
Automata for Nogood Recording
in Constraint Satisfaction Problems ?

Guillaume Richaud1, Hadrien Cambazard1, Barry O’Sullivan2, and Narendra Jussien1

1 École des Mines de Nantes – LINA CNRS FRE 2729
4 rue Alfred Kastler – BP 20722, F-44307 Nantes Cedex 3, France

{guillaume.richaud, hadrien.cambazard, narendra.jussien}@emn.fr
2 Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
b.osullivan@cs.ucc.ie

Abstract. Nogood recording is a well known technique for reducing the thrash-
ing encountered by tree search algorithms. One of the most significant disadvan-
tages of nogood recording has been its prohibitive space complexity. In this paper
we attempt to mitigate this by using an automaton to compactly represent a set
of nogoods. We demonstrate how nogoods can be propagated using a known al-
gorithm for achieving generalised arc consistency. Our experimental results on a
number of benchmark problems demonstrate the utility of our approach.

1 Introduction

Nogood recording is a well known technique for reducing the level of thrashing experi-
enced by tree search algorithms as they repeatedly rediscover the same inconsistencies.
A nogood can be regarded as an assignment to a subset of the variables that cannot
be extended to a solution [9]. Nogood learning was initially proposed as a Constraint
Programming (CP) technique [9, 21], but without leading to significant performance
improvements due to its worst-case exponential space complexity. However, it quickly
became a successful technique in SAT [2]. SAT solvers seem to successfully manage
the space and time requirements of nogoods. Inspired by success in SAT, several recent
attempts have been made to reconsider nogoods in CP [13, 14].

There are two fundamental questions to be addressed in the context of discovering
and exploiting nogoods. Firstly, how should we compute nogoods? Ideally one wishes
to compute nogoods that rule out large parts of the future search space. Since nogoods
have mostly been used to support intelligent backtracking and dynamic CSP [21], they
always refer to the decision path and may be not very useful for filtering. A number of
works, both in the SAT and CP community, provide some answers to this problem and
we will review them in the next section. Secondly, how should we process the nogoods
we have learned? In CP, nogoods have mostly be used to check whether the current
search node can be extended to a solution or not. SAT solvers go a step further and use

? This work was supported by the Ulysses Ireland-France Travel Programme, funded in France
by EGIDE (Grant Number 12476YG) and by Enterprise Ireland (Grant FR/2006/29).

a simple, but efficient, form of inference called unit propagation over the learned no-
goods. Moreover, by keeping a nogood at each failure during search, one must address
the problem of storing an exponential number of nogoods. The SAT community have
designed clever and efficient data structures to store and propagate a very large number
of clauses or nogoods. The two watched literals scheme [17] is one of the most success-
ful schemes. It has also been applied in CP [13]. However the design of well suited data
structures for recording nogoods in a CP context is still an open question. As a result, it
is still not clear if nogood recording really pays off in CP.

We present a novel technique for storing nogoods in a compact way using an au-
tomaton. In Section 2 we recall how to compute nogoods and show how they can be
propagated. In Section 3 we present our solution to store and to perform the propaga-
tion phase over a large set of tuples using an automaton. We present some preliminary
experimental results in Section 4. Some concluding remarks are made in Section 5.

2 An Overview of Nogood Recording in CP

A constraint satisfaction problem (CSP) is defined by a triple 〈X, D,C〉 where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is the set of domains, where Di

is the domain of variable xi and d is the maximum size of any domain. We denote by
Dorig

i the original domain of xi, and Di is the current domain of xi at a specific point
of interest in the resolution process. Finally, C denotes the original set of constraints
of the problem. Solving a CSP is achieved by interleaving search with propagation.
Search can be regarded as the dynamic addition of constraints (decision constraints).
For simplicity, we restrict ourselves to decision constraints that are of the form xi = a,
i.e. assignments of values to variables.

2.1 Computing Nogoods

A nogood is computed by analysing why a failure occurs during search. A nogood
can be regarded as a subset of the assignments made so far that caused a failure. We
introduce the basic definitions we require throughout the paper.

Definition 1 (Deduction) A deduction (x 6= a) is the determination that a value a
should be removed from the domain of variable x.

Definition 2 (Generalised Explanation) A generalised explanation, g expl(xi 6= a)
for the deduction (xi 6= a) is defined by two sets of constraints: C

′ ⊆ C and ∆, a set
of deductions, such that C

′ ∧∆ ∧ (xi = a) is globally inconsistent.

The set ∆ associated with a generalised explanation, g expl(xi 6= a), is denoted by
g expl∆(xi 6= a). Any deduction is itself, generally, due to others deductions. The in-
ferences made during propagation can be traced back to the decision constraints added
by the search algorithm. Therefore, we can compute explanations from generalised ex-
planations. An empty ∆ for a deduction xi 6= a represents the deduction that is either
directly due to a decision performed on xi such as xi = b or performed at the root
node. Explaining a deduction only with respect to decisions made during search is the
purpose of classical explanations.

