

Proposition 3. z∗3 ≤ z∗2. The optimal value of the linear relaxation of (3) is less than the
optimal value of the linear relaxation of (2).

Proof. Let (p∗) be a solution of the linear relaxation of (2). Each pattern p∗i j is mapped to
a path of the Arc-Flowmodel. A fractional value p∗i j is added on the arcs corresponding
to the item sizes of the pattern (the value of the empty patterns for which all gdi j = 0 is
put on the arcs y0 j). The flow conservation (3.1) is satisfied by construction, so is (3.2)
because of (2.2) and so are the demand constraints (3.3) because of (2.1). Any solution
of (2) is thus encoded as a solution of (3) for the same cost so z∗3 ≤ z∗2. ut

Proposition 4. z∗2 can be stronger than z∗3 i.e there exist instances such that z∗2 > z∗3.

Proof. Consider the following instance: S = {1, 1, 2} and B = {{3, 1, 1}, {3, 4, 4}}. Two
items of size 1 occurs so that n

′

= 2, q1 = 2, q2 = 1 corresponding to w
′

1 = 1,w
′

2 = 2.
The two bins have to be used and the first dominates the second (the maximum possible
space is used in bin 1 in any optimal solution) so the optimal solution is the packing
{{2, 1}, {1}} (cost of 12). Let’s compute the value of z∗2. It must fill the first bin with the
pattern [g111, g211] = [1, 1] for a cost of 4. Only three possible patterns can be used to
fill the second bin: [0, 0], [1, 0] and [2, 0] (a valid pattern pi2 is such that g1i2 ≤ 2). The
best solution is using [g112, g212] = [2, 0] and [g122, g222] = [0, 0] taking both a 0.5 value
to get a total cost z∗2 = 4 + 6 = 10. The Arc-Flow model uses a path to encode the same
first pattern [1,1] for bin 1. But it can build a path for bin 2 with a 1

3 unit of flow taking
three consecutive arcs of size 1 to reach a better cost of 1

3 ∗ 16 ≈ 5, 33. This path would
be a pattern [3,0] which is not valid for (2). So z∗3 ≈ 9.33 and z∗2 > z∗3. ut

The Arc-Flow model may use a path containing more than qd arcs of size w
′

d with
a positive flow whereas no such patterns exist in (3) because the sub-problem is subject
to the constraint 0 ≤ gdi j ≤ qd. The cutting stock formulation used in [6] ignores this
constraint and therefore the bounds are claimed to be equivalent.

2.3 Extending the Bin Packing Global Constraint

A bin packing global constraint was introduced in CP by [19]. We present an extension
of this global constraint to handle BPUC. The scope and parameters are as follows:

BinPackingUsageCost([x1, . . . , xn], [l1, . . . , lm], [y1, . . . , ym], b, z, S , B)

Variables xi ∈ {1, . . . ,m}, l j ∈ [0, . . . ,C j] and b ∈ {1, . . . ,m} denote the bin assigned
to item i, the load of bin j, and the number of bins used, respectively. These variables
are also used by the BinPacking constraint. Variables yi ∈ {0, 1} and z ∈ R are due to
the cost. They denote whether bin j is open, and the cost of the packing. The last two
arguments refers to BPUC and give the size of the items as well as the costs (fixed and
unit). In the following, x (resp. x) denotes the lower (resp. upper) bound of variable x.

Cost-based Propagation using Lb1. The characteristics of the bins of the restricted
BPUC problem based on the current state of the domains of the variables is denoted by
B
′

, and defined by B
′

= {{C
′

1, f
′

1, c1}, . . . , {C
′

m, f
′

m, cm}} where C
′

j = l j − l j, and f
′

j = (1 −

y j) f j. The total load that remains to be allocated to the bins is denoted W
′

= W−
∑m

j=1 l j.
Notice that we use the lower bounds of the loads rather than the already packed items.
We assume it is strictly better due to the reasonings of the bin packing constraint.

Lower bound of z. The first propagation rule is the update of the lower bound z of z.
The bound is summing the cost due to open bins and minimum loads with the value of
Lb1 on the remaining problem. It gives a maximum possible cost increase gap:

Lb
′

1 =
∑m

j=1(l jc j + y j f j) + Lb1(W
′

, B
′

); z← max(z, Lb
′

1); gap = z − Lb
′

1 (4)

Bounds of the load variables. We define the bin packing problem B
′′

obtained by ex-
cluding the space supporting the lower bound Lb1(W

′

, B
′

). Lb1 is using L j units of
space on bin a j. The bins a1, . . . , ak−1 are fully used so ∀ j < k, L j = C

′

a j
, for bin ak

we have Lk = W
′

−
∑k−1

j=1 C
′

a j
and ∀ j > k, L j = 0. The resulting bins are defined as

B
′′

= {{C
′′

1 , f
′

1, c1}, . . . , {C
′′

m, f
′

m, cm}} where C
′′

a j
= 0 for all j < k, C

′′

ak
= C

′

ak
− Lk and

C
′′

a j
= C

′

a j
for all j > k. Lower and upper bounds of loads are adjusted with rules (5).