Definition 3 (Explanation) A (classical) explanation, expl(xi 6= a) for the deduction
xi 6= a is defined by two sets of constraints: C

′ ⊆ C and DC, a set of decision
constraints (assignments), such that C

′ ∧DC ∧ (xi = a) is globally inconsistent.

Intelligent backtracking techniques usually store an explanation for each deduc-
tion [12]. Such explanations are computed on-the-fly by each constraint.

Example 1 (Explanations) Let x and y be two variables such that Dx = {0, . . . , 6}
and Dy = {0, 2, 3, 4, 6}. Values 1 and 5 were removed from the domain y so an expla-
nation is already available for these deductions. Imagine that expl(y 6= 1) = {x4 = 2}
and expl(y 6= 5) = {x0 = 3, x8 = 1} and consider the constraint |x − y| = 2. The
value 3 of x is removed by applying the filtering algorithm on |x − y| = 2. A gener-
alised explanation is simply g expl∆(x 6= 3) = {y 6= 1, y 6= 5}. An explanation is, for
example, expl(x 6= 3) = expl(y 6= 1) ∪ expl(y 6= 5) = {x4 = 2, x0 = 3, x8 = 1}. N

Explanations are designed for intelligent backtracking algorithms and, therefore,
they always refer to a decision path. By explaining every value that is removed, one
can explain a contradiction (an empty domain Di) by computing the union of the
explanations for each value removed from Dorig

i . The explanation that one obtains,
expl(Di = ∅) =

⋃
j∈Dorig

i
expl(xi 6= j), is often called a contradiction explanation

and meets exactly the classical notion of nogood, i.e. a set of assignments that cannot
be extended to a solution.

Generalised nogoods [14] enhance the pruning power of nogoods by keeping in-
termediate reasons for the removal of a value instead of always projecting them onto
the current decision path and postponing the computation of the nogood when a failure
occurs. Following [12, 14], one can define a generalised nogood as follows.

Definition 4 (Generalised Nogood) A generalised nogood is a set of constraints C
′
,

a set of deductions ∆ and a set of decision constraints DC such that C
′ ∧∆ ∧DC is

globally inconsistent.

By storing generalised explanations, one keeps in memory the logical chain of in-
ferences made during search; in SAT this is referred to as the implication graph [4, 23].
From a contradiction due to an empty domain Di of a variable xi, one can compute
several generalised nogoods (whereas only one nogood is available with the classical
technique). The general scheme for computing a nogood3 is given by Algorithm 1.
Line 1 starts by computing the generalised nogood expressing the fact that the domain
of variable xi has been wiped-out and has raised a contradiction. Any deduction can
be replaced by its generalised explanation to get a new (and maybe more informative)
nogood. A generalised explanation whose ∆ set is empty (line 6) is due to a decision
made on that variable so we use the corresponding decision4. A generalised nogood is
finally made of deductions as well as assignments. We can implement any SAT record-
ing scheme by choosing the stopping criterion appropriately. For example, we can im-
plement the Unique Implication Point [4] criterion if we wish to stop when we find a
single reason that implies the conflict at current decision level.

3 This is equivalent to the computation of a cut within the implication graph introduced in SAT.
The implication graph is known in CP as a proof-tree [8].

4 The explanation itself may be empty if the deduction is performed at the root node.

Algorithm 1 computeGeneralisedNogood(Var xi)
1: GeneralisedContradictionExplanation e ← S

j∈Dorig xi 6= j;
2: while stopping criterion not met do
3: xk 6= k ← choose a deduction from e;
4: if g expl∆(xk 6= k) is not empty
5: e ← e ∪ g expl(xk 6= k)− {xk 6= k};
6: else e ← e ∪ expl(xk 6= k)− {xk 6= k};
7: end while
8: return e;

2.2 Propagating Nogoods

The propagation of nogoods is generally limited to the unit propagation approach used
by SAT solvers. Consider as a literal, a variable/value pair (xi, j). A positive literal will
refer to xi = j whereas a negative literal refers to xi 6= j. A positive (resp. negative)
literal is said to be satisfied as soon as xi is instantiated to j (resp. j removed from xi),
falsified in the opposite case and free otherwise. A generalised nogood (∆, DC) can
be seen as a constraint, i.e. a clause over the corresponding literals (

∨
xk 6=j∈∆ xk =

j) ∨ (
∨

xk=j∈DC xk 6= j), that must be satisfied in the remaining search. A nogood
is free as long as two literals are free, satisfied as soon as one literal is satisfied and
falsified once all literals are falsified. Moreover, the nogood is said to be unit when only
one literal is free whereas all others are falsified. In this case, unit propagation enforces
the free literal to be satisfied. The two watched literals scheme [4, 17] is recognised as
the best way to propagate SAT clauses. We sketch this technique briefly here, since it is
our baseline for nogood propagation.