Let q1
a j

be the largest quantity that can be removed from a bin a j, with j ≤ k, and put
at the other cheapest possible place without overloading z. Consequently, when j < k,
q1

a j
is the largest value in [1, L j] such that (Lb1(q1

a j
, B

′′

) − q1
a j

ra j) ≤ gap. When j = k,
the same reasonning can be done by setting C

′′

ak
= 0 in B

′′

.
Similarly, let q2

a j
be the largest value in [1,C

′

a j
] that can be put on a bin a j, with

j ≥ k, without triggering a contradiction with the remaining gap of cost. q2
a j

is thus the
largest value in [1,C

′

a j
] such that (q2

a j
ra j − (Lb1(W

′

, B
′

) − Lb1(W
′

− q2
a j
, B

′

))) ≤ gap.

∀ j ≤ k, la j ← la j + L j − q1
a j

; ∀ j ≥ k, la j ← la j + q2
a j
. (5)

Channeling. The constraint ensures two simple rules relating the load and open-close
variables (a bin of zero load can be open): y j = 0 =⇒ l j = 0 and l j > 0 =⇒ y j = 1.
Bounds of the open-close variables. The propagation rule for l j can derive l j > 0 from
(5), which in turn (because of the channeling between y and l) will force a bin to open
i.e ya j ∈ {0, 1} will change to ya j = 1. To derive that a y j has to be fixed to 0, we can
use Lb1 similarly to the reasonings presented for the load variables (checking that the
increase of cost for opening a bin remains within the gap).

Tightening the bounds of the load variables can trigger the existing filtering rules
of the bin packing global constraint thus forbidding or committing items to bins. No-
tice that items are only increasing the cost indirectly by increasing the loads of the
bins because the cost model is defined by the state of the bins (rather than the items).
The cost-based propagation on x is thus performed by the bin packing global constraint
solely as a consequence of the updates on the bin related variables, i.e. l and y.

Algorithms and Complexity. Assuming that B
′

and W
′

are available, Lb1(W
′

, B
′

) can
be computed in O(m log(m)) time. Firstly we compute the r j values corresponding to
B
′

for all bins. Secondly, we sort the bins in non-decreasing r j. Finally, the bound is
computed by iterating over the sorted bins and the complexity is dominated by the
sorting step. After computing Lb1(W

′

, B
′

), the values a j (the permutation of the bins)
such that ra1 ≤ ra2 ≤ . . . ≤ ram are available as well as the critical k and Lk = W

′

−∑k−1
j=1 C

′

. The propagation of la j and la j can then be done in O(m) as shown in Figure 3.

3 Application – Energy Optimization in a Data Centre

The system developed by EnergeTIC is based on a model of the energy consumption of
the various components in a data centre, a prediction system to forecast the demand and
an optimization component computing the placement of virtual machines onto servers.

Algorithm 1: UpdateMinimumLoad

Input: a j with j ≤ k, B
′

, gap
Output: a lower bound of la j

1. costInc = 0; q = 0; b = k;
2. If (j == k) {b = k + 1;}
3. While (q < L j && b ≤ m)
4. loadAdd = min(L j − q,C

′

ab
− Lb);

5. costIncb = loadAdd × (rab − ra j);
6. If ((costIncb + costInc) > gap)
7. q = q + b

gap−costInc
rab−ra j

c;

8. return L j + la j − q;

9. costInc = costInc + costIncb;
10. q = q + loadAdd; b = b + 1;
11. return la j

Algorithm 2: UpdateMaximumLoad

Input: a j with j ≥ k , B
′

, gap
Output: an upper bound of la j

1. costInc = 0; q = 0; b = k;
2. If (j == k) {q = Lk; b = k − 1;}
3. While (q < C

′

a j
&& b ≥ 0)

4. loadAdd = min(Lb,C
′

a j
− q);

5. costIncb = loadAdd × (ra j − rab);
6. If ((costIncb + costInc) > gap)
7. q = q + b

gap−costInc
ra j−rab

c;

8. return la j + q;

9. costInc = costInc + costIncb;
10. q = q + loadAdd; b = b − 1;
11. return la j

Fig. 3. Propagation algorithms for updating the lower and upper bounds of the load variables

Energy Model. In the last decade green data centres have focused on limiting the
amount of energy that is not used for running the client’s applications. The Power Us-
age Effectiveness (PUE) is a key indicator introduced by the Green Grid consortium [1]
which measures the ratio between the total energy consumption of the data centre and
the energy used by its IT systems (e.g., servers, networks, etc.). A value of 1 is the
perfect score. The current average in industry is around 1.7 and the most efficient data
centres are reaching 1.4 or even 1.2. As not all electrical power consumed by the IT
equipment is transformed into a useful work product, the need to refine such a metric
arose quickly. Therefore, the Green Grid proposed a very fine grained indicator for that
purpose [1]. This metric, although very accurate, is not really used in practice because
of its complexity and no consensus has been reached for a practical and relevant indi-
cator. The EnergeTIC project introduced a new energy indicator which is defined as the
ratio between the total energy consumed and the energy really used to run clients’ ap-
plications. This indicator however relies on a model of the energy consumption of each
equipment. A system, based on three different servers (quad-, bi- and mono- processor)
with different energy behaviors, was provided by Bull to perform the measurements.
As an example, the energy cost of the power consumption of three different servers at
different cpu loads taken from one of the problem instances is shown in Figure 4.

Demand Model. The demands of the real benchmarks used in the experimental sec-
tion are coming from the Green Data Centre of Business & Decision Eolas located in
Grenoble. It was used to study and validate the system operationally. It is instrumented
with thousands of sensors spread over the site to monitor the energy consumption of
the centre and claims a PUE between 1.28 and 1.34. It deals with an heterogeneous de-
mand: web applications, e-commerce, e-business, e-administrations. An example show-
ing variable requirements of CPU usage over 24 time-periods for multiple virtual ma-
chines taken from one of the problem instances is shown in Figure 5.

 100

 150

 200

 250

 300

 350

 400

 0 1e+09 2e+09 3e+09 4e+09 5e+09

E
n

e
rg

y
 C

o
s
t

CPU Usage

server 1
server 2
server 3

Fig. 4. Energy cost vs CPU Usage for 3 servers.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

 0 5 10 15 20 25

C
P

U
 R

e
q
u
ir
e
m

e
n
t

Time-periods

Fig. 5. Variable demands of virtual machines.

3.1 Problem Description and Notation

The problem is to place a set of virtual machines on a set of servers over multiple time-
periods to minimize the energy cost of the data center. The cpu usage of a VM is chang-
ing over time. At each period, we must ensure that the virtual machines have enough
resources (cpu and memory). Let VM = {v1, . . . , vn} be the set of virtual machines,
SE = {s1, . . . , sm} be the set of servers and T = {p1, . . . , ph} be the set of periods.
Virtual Machines. A virtual machine vi is characterized by a memory consumption Mi

independent of the time-period, a set SAi ⊆ S of allowed servers where it can be hosted,
and a potential initial server (for time-period p0) denoted by Iservi (which might be
unknown). A virtual machine vi has a cpu consumption Uit at time-period t.
Servers. A server s j can be in two different states: ON=1 or STBY=0 (stand-by). It
is characterized by: a cpu capacity Umax j; a memory capacity Mmax j; a fixed cost of
usage Emin j (in Watts); a unit cost τ j per unit of used capacity; a basic cpu consumption
Ca j when it is ON (to run the operating system and other permanent tasks); an energy
consumption Esby j when it is in state STBY; an energy consumption Esta j to change
the state of the server from STBY to ON; an energy consumption Esto j to change the
state of the server from ON to STBY; a maximum number Nmax j of virtual machines
that can be allocated to it at any time period; a set of periods P j ⊆ T during which s j is
forced to be ON; and a potential initial state Istate j ∈ {0, 1}.

If a server is ON, its minimum cost is Emin j + τ jCa j, and if it is STBY, its cost is
Estby j. For the sake of simplicity, to compute the fixed energy cost of an active server
we include the basic consumption Ca j and the standby energy Estby j in Emin j so that
Emin

′

j = Emin j − Estby j + τ jCa j. This way we can state the BinPackingUsageCost
directly with the semantic given earlier by adding the constant

∑
s j∈SE Estby j in the final

objective value. We also shift the cpu capacity of the servers: Umax
′

j = Umax j −Ca j.
Migrations. The maximum number of changes of servers among all virtual machines
from one period to the next is denoted by N and the cost of a migration by Cmig.

The problem can be seen as a series of cost-aware bin packing problems (one per
period) in two dimensions (cpu and memory) that are coupled by the migration con-
straints and the cost for changing the state of a server. Figure 6 gives an overview of the
problem. This example has four servers, each shown by a rectangle whose dimensions
are representing the cpu and memory capacities. A virtual machine is a small rectangle
whose height (its cpu) varies from one period to the next. In this scenario, the cpu needs

Fig. 6. A solution over three time periods. Virtual machines migrate to turn off two servers at t+1.