The status of a nogood (free, satisfied, falsified or unit) can be determined by
watching only two literals; each nogood is watched by two pointers on two free lit-
erals. Two lists of nogoods are, therefore, watched for each literal: the positive list,
pos watch(xi, j) is the list of nogoods with the positive literal xi = j, and the negative
list, neg watch(xi, j) denotes the list of nogoods where xi 6= j. The list pos watch(xi, j)
is iterated once value j is removed from the domain of xi (i.e., xi 6= j) and neg watch(xi, j)
is considered in case of an assignment (i.e. xi = j). For each nogood in the list, the
watched literal (now falsified) needs to be updated and several cases are considered:

1. The other watched literal is already satisfied, the pointer of the falsified literal is
left unchanged;

2. Another free or satisfied literal is found and the watched list is updated accordingly;
3. Otherwise, all other literals are falsified. The nogood is unit and the other free literal

is propagated. The falsified literal is left unchanged.

When using this scheme we leave the pointers to falsified literals that would remain
valid upon backtracking. Indeed, the scheme ensures that as soon as a nogood is free,
it is watched by two free literals. Adding a nogood dynamically at a leaf of the search
tree is done by setting the pointers so that, again, the nogood will be watched correctly
after backtracking. An advantage of the watched literals scheme is that it is well suited
to applications where a large amount of memory is required for nogoods, since there is
no need for complex data-structures that must be restored after backtracking.

Nogoods may still require an exponential amount of memory. It is, therefore, manda-
tory to forget some of the nogoods learned periodically during search. Several strategies
have been introduced for forgetting nogoods such as i-order bounded learning [21] or
i-order relevance bounded learning [1, 18]. Essentially these methods propose to only
remember nogoods of a maximum size i or only those that are still relevant with the cur-
rent decision path (that do not differ for more than i elements from the decision path).
The space complexity of the previous schemes is O(n×di). However this tradeoff does
not generally pay off [13, 15] and lots of nogoods may need to be recorded to make the
learning worthwhile.

Efficient propagation schemes and optimised space management of nogoods are,
therefore, the limiting factors of nogood recording techniques. To tackle the space bot-
tleneck of nogoods, in this paper we propose to store them in a compiled form such
as an automaton. Our assumption is that nogoods may share a lot of literals when they
are learned in the same sub-tree. Based on the automaton representation we show that
propagation can be performed efficiently. We discuss both of these issues below.

3 Encoding Nogoods using Automata

Generalised nogoods can be regarded as tuples. Specifically, since we consider finite
domains, a deduction (xi 6= vj) on domain Di can be seen as

∨
vk∈Di\{vj}(xi = vk).

A set of tuples over n variables can be encoded in an acyclic automaton with l =
(n + 1) layers corresponding to each variable and a final state F . A deterministic finite
automaton is a tuple (Q, Σ, δ, q0, F) where Q is a finite set of states and q0 ∈ Q is a
starting state. The alphabet Σ corresponds to the union of all domains of the variables
and Σ∗ to the set of all words. Each variable xi is associated with the ith layer of
the automaton and outgoing transitions of nodes belonging to layer i are labelled with
values of the domain Dorig

i . δ is a transition function from Q × Σ 7→ Q and δ(q, val)
denotes the state reached by applying the transition val in state q and the pair (q, val)
denotes the corresponding edge. δ∗ extends δ such that

δ∗(q, w) =
{

δ∗(δ(q, x), y) if w = xy with x ∈ Σ and y ∈ Σ∗;
δ(q, w) if w ∈ Σ.

We denote by γ(q1, q2) the transition values that permit moves from state q1 to state q2.
We will denote by |A| the number of states of the automaton A and by |Ai| the number
of states of the ith layer. An example of such an automaton is given in Figure 1.

This representation has already been used in the context of constraint satisfaction
problems [22]. An automaton is a generic way of representing a set of tuples and, there-
fore, to define a constraint in an extensional manner. For a given set, S, of tuples over a
finite sequence of variables X , we will refer to:

– A the automaton recognising the feasible tuples corresponding to S. That is to say,
L(A) = {w ∈ Σ∗/δ∗(q0, w) = F} = S.

– A the automaton recognising the infeasible tuples corresponding to S. In other
words, L(A) = {w ∈ Σl/w /∈ L(A)} where Σl denotes the words whose length
is l.

bc

bc

ab

abc

a

a

a

Fq0

q1

q2

q3

q4

x1 x2 x3

Fig. 1. An example of an automaton for three variables x1, x2, x3 of domain {a, b, c} encoding
the tuples (a,a,a), (a,a,b), (b,b,a), (b,b,b), (b,c,a), (b,c,b), etc.

– A(X) the automaton projected onto the current state of the domains of variables X
i.e. that all edges (q, j) for a state q located on layer i such that j /∈ Di are removed.

When the automaton is minimised (for a given ordering of the variables) it is unique,
i.e. it has a canonical form. An automaton is minimal if there are no equivalent states.
Two states are equivalent iff they define the same right language:

−→L , i.e. they have the
same set of strings that enable us to reach the final state. As we consider a layered
automaton, we can efficiently minimise the automaton using bottom-to-top methods
based on a recursive definition of right language of a state:

−→L (q) = {a−→L (δ(q, a))/a ∈ Σ ∧ δ(q, a) 6= ⊥} ∪
{{ε} if q ∈ F ;
∅ otherwise.