Minimize
∑

s j∈SE
∑

t∈T (Esta jbto jt + Esto jotb jt + τ jcpu jt + Emin
′

jo jt) + Cmig(
∑

vi∈VM
∑

t∈T ait)
(6.1)

∑
s j∈SE xi jt = 1 (∀ vi ∈ VM, pt ∈ T)

(6.2) xi jt = 0 (∀ vi ∈ VM, pt ∈ T, s j < SAi)
(6.3) xi jt ≤ o jt (∀ vi ∈ VM, pt ∈ T, s j ∈ SE)
(6.4) cpu jt =

∑
vi∈VM Uit xi jt (∀ s j ∈ SE, pt ∈ T)

(6.5) cpu jt ≤ Umax
′

jo jt (∀ s j ∈ SE, pt ∈ T)
(6.6)

∑
vi∈VM Mi xi jt ≤ Mmax jo jt (∀ s j ∈ SE, pt ∈ T)

(6.7)
∑

vi∈VM xi jt ≤ Nmax jo jt (∀ s j ∈ SE, pt ∈ T)
(6.8) migi jt ≥ xi jt − xi jt−1 (∀ vi ∈ VM, s j ∈ SE, pt ∈ T)
(6.8

′

) ait ≥
∑

s j∈SE migi jt (∀ vi ∈ VM, pt ∈ T)
(6.9)

∑
vi∈VM ait ≤ N (∀ pt ∈ T)

(6.10) bto jt ≥ o jt − o jt−1 (∀ s j ∈ SE, pt ∈ T)
(6.11) otb jt ≥ o jt−1 − o jt (∀ s j ∈ SE, pt ∈ T)
(6.12) o jt = 1 (∀ s j ∈ SE, pt ∈ P j)
(6.13) xi j0 = 0 (∀ vi ∈ VM, s j ∈ SE − {Iservi})
(6.14) xi,Iservi ,0 = 1 (∀ vi ∈ VM)
(6.15) o j0 = Istate j (∀ s j ∈ SE)

(6)

of some virtual machines decrease allowing to find better packings and turn off two
servers at t + 1.

3.2 An Integer Linear Model

We present the integer linear model of the problem in which the following variables are
used: xi jt ∈ {0, 1} indicates whether virtual machine vi is placed on server s j at time t.
cpu jt ∈ [0,Umax

′

j] gives the cpu consumption of s j at period t. o jt ∈ {0, 1} is set to 1 if
s j is ON at time t, 0 otherwise. bto jt ∈ {0, 1} is set to 1 if s j was in STBY at t − 1 and
is turned ON at t. otb jt ∈ {0, 1} is set to 1 if s j was in ON at t − 1 and is put STBY at
t. migi jt ∈ {0, 1} is set to 1 if vi is on s j at time t and was on a different server at t − 1.
ait ∈ {0, 1} is set to 1 if vi is on a different server at t than the one it was using at t − 1.

The initial state is denoted by t = 0. The model is summarized in Model (6). We
omit the constant term

∑
s j∈SE Estby j from the objective function. Constraint (6.1) states

that a virtual machine has to be on a server at any time; (6.2) enforces the forbidden
servers for each machine; (6.3) enforces a server to be ON if it is hosting at least one

virtual machine; (6.4) links the cpu load of a server to the machines assigned to it.
(6.5–6.7) are the resource constraints (cpu, memory and cardinality) of each server;
(6.8,6.8

′

,6.9) allow us to count the number of migrations and state the limit on N (6.8
and 6.8

′

together give a stronger linear relaxation than the single ait ≥ xi jt − xi jt−1);
(6.10-6.11) keeps track of the change of states of the servers; (6.12) states the periods
where a server has to be ON; (6.13–6.15) enforce the initial state (t = 0). The number
of constraints of this model is dominated by the n × m × h number of (6.8) and (6.3).

3.3 Lower Bound – An Extended Formulation

Solving large-sized instances of this application domain within short time limits is be-
yond the capability of exact algorithms. Therefore, one is generally forced to use an in-
complete approach. Although an incomplete approach like large neighborhood search
can usually find feasible solutions quickly, their qualities are often not evaluated as
no bounds or provable approximation ratio can be found in the literature. Hence, it is
important to be able to compute tighter lower bounds. In this section we present a col-
umn generation-based approach for computing a lower bound. Although we focus on
a lower bound for the particular formulation (6), we believe it is generic enough to be
relevant to other closely related problems of the literature that have at their core a series
of cost-aware bin packing problems coupled with cost/migration constraints.

Let bkt ∈ {0, 1} be a variable for each bin packing of each time period to know
whether the packing k is used for time period t. The set of all packings for period t is
denoted byΩt. The packing k of period t is characterized by its cost ckt, the server where
each virtual machine is run and the state of each server. We use xki jt = 1 if vi is placed
on s j in the packing k at time period t and ok jt = 1 if server s j is ON in the packing k. In
addition to bkt, the variables bto jt, otb jt, ait and migi jt that we have already introduced
for (6) are used in the column generation model (7). The restricted master problem is
defined for a restricted number of packing variables (∀t ≤ m, bkt ∈ Ω

′

t ⊂ Ωt):

Minimize z4 =
∑

t∈T (
∑

s j∈SE(Esta jbto jt + Esto jotb jt) +
∑

k∈Ωt cktbkt +
∑

vi∈VM Cmigait)