Interestingly, in a minimal automaton, encoding the infeasible or feasible tuples does
not matter in terms of the size of the automaton. One can easily prove that the numbers
of states of A and A differs by at most l states.

Property 1 If A and A are minimal then abs(|A| − |A|) < l.

Proof. (Sketch) One can show how to build A from A (see Figure 2). First, change
the final state of A into a garbage state so that all valid tuples of A become forbidden.
Second, invalid tuples of A have to be recognised and all missing transitions (those
going implicitly towards the garbage state) have to be added (bold edges on Figure 2).
At most (l−1) states are removed (dashed edges on Figure 2). Indeed a state is removed
if all its transitions lead to the old final state, and only one state per layer may have such
a property (otherwise the two states would have been equivalent). Again, at most one
state is added per layer (because, again, of minimality only one state may have all its
outgoing transitions leading to the new final state). ut

Considering a set of nogoods S (infeasible tuples), we choose to maintain the au-
tomaton A corresponding, therefore, to the set of feasible tuples. Adding a nogood
within such an automaton means removing the corresponding word from the language
recognised by the automaton. While this does not really matter for the automaton’s size,
it is easier to reason on A when propagating the automaton.

F

c
bc

abcabc
F

a

a

a

abc

ab

bc

bc

q0

x1 x2 x3

q1

q2

q3

q4

q5 q6

Fig. 2. Switching from A (normal and dashed edges) to A (normal and bold edges).

3.1 Incremental Minimisation of the Automaton

We briefly describe two strategies for incrementally minimising the automaton. The
goal is to incrementally maintain the automaton of feasible tuples. We must be able
to add nogoods (remove the corresponding word from the language recognised by the
automaton) incrementally as we discover new ones [11].

w0

b, c

x3x2x1

w3w2w1

ba

Fig. 3. Chain automaton recognising the generalised nogood (x1 = a) ∧ (x2 6= a) ∧ (x3 = b)
with Σ = {a, b, c}.

We consider a finite Σ so each deduction (x 6= v) of the nogood can be replaced by
{x ∈ Σ\v}. We denote by w the word corresponding to the nogood to be removed from
the allowed tuples ofL(A). Removing w fromL(A) involves building a new automaton
A∩W with W the chain-automaton recognising w (see Figure 3). W is built using the
same variable order of A such δ∗(w0, w) is the final state.

The algorithm proceeds in two steps (depicted Figure 4). Firstly, we compute A ∩
W : the main differences with other methods used to incrementally construct minimal
acyclic automata is that we try to remove a string instead of adding it and that a gener-
alised nogood can represent more than one string. Secondly, we incrementally minimise
the new automaton by taking into account the new added states; using the fact that our
automaton is layered we can minimise it efficiently. The time complexity of the removal
and minimisation is O(|W |+ |Σ| × |W |).

Adding a nogood w can add at most |w| states to the automaton even if no min-
imisation occurs (see Step b of Figure 4). This is, however, not true for generalised
nogoods. We find the incremental compilation of nogoods difficult for the following
three reasons. Firstly, in the case of generalised nogoods, the automaton can be larger
(in number of states) than the sum of the number of states of chain automata correspond-
ing to the nogoods. This is due to the fact that a generalised nogood represents several
tuples. A chain automaton is already a kind of compact representation. Moreover this

c) The new automaton after minimization.

b) The new automaton A ∩W .

a) The automaton A and the chain automaton W we want to remove.

w0 w3w2w1

q4

q3

q2

q1

q0

X3X2X1

a

ab

F

abc

bc

bc

abc

ac

q6q5

q4

q3

q2

q1

q0

X3X2X1

a

bc

bc

a

ab

abc

F

ab

abc

a

c

b

q4

q3

q2

q1

X3X2X1

q0

abc

a

bc

bc

abc

F

ab

a

cc a

Fig. 4. The minimisation process.

behaviour is difficult to predict as it is hard to predict the size of the automaton for a
given language. In the worst case, adding one generalised nogood to the automaton can
add

∑l−1
k=2 |Ak| new states. Secondly, the size of the automaton is related to the order

of the variables. As tuples are discovered during search, the dynamic computation of
the automaton would imply we re-order it dynamically. Thirdly, by adding the nogoods
dynamically one by one in the order in which failures are encountered in search, the size
of the automaton may increase quickly and will only decrease when enough nogoods
have been learned so that they share a sufficient number of assignments.

We are currently investigating how to delay the compilation of nogoods in the hope
that, as the nogoods are known, it would be possible to: select a subset of nogoods that
may give a compact automaton; find a good order on the variables by applying some
heuristics (based on similar ideas than for ROBDD [5]) before compilation; optimise the
order in which nogoods are added to the automaton during the incremental minimisation
phase to avoid large intermediate sizes [16].