(7.1)
∑

k∈Ωt bkt = 1 (∀ pt ∈ T) (λt)
(7.2) migi jt ≥

∑
k∈Ωt xki jtbkt −

∑
k∈Ωt xk,i, j,t−1bk,t−1 (∀ vi ∈ VM, s j ∈ SE, pt ∈ T) (πi jt)

(7.3) ait ≥
∑

s j∈SE migi jt (∀ vi ∈ VM, pt ∈ T)
(7.4)

∑
vi∈VM ait ≤ N (∀ pt ∈ T)

(7.5) bto jt ≥
∑

k∈Ωt ok jtbkt −
∑

k∈Ωt ok, j,t−1bk,t−1 (∀ s j ∈ SE, pt ∈ T) (α jt)
(7.6) otb jt ≥

∑
k∈Ωt ok, j,t−1bk,t−1 −

∑
k∈Ωt ok jtbkt (∀ s j ∈ SE, pt ∈ T) (β jt)

(7)

Let λt, πi jt, α jt and β jt be the dual variables of constraints (7.1), (7.2), (7.5) and (7.6)
respectively. We have h independent pricing problems and for each time period t we
are looking for a negative reduced cost packing. The number of constraints (7.2) can
prevent us from solving the relaxation of the master problem alone. We therefore turned
to a relaxation of the migration constraints. The rationale is that the migration cost is
really dominated by the server costs. Let nmig jt ∈ N be the number of migrations
occurring on server j and uk jt =

∑
i∈VM xki jt the number of virtual machines allocated

to server j in the k-th packing of time t. We suggest removing the a and mig variables
from formulation (7), adding the nmig variables instead and replacing (7.2)–(7.4) by :

(7.2′) nmig jt ≥
∑

k∈Ωt uk jtbkt −
∑

k uk, j,t−1bk,t−1 (s j ∈ SE, pt ∈ T) (π jt)
(7.3′)

∑
j∈SE nmig jt ≤ N (∀ pt ∈ T) (γt)

The last term in the objective is replaced by Cmig(
∑

t∈T
∑

j∈SE nmig jt). The pricing prob-
lem for period t can now be seen as a cost-aware bin packing problem with an extra cost
related to the number of items assigned to a bin and two side constraints: a cardinality
and memory capacity constraint. The reduced cost rkt of packing bkt is equal to

rkt = ckt −
∑
j∈SE

(ok jt(−α jt + α j,t+1 + β jt − β j,t+1) + uk jt(−π jt + π j,t+1)) − λt (8)

For each bin j, the fixed and unit costs can be set to f j = Emin
′

j − (−α jt + α j,t+1 +

β jt − β j,t+1) and c j = τ j respectively. The cost depending on the number of items placed
in bin j is denoted τc j = −(−π jt +π j,t+1). Ignoring the constant term −λt of the objective
function, we summarize the pricing problem of period t by a CP model:

Minimize rt = ccpu + ccard
(9.1) BinPackingUsageCost([x1, . . . , xn], [cpu1, . . . , cpum], [y1, . . . , ym], nbb, ccpu,

[U1t, . . . ,U1n], [(f1, τ1), . . . , (fm, τm)])
(9.2) BinPackingUsageCost([x1, . . . , xn], [oc1, . . . , ocm], [y1, . . . , ym], nbb, ccard,

[1, . . . , 1], [(0, τc1), . . . , (0, τcm)])
(9.3) BinPacking([x1, . . . , xn], [mem1t, . . . ,memmt], nbb

′

, [M1t, . . . ,Mnt])
(9.4) nbb ≥ nbb

′

(9.5) GlobalCardinality([x1, . . . , xn], [oc1, . . . , ocm])

(9.6) y j

{
= 1 if pt ∈ P j or f j ≤ 0
∈ {0, 1} otherwise (∀ s j ∈ SE)

(9)

Each variable xi ∈ SAi gives the bin where item vi is placed. cpu j ∈ [0,Umax
′

j] and
mem j ∈ [0,Mmax j] encode the cpu and memory load of bin j, respectively. The number
of items placed in bin j is given by oc j ∈ {0, . . . , n} and y j ∈ {0, 1} indicates if bin j is
ON or not. The number of bins used is nbb ∈ {1, ...,m} (nbb

′

is an intermediate vari-
able). Finally ccpu ≥ 0 and ccard ≥ 0 are real variables representing the costs related
to cpu and cardinality. The costs are expressed by the state of the bins, thus matching
the model of Section 2. A negative f j is handled by pre-fixing y j to 1 (constraint (9.6)).

Dual bound. The bottleneck of this method is the hardness of the pricing step, as prov-
ing that no negative reduced cost packing exist is unlikely to be tractable. At any it-
eration, if the optimal reduced costs r∗ = (r∗1, . . . , r

∗
h) are known, a well-known lower

bound of the linear relaxation of the master is w4 = z∗4 +
∑

t∈Pt
r∗t where z∗4 is the cur-

rent optimal value of the restricted master at this iteration. Indeed, since r∗t is the best
reduced cost for period t, ∀k ∈ Ωt, rkt ≥ r∗t , and using (8) we have the following:

∀k ∈ Ωt, ctk ≥ r∗t +
∑
j∈SE

(ok jt(−α jt + α j,t+1 + β jt − β j,t+1) + uk jt(−π jt + π j,t+1)) + λt.