3.2 The Filtering Algorithm

Pesant [19] provides a filtering algorithm for a global constraint defined by a regular
language. We use this algorithm to enforce arc-consistency using our automaton A.
The idea behind the algorithm is to maintain the set Qij of states acting as supports for
each variable-value pair (xi, vj). A state q of the ith layer is considered as a support of
(xi, vj) as long as there exists a path from q0 to q and from δ(q, vj) to F in A. Once
Qij is empty, value j is removed from the domain of variable xi.

In Figure 1, for example, we have Q1a = Q1b = Q1c = {q0}, Q2a = {q1, q2},
Q2b = Q2c = {q2}, Q3a = Q3b = {q3, q4} and Q3c = {q4}. Incremental propagation
is performed by storing in a “backtrackable” data-structure the incoming and outgoing
edges of each node as well as their in and out-degree. Each time a value j is removed
from the domain of variable i, the degree of the states within Qij are decremented
accordingly. If some degree reaches zero, this information is propagated to all connected
nodes (predecessors if the out-degree is null and successors in case of the in-degree) by
decrementing their degree and maintaining the Qij lists accordingly.

In the example in Figure 1, if values a and b are removed from the domain of x3, the
out-degree of q3 falls to zero, so its ingoing edges are considered. The states q1 and q2

are removed from Q2a, Q2b and Q2c while iterating over the ingoing edges. As Q2b and
Q2c are updated to ∅, values b and c are removed from x2. Moreover, the out-degrees
of q1 and q2 are decremented and the process continues as the degree of q1 reaches zero
so that value a is finally removed from x1.

Explaining Automaton-based Filtering. As stated in Section 2.1, each filtering al-
gorithm has to be explained in order to be able to generate generalised nogoods. Each
time a value is removed, a generalised explanation must be associated with the deduc-
tion. It is, therefore, mandatory to explain the pruning that comes from the nogoods
compiled in the automaton. Explaining the pruning of the automaton is done by, firstly,
explaining why a state cannot reach F (Algorithm 2) and, secondly, explaining why a
state can not be reached from q0 (Algorithm 3). An explanation expl(q) and a back-

Algorithm 2 explainOut(State q, int i) Algorithm 3 explainIn(State q, int i)
1: Explanation e ← ∅;
2: if is explained(q) is false then
3: for all j such that δ(q, j) 6= null do
4: if j ∈ Di then e ← e∪expl(δ(q, j));
5: else e ← e ∪ expl(xi 6= j);
6: end for
7: is explained(q) ← true;
8: expl(q) ← e;
9: end if

1: Explanation e ← ∅;
2: if is explained(q) is false then
3: for all (p, j) such that δ(p, j) == q do
4: if j ∈ Di−1 then e ← e ∪ expl(p);
5: else e ← e ∪ expl(xi−1 6= j);
6: end for
7: is explained(q) ← true;
8: expl(q) ← e;
9: end if

trackable boolean, is explained(q), are associated with each state q of the original
automaton. expl(q) records why q is invalid, i.e why it cannot be on a path from q0 to
F . is explained(q) is true if the invalidity of q has already been explained and a valid
expl(q) is available in the current branch of the tree. Since many explanations exist it
is mandatory to avoid overriding an existing valid explanation, because the explanation
itself is not restorable upon backtracking.

A value j from a variable xi is pruned because Qij is empty. We can explain the
pruning because for each state q that was part of the original list of supports of (xi, vj)
(denoted Qinitij), either q is itself invalid or δ(q, j) is invalid (Algorithm 4).

Algorithm 4 prune(int i, int j)
1: Explanation e ← ∅;
2: for all q in Qinitij do
3: if is explained(q) then e ← e ∪ expl(q);
4: else e ← e ∪ expl(δ(q, j));
5: end for
6: remove value j from xi due to e;

expl(q) is computed for each state q in the following way. Firstly, to explain why
a state qk at layer i cannot be reached from q0, we divide its predecessors into two
sets rpred and rpred. The predecessors rpred, that can be reached from q0, and those,
rpred, that are unreachable. For each predecessor p of qk, either it belongs to rpred
and we use the explanation expl(p) attached to p, or it belongs to rpred and the values
of transitions leading to qk from p (γ(p, qk)) have been removed from the domain of
xi−1. Algorithm 3 is called each time the in-degree of qk reaches zero and computes
expl(qk):

expl(qk) = expl(q0 ; qk) =
⋃

p∈rpred

expl(xi−1 6= γ(p, qk)) ∪
⋃

p∈rpred

expl(p).

Secondly, in a similar way, the state qk cannot reach F because either its successor
cannot reach F or the value leading to a state that could reach F is missing. Algorithm 2
is called each time the out-degree of qk reaches zero and computes expl(qk):

expl(qk) = expl(qk ; F) =
⋃

s∈rsucc

expl(xi 6= γ(qk, s)) ∪
⋃

s∈rsucc

expl(s).