This shows that the solution (γ, π, α, β, λ + r∗) is dual feasible for the master which
explains w4. Now this reasoning also holds for any value smaller than r∗t . Therefore

we still get a valid lower bound w4 if we use a lower bound r∗t of each r∗t and w4 =

z∗4 +
∑

t∈Pt
r∗t ≤ w4. We note that this algorithm can therefore return a valid bound

without succeeding in solving a single pricing problem to optimality. At the moment,
the pricing problem is solved using a linear solver with a time-limit of three seconds so
the best bound is used for r∗t if the time limit is reached. This is critical for scaling with
sub-problem size. We can always return the best w4 found over all iterations. In practice
we terminate when the gap between w4 and z∗4 is less than 0.1%.

3.4 Upper Bounds

The EnergeTIC team initially designed a MIP model that was embedded in their plat-
form but it failed to scale. The details of this model are not reported here. We inves-
tigated three different approaches for computing upper bounds. The first approach is
the MIP model (6) of Section 3.2 which is an improvement of the model designed by
EnergeTIC. The second approach which we call Temporal Greedy (TG) is currently
employed in their platform. It proceeds by decomposing time and is more scalable. It
greedily solves the problem period by period using model (6) restricted to one period
(enforcing the known assignment of the previous period). Each time-period is used as
a starting period as long as there is time left, and therefore, if required, the assign-
ment is extended in both directions (toward the beginning and toward the end). The last
one is a large neighborhood search (LNS)[14], which was originally developed for the
machine reassignment problem of 2012 ROADEF Challenge which had only 1 time-
period. Therefore we extended it in order to handle multiple time-periods.

4 Experimental Results

Cost-Aware Bin Packing Benchmarks. We first compare on randomly generated in-
stances the lower bounds z∗1, z

∗
2, z
∗
3 as well as exact algorithms: Model (1), Arc-Flow

Model (3) and a CP model using the BinPackingUsageCost constraint. Standard sym-
metry/dominance breaking techniques for BP are applied to the MIP [18] of Model (1)
and CP [19]. A random instance is defined by (n,m, X), where n is the number of items
(n ∈ {15, 25, 200, 250, 500}), m is the number of bins (m ∈ {10, 15, 25, 30}), and pa-
rameter X ∈ {1, 2, 3} denotes that the item sizes are uniformly randomly generated in
the intervals [1, 100], [20, 100], and [50, 100] respectively. The capacities of the bins are
picked randomly from the sets {80, 100, 120, 150, 200, 250} and {800, 1000, 1200, 1500,
2000, 2500} when n ∈ {15, 25} and n ∈ {200, 250, 500} respectively. The fixed cost of
each bin is set to its capacity and the unit cost is randomly picked from the interval
[0, 1[. For each combination of (n,m) ∈ {(15, 10), (25, 15), (25, 25), (200, 10), (250, 15),
(500, 30)} and X ∈ {1, 2, 3} we generated 10 instances giving 180 instances in total.

The time-limit was 600 seconds. If an approach failed to solve an instance within
the time-limit then 600 was recorded as its solution time. All the experiments were
carried out on a Dual Quad Core Xeon CPU, running Linux 2.6.25 x64, with 11.76 GB
of RAM, and 2.66 GHz processor speed. The LP solver used was CPLEX 12.5 (default
parameters) and the CP solver was Choco 2.1.5. Table 1 reports results for some classes
due to lack of space. We report the average cpu time (denoted cpu) and the average

Table 1. Comparison of bounds obtained using MIP, Arc-Flow, CP, and Cutting-Stock approaches on random bin packing
with usage cost problem instances with 600 seconds time-limit.

n m X best ub MIP CP Arc-Flow Cutting-Stock
z∗1 ub #nu cpu ub #nu cpu z∗3 ub #nu cpu z∗2

15 10 1 1005.2 956.8 1005.2 0 (0) 1.2 1005.2 0 (0) 0.5 959.6 1005.2 0 (0) 2.1 960.3
15 10 2 1267.4 1230.5 1267.4 0 (0) 1.1 1267.4 0 (0) 0.2 1244.5 1267.4 0 (0) 0.7 1245.0
15 10 3 1574.5 1522.3 1574.5 0 (0) 0.8 1574.5 0 (0) 0.7 1553.0 1574.5 0 (0) 0.6 1553.5
25 15 1 1665.6 1636.3 1665.6 0 (0) 35.1 1665.6 0 (0) 24.0 1638.9 1665.6 1 (0) 42.7 1639.0
25 15 2 2127.1 2086.4 2127.1 0 (0) 74.2 2127.1 0 (0) 12.9 2094.6 2127.1 0 (0) 61.2 2094.9
25 15 3 2682.8 2613.1 2682.8 0 (0) 22.6 2685.6 2 (0) 144.0 2657.9 2682.8 0 (0) 11.3 2657.9