Lightweight Filtering Algorithms. The aim of the automaton is to compile large sets
of nogoods and, therefore, to be able to mitigate the large space consumption of classical
approaches. The incremental propagation algorithm is, in a sense, very greedy in mem-
ory as it needs two doubly-linked lists (incoming and outgoing arcs) and two integers
(in-degree and out-degree) per state that are restorable upon backtracking. It also uses
a backtrackable list Qij of states per variable-value pair. First, we give up maintaining
doubly-linked lists for ingoing and outgoing edges. If the number of outgoing edges is
bounded by the alphabet size (the maximum domain size), the number of ingoing edges
can be equal to the number of states of the previous layer which seems unreasonable
in our case. This algorithm is denoted by Aut0 in the following. Moreover, we investi-
gate the following tradeoff which looses the constant time update at each variable-value
removal: firstly, explained by Pesant [19], one does not need all the state-supports and
only one can be kept in memory; secondly, one does not really need the exact degree of
each state but only whether the degree is null or not.

One strength of watched literals precisely lies in the fact that nothing needs to be
restored upon backtracking. We tried, based on this principle, to spare memory by keep-
ing an outgoing and ingoing edge per state that are updated only when the edge is lost
instead of storing the degree. A valid edge at depth k in the tree search is also valid

at depths less than k. The filtering based on Aut0 with the previous improvement is
denoted Aut1. Finally, we store only one support-state for each value (xi, vj). When
this support become invalid, we look for an other one among edges of Qinitij

. Aut1
combined to this improvement is called Aut2.

4 Empirical Evaluation

We present experiments that study two aspects of the problem studied in this paper. In
Section 4.1 we investigate the value of storing a large table of tuples in an automaton to
perform filtering compared to generalised arc-consistency [3]. In Section 4.2 we report
our experience of nogood recording with watched literals. For the reasons presented
in Section 3.1, the dynamic compilation of nogoods was far too costly to be compet-
itive. Experiments for the automaton remain to be done once the questions raised in
Section 3.1 have been addressed. Crossword puzzles and RLFAP are our benchmark
problems. All experiments are performed on a Pentium 4 3GHz with 1 GB of RAM
under Linux with the choco constraint solver (choco-solver.net).

4.1 The Automaton: Storing and Filtering

Crossword puzzles problems involve filling a given grid using words from a reference
dictionary such that each word is used at most once. Our interest here is that constraints
have to store large tables of tuples corresponding to allowed words of the dictionary.

A variable xi with domain D(xi) = {a, b, . . . , z} is associated with each free
square of the puzzle. A constraint is stated per word, i.e., per contiguous sequence
of letters in the puzzle. The allowed tuples of the constraint are defined by all words of
the corresponding length from a reference dictionary. A word can only be used once in
the puzzle so a not-equal constraint is also added between any pairs of words with the
same size. We studied two approaches to enforcing GAC on the problem:

1. The propagation scheme described above. Each dictionary of size k (all words of
size k) is compiled within a minimal automaton called autok (Qk

ij denote the set
Qij for autok).

2. The GAC schema introduced by [3]5. A direct access to the supports of each
variable-value pair is given within a shared data-structure among constraints. Linked-
lists of words of size k that have a letter l at a given position p are stored in a
three dimensional array called supports[l][p][k]. GAC is then achieved with
a GAC2001 algorithm by storing the current support (an integer restorable upon
backtracking denotes the index of the word in the supports data structure).

We considered the benchmark of [7] which is made of instances from size 5 × 5 to
23× 23 and comes from the Herald Tribune Crosswords. We use the dictionary words
that collects 45000 words. Table 1 summarises the results (time limit is set to 1 hour).

The initial propagation of the automaton is costly (initialisation of the Qij lists).
GAC2001 is, therefore, faster on instances that are solved in a few nodes. However,

5 Multidirectionality is not implemented in our GAC schema.

Table 1. Automaton and GAC filtering for crossword puzzles.

Mac-Aut0 Mac-Aut1 Mac-Aut2 Mac-GAC
Instances Time(s) Node Time(s) Node Time(s) Node Time(s) Node

05.01(dico:words) 0,2 30 0,2 30 0,3 30 0,3 30
15.01(dico:words) 1,3 75 1,3 75 1,3 75 0,9 75
15.02(dico:words) 12,1 872 13,7 872 16,6 872 25,5 872
15.07(dico:words) 321,2 22859 366,4 22859 554,1 22859 923,4 22859
19.02(dico:words) 83,8 17511 95,2 17511 214,6 17511 253,2 17511
19.05(dico:words) > 1h 1213314 > 1h 1066428 > 1h 728579 > 1h 500871
21.03(dico:words) 63,6 13017 73,2 13017 203,5 13017 248,7 13017
21.06(dico:words) > 1h 494848 > 1h 416718 > 1h 261107 > 1h 131916
21.07(dico:words) 20,2 1825 23,4 1825 34,5 1825 49,5 1825
23.07(dico:words) > 1h 256456 > 1h 227168 > 1h 118092 > 1h 102668

on hard instances, the automaton tends to be between two and three times faster than
GAC2001. This is due to the fact that words are a “structured” set of tuples (that share
a lot assignments), i.e |Qk

pl| < |supports[l][p][k]|. The result is that the function
seekNextSupport which is the basis of any GAC algorithm is faster on Qk

pl than on
supports[l][p][k].

Table 2. Average memory consumption (in Mbytes) for the four approaches.

instance Aut0 Aut1 Aut2 GAC
15.07(dico:words) 31.8 21.1 16.1 19.7
19.02(dico:words) 37.2 25.2 17.6 19.1
21.03(dico:words) 51.6 33.9 22.2 23.7

In terms of memory, the automaton is more compact (1,70 Mbytes) than the suppo-
rts[l][p][k] data structure (3,98 Mbytes) for storing all words of size 8 of the
dictionary words. However, the data structure needed to filter the automaton consumes
more memory than the GAC. Every 500 backtracks we measure the amount of memory
used for the four approaches and report the average (Table 2). Among the three ver-
sions, the best compromise for space and time requirements seems to be Aut1. Notice
that Aut2 is a little faster than GAC but requires less memory.

4.2 Nogood Recording

We studied the following three approaches on the Crossword puzzles problems and
RLFAP (Radio Link Frequency Allocation Problems): MAC-CBJ [20] is an intelligent
backtracking technique that involves in backtracking to the latest decision involved in
the conflict when a failure occurs; MAC-CBJ + S is MAC-CBJ combined to standard
nogood propagated by watched literals; MAC-CBJ + G is MAC-CBJ combined to gen-
eralised nogoods propagated by watched literals. The variable ordering heuristic used
was min(dom/deg).

Crosswords puzzles. We again study crossword puzzles. The time limit was set up
to 2 hours and aut1 is used for the constraints stated per word. Results are reported

Table 3. The use of watched literals implies a little overhead so MAC-CBJ remains
faster on easy instances. However, we were able to find the results reported in [14], so
generalised nogoods do effectively pay off on this problem. The next step will be to see
the utility of the automaton for storing such nogoods.

Table 3. Nogood recording for crossword puzzles.

MAC-CBJ MAC-CBJ + S MAC-CBJ + G
tps (s) node tps (s) node tps (s) node

15.02(dico:words) 29,7 314 46,2 314 43,8 303
15.07(dico:words) 841,6 18182 1255,6 17918 894,3 11172
19.02(dico:words) 10,8 264 15,6 264 14,1 219
19.05(dico:words) 110,6 2104 64,2 1182 47,9 727
21.03(dico:words) 11,8 292 18,4 292 18,3 281
21.06(dico:words) 177,0 2707 265,8 2677 164,8 1879
21.07(dico:words) 44,9 1168 72,6 1157 63,5 957
21.04(dico:words) > 2h 87677 > 2h 73342 > 2h 47527
23.07(dico:words) 45,3 954 74,7 892 61,7 584
21.05(dico:words) > 2h 176226 > 2h 102057 722,8 9407
21.10(dico:words) > 2h 74718 > 2h 47346 > 2h 43440
15.04(dico:words) > 2h 171029 > 2h 105069 1268,6 16315
15.06(dico:words) > 2h 150552 > 2h 94936 5529,1 50554
15.10(dico:words) > 2h 153260 > 2h 99929 1634,6 14153
19.03(dico:words) > 2h 123770 > 2h 88461 > 2h 58632
19.04(dico:words) > 2h 303559 > 2h 222910 55,2 2294
19.07(dico:words) > 2h 462297 > 2h 289966 131,9 4312
21.01(dico:words) > 2h 86857 > 2h 53418 > 2h 36336
23.03(dico:words) > 2h 80810 > 2h 50998 > 2h 42919
23.04(dico:words) > 2h 74641 > 2h 37265 > 2h 23723
23.05(dico:words) 11,7 239 17,1 254 15,7 226

Radio Link Frequency Allocation Problems. Our second experiment is based on real
world frequency allocation problems coming from the FullRLFAP archive [6]. The
problem involves finding frequencies (fi) for different channels of communication so
that interferences are minimised. We followed the approach described in [10] to gener-
ate hard satisfaction instances. Therefore, scenXX-wY-fZ corresponds to the original
instance scenXX where constraints with a weight greater than Y are removed, as well
as the Z highest frequencies. Generalised nogoods are much more effective on those
problems again (Table 4) however the results of [10], using a different conflict-based
heuristic to ours, remain better.

Figure 5 shows the size of the automaton after the addition of each of the first 300
generalised nogoods taken from scen03-05-11. The basic compilation approach
is dyn in which nogoods are compiled as they are discovered, using an ordering for
the variables in the automaton based on the variable ordering from the nogoods them-
selves. We study two independent enhancements to the basic scheme. Firstly, denoted
by +ls, we use a local search to optimise the variable ordering before compiling a set
of nogoods; for example, when compiling k nogoods we try to find an ordering for the
automaton that minimises its size having compiled the k nogoods. Secondly, denoted
by +s, we compile the k nogoods in lexicographically order (instead of compiling them
in the order given by the failures during search). Notice that +ls affects the final size

Table 4. Nogood recording for RLFAP problems.