500 30 1 32387.2 32187.0 32387.2 0 (0) 18.1 32387.2 0 (0) 57.6 32187.0 - 10 (10) 600 32187.0
500 30 2 40422.7 40235.8 40513.5 3 (0) 301.2 40422.7 0 (0) 34.2 40235.8 - 10 (10) 600 40235.8
500 30 3 53395.6 53236.3 - 9 (2) 558.5 53395.6 3 (0) 201.3 53236.3 - 10 (10) 600 53236.3

value of upper/lower-bounds found (denoted ub / z∗x) (when a value is found for each
instance of the class). Column #nu is a pair x(y) giving the number of instances x (resp.
y) for which an approach failed to prove optimality (resp. to find a feasible solution).

For the cutting-stock approach upper-bounds are not shown as the branch-and-price
algorithm was not implemented. The CP approach shows better performance when scal-
ing to larger size instances (and capacities) than the MIP and Arc-Flow models.

EnergeTIC Benchmarks. The industry partners provided 74 instances, where the max-
imum number of virtual machines (items), servers (bins), and time-periods are 242, 20
and 287 respectively.4 The time-limit is 600 seconds. As mentioned previously, we
compared three approaches for computing upper bounds: the MIP model, the Temporal
Greedy approach (TG) currently used by EnergeTIC, and large neighborhood search
(LNS) [14]. We also analyzed the lower bounds provided by the linear relaxation of
the MIP model (LP), the best lower bound established by MIP when reaching the time-
limit (MIP LB), and the bound provided by the linear relaxation of formulation (7)
(CG). Table 2 gives an overview of the results by reporting (over the 74 instances) the
average/median/max values of the gap to the best known bound5, the cpu time, and
the number of instances #nu when an approach fails to return any results within the
time-limit. Table 2 also gives the results for a few hard instances.

Upper Bounds. Out of 74 instances, MIP was able to find solutions for 71 instances
within the time-limit out of which 54 are proved optimal. It thus failed for 3 instances
where the space requirement for CPLEX exceeded 11GB. Notice that the largest size
instance has 1, 389, 080 decision variables. Clearly, MIP-based systematic search can-
not scale in terms of time and memory. TG is able to find solutions for 73 instances (so
it failed on one instance), out of which 26 are optimal. Its quality deteriorates severely
when one should anticipate expensive peaks in demand by placing adequately virtual
machines several time periods before the peak. This can be seen in Table 2 where the
maximum gap is 119.35%. LNS succeeds to find feasible solutions for all instances
within 2 seconds, on average, but it was terminated after 600 seconds and for 41 in-

4 The benchmarks are available from http://www.4c.ucc.ie/∼dm6/energetic.tar.gz
5 The gaps for lower and upper bounds are computed as 100×(best ub−lb)

best ub and 100×(ub−best lb)
best lb) respec-

tively. To compute mean/average/max values of gaps or time of a given approach, we exclude
the instances where it fails to return any value (no feasible solution or a zero lower bound).

Table 2. Comparison between lower and upper bounds of the various approaches with 600 seconds time-limit (over 74
instances in the first part of the table and on a few specific instances in the second part).

Lower bounds Upper bounds
LP CG MIP LB LNS MIP TG

gap cpu gap cpu gap cpu gap gap cpu gap cpu
Mean 9,64 3,13 0,32 23,31 0,90 191,92 0,51 0,03 191,92 7,00 42,50

Median 8,33 0,23 0,10 1,3 0 2,67 0 0 2,67 0,06 1,45
Max 58,36 95,66 7,14 600 26,42 600 4,58 0,74 600 119,35 600
#nu 3 0 3 0 3 1

n m h value cpu value cpu value cpu value value cpu value cpu
32 3 96 23492,8 9,5 25404,7 15,2 25043,6 600 25586,7 25575,7 600 36049,7 112,3
36 3 287 122831,3 4,5 126716,8 132,2 126597,9 600 127018,6 127654,4 600 127036,6 600

242 20 24 0 600 37482,5 600 0 600 40362,5 - 600 43027,6 14,2
242 20 24 0 600 36890,8 24,2 0 600 37701,6 - 600 36897,4 600
242 20 287 0 600 431704,0 600 0 600 439926,2 - 600 - 600
90 7 8 10420,7 14,4 11431,9 0,2 11236,3 600 11728,2 11435,3 600 11435,5 1,5

stances it found optimal solutions. Its average gap to the best known lower bound is
less than 0.5% showing that LNS scales very well both in quality and problem size.
Lower bounds. The LP bound can be very far from the optimal value (its maximum gap
is 58.36%) and does not scale since it fails on 3 instances even with 2 hour time-limit.
The MIP obviously fails if the LP has failed. However, when solving the MIP, CPLEX
automatically strengthens the formulation which allows us to solve many instances opti-
mally where the LP bound was initially quite bad. Nevertheless, even after search there
are cases where the gap can remain quite large (maximum of 26.42%). CG exhibits very
good behaviour. Firstly, its gap clearly outperforms other bounds. Secondly, it can be
stopped at any time and returns its current best master dual bound which is why #nu is
0 even though the time limit is reached on two cases (shown in Table 2). The first would
improve to 38614.3 in 2000s whereas the second converges in 700 seconds without any
improvement. Tables 2 shows that CG scales well both in terms of quality and size.

5 Conclusion and Future Work

Many optimisation problems in data centres can be described as a series of consecutive
multi-dimensional Bin Packing with Usage Costs (BPUC) problems coupled by migra-
tion constraints and costs. First, we studied the lower bounds of a critical variant of bin
packing for this domain that includes linear usage costs. We designed a CP approach
that gives, so far, the best algorithm to solve BPUC exactly. Secondly, the usefulness of
the exact algorithm and the efficient bounds for BPUC is shown within a column gener-
ation approach for the energy cost optimisation problem arising in data centres. These
bounds are evaluated experimentally on real benchmarks and they assert the efficiency
of the LNS approach [14] which was extended to handle consecutive BPUC problems.

The next step is to generalize the Martello and Toth bound L2 [13] to the linear
cost function which should improve the BinPackingUsageCost global constraint. We
also plan to evaluate both column generation and LNS approaches on even larger size
instances. We intend to solve the pricing problem with CP as we believe it can scale
better for larger size problems.

References
1. A framework for data center energy productivity. Technical report, The green grid, 2008.
2. Efficience des Data Centers, les retombées du projet EnergeTIC. Technical report,
http://www.vesta-system.cades-solutions.com/images/vestalis/4/energetic white%20paper.pdf,
2013.

3. Shoshana Anily, Julien Bramel, and David Simchi-Levi. Worst-case analysis of heuristics
for the bin packing problem with general cost structures. Operational Research, 42, 1994.

4. Mauro Maria Baldi, Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. The gener-
alized bin packing problem. Transportation Research Part E: Logistics and Transportation
Review, 48(6):1205 – 1220, 2012.

5. Teodor Gabriel Crainic, Guido Perboli, Walter Rei, and Roberto Tadei. Efficient lower
bounds and heuristics for the variable cost and size bin packing problem. Comput. Oper.
Res., 38(11):1474–1482, November 2011.

6. José M. Valério de Carvalho. Exact solution of bin packing problems using column genera-
tion and branch-and-bound. Annals of Operations Research, 86(0):629–659, 1999.

7. José M. Valério de Carvalho. LP models for bin packing and cutting stock problems. Euro-
pean Journal of Operational Research, 141(2):253–273, 2002.

8. Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien Herme-
nier. An energy aware framework for virtual machine placement in cloud federated data
centres. In Proceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, e-Energy ’12, pages 4:1–4:10, New
York, NY, USA, 2012. ACM.

9. Leah Epstein and Asaf Levin. Bin packing with general cost structures. Math. Program.,
132(1-2):355–391, April 2012.

10. Paul C Gilmore and Ralph E Gomory. A linear programming approach to the cutting-stock
problem. Operations research, 11:863–888, 1963.

11. Mohamed Haouari and Mehdi Serairi. Relaxations and exact solution of the variable sized
bin packing problem. Comput. Optim. Appl., 48(2):345–368, March 2011.

12. Chung lun Li and Zhi long Chen. Bin-packing problem with concave costs of bin utilization.
Naval Research Logistics, 53:298–308, 2006.

13. Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics, 28(1):59 – 70, 1990.

14. Deepak Mehta, Barry O’Sullivan, and Helmut Simonis. Comparing solution methods for
the machine reassignment problem. In Michela Milano, editor, CP, volume 7514 of Lecture
Notes in Computer Science, pages 782–797. Springer, 2012.

15. Michele Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis, Universit
di Bologna, 2012.

16. Vinicius Petrucci, Orlando Loques, and Daniel Mosse. A dynamic configuration model for
power-efficient virtualized server clusters. In Proceedings of the 11th Brazilian Workshop on
Real-Time and Embedded Systems, 2009.

17. Thomas Rothvoss. Approximating bin packing within O(logOPT ·loglogOPT) bins. Techni-
cal report, MIT, 2013.

18. Domenico Salvagnin. Orbital shrinking: A new tool for hybrid MIP/CP methods. In Carla
Gomes and Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 7874 of Lecture Notes in
Computer Science, pages 204–215. Springer Berlin Heidelberg, 2013.

19. Paul Shaw. A constraint for bin packing. In Mark Wallace, editor, CP, volume 3258 of
Lecture Notes in Computer Science, pages 648–662. Springer, 2004.

20. Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolidation for cloud
computing. In Proceedings of HotPower, 2008.