MAC-Cbj MAC-Cbj + S MAC-Cbj + G
tps (s) node tps (s) node tps (s) node

scen02-05-24 0,3 104 0,9 104 0,4 104
scen02-05-25 3,0 610 5,2 610 3,1 360
scen03-05-10 1659,2 572507 > 2h 343927 123,8 11575
scen03-05-11 > 2h 3506415 > 2h 776095 > 2h 155008
scen11-05-00 6,4 1207 8,3 1207 3,8 622
scen06-02-00 73,9 68669 164,2 61866 5,3 1854
scen07-01-04 0,1 202 0,2 202 0,2 201
scen07-01-05 0 26 0,1 26 0,1 26
graph08-05-10 > 2h 1722485 > 2h 491970 > 2h 175079
graph08-05-11 > 2h 1300390 > 2h 494286 46,6 6906

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200 250 300

#s
ta

te
s

#nogoods

dyn
dyn+ls
dyn+s

dyn+s+ls

Fig. 5. Size of the automaton (#states) after the addition of each nogoods for scen03-05-11.

of the automaton, since it affects the variable ordering, whereas +s affects only its
intermediate size.

In Figure 5 we see two pairs of curves: one pair corresponds to the nogood-based
variable ordering, while the other used local search. Within each pair of curves, while
each one converges on the same size automaton having compiled all the nogoods we
considered, the intermediate size is determined by the order in which the nogoods were
compiled. Interestingly, a lexicographic ordering of the nogoods does not ensure that
the automaton is more compact than the ordering based on how the nogoods themselves
were discovered. Clearly, the variable ordering in the automaton is critical to ensure
an overall compact representation, but the order in which nogoods are incrementally
compiled is also important in order to avoid a large intermediate automaton.

5 Conclusion

This paper investigates a novel approach to storing and propagating nogoods. The ap-
proach uses an automaton to overcome the exponential memory requirements of no-
good recording. We demonstrate the advantages and limitations of the approach. We
show that the dynamic compilation of nogoods is certainly very difficult to achieve in
practice but we show interesting computational results using an automaton to achieve
arc-consistency over large and structured tables of tuples.

References

1. R. J. Bayardo and D. P. Miranker. A complexity analysis of space-bounded learning algo-
rithms for the constraint satisfaction problem. In AAAI-1996, pages 298–304, 1996.

2. R. J. Bayardo and R. Schrag. Using CSP look-back techniques to solve exceptionally hard
SAT instances. In Proceedings CP 1996, pages 46–60, 1996.

3. C. Bessière and J.-C Régin. Arc consistency for general constraint networks: Preliminary
results. In IJCAI’97, pages 398–404, 1997.

4. L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfiability and constraint program-
ming: A comparative survey. Technical Report MSR-TR-2005-124, 2005.

5. Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, 1986.

6. B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P. Warners. Radio link frequency assign-
ment. Constraints, 4(1):79–89, 1999.

7. X. Chen and P. Beek. Conflict-directed backjumping revisited. Journal of Artificial Intelli-
gence Research, 14:53–81, 2001.

8. R. Debruyne and al. Correctness of constraint retraction algorithms. In FLAIRS’03, pages
172–176, 2003.

9. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence, 41:273–312, 1990.

10. C. Lecoutre F. Boussemart, F. Hemery and L. Sais. Boosting systematic search by weighting
constraints. In ECAI’04, pages 482–486, 2004.

11. B. Watson J. Daciuk, S. Mihov and R. Watson. Incremental construction of minimal acyclic
finite state automata. Computational Linguistics, 26(1):3–16, 2000.

12. N. Jussien and P. Boizumault. Dynamic backtracking with constraint propagation – ap-
plication to static and dynamic CSPs. In CP Workshop: Theory and Practice of Dynamic
Constraint Satisfaction, 1997.

13. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In Proceedings
CP 2003, pages 873–877, 2003.

14. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In National Conference on
Artificial Intelligence (AAAI-2005), pages 390–396, 2005.

15. I. Lynce and J. Marques-Silva. The effect of nogood recording in MAC-CBJ SAT algorithms.
Technical Report RT/04/2002., 2002.

16. S. Mihov. Direct building of minimal automaton for given list. In Annuaire de l’Université
de Sofia St. Kl. Ohridski, volume 91. Sofia, Bulgaria, 1998.

17. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of DAC’01, 2001.

18. S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint programming.
In FLAIRS’03, pages 192–196, St. Augustine, Florida, USA, 2003.

19. G. Pesant. A regular language membership constraint for finite sequences of variables. In
CP 2004, volume LNCS 3258, 2004.

20. P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed backjumping.
Technical Report /95/177, University of Strathclyde, 1995.

21. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint satisfaction
problem. IJAIT, 3(2):187–207, 1994.

22. N.R. Vempaty. Solving constraint satisfaction problems using finite state automata. In AAAI,
pages 453–458, 1992.

23. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning
in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

