Linear and dynamic programming for constraints

Hadrien Cambazard G-SCOP, Université Grenoble Alpes

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
 - Filtering the upper bound of a 0/1 variable
 - Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

Reduced cost based filtering

- Linear Programming duality [Linear Programming, Chvatal, 2003]
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

What lower bound can you derive from the constraints ?

What lower bound can you derive from the constraints ? Using c_1 alone:

What lower bound can you derive from the constraints ?

Using c_1 alone:

What lower bound can you derive from the constraints ?

Using c_1 alone:

What lower bound can you derive from the constraints ?

Using c_1 alone:

What lower bound can you derive from the constraints ?

Using c_1 alone:

And x, y positive

What lower bound can you derive from the constraints ?

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

$$z = 5x + 6y \ge 3x + 4y \ge 10 + 5 = 15$$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

 $z = 5x + 6y \ge 3x + 4y \ge 10 + 5 = 15$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

 $z = 5x + 6y \ge 3x + 4y \ge 10 + 5 = 15$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

 $z = 5x + 6y \ge 3x + 4y \ge 10 + 5 = 15$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ? Using c_1 and c_2 : ... so $z^* \ge 10$

What lower bound can you derive from the constraints ?

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

c_1	implies	$z^* \ge 10$
$c_1 + c_2$	implies	$z^* \ge 15$
$c_1 + 3c_2$	implies	$z^* \ge 25$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

c_1	implies	$z^* \ge 10$
$c_1 + c_2$	implies	$z^* \ge 15$
$c_1 + 3c_2$	implies	$z^* \ge 25$

Is there a gap left?

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

c_1	implies	$z^* \ge 10$
$c_1 + c_2$	implies	$z^* \ge 15$
$c_1 + 3c_2$	implies	$z^* \ge 25$

Is there a gap left? No

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

c_1	implies	$z^* \ge 10$
$c_1 + c_2$	implies	$z^* \ge 15$
$c_1 + 3c_2$	implies	$z^* \ge 25$

Is there a gap left? No

$$(x,y) = (5,0)$$
 is feasible so $z^* \le 25$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

c_1	implies	$z^* \ge 10$
$c_1 + c_2$	implies	$z^* \ge 15$
$c_1 + 3c_2$	implies	$z^* \ge 25$

- that bounds the objective from below
- and which is maximum

	$\operatorname{Min} z =$	5x + 6y		
(c_1)		2x + 3y	\geq	10
(c_2)		x + y	\geq	5
		x,y	\geq	0

- that bounds the objective from below
- and which leads to the maximum bound

- that bounds the objective from below
- and which leads to the maximum bound

- that bounds the objective from below
- and which leads to the maximum bound

$$\begin{aligned} \operatorname{Max} w &= 10\lambda_1 + 5\lambda_2 \\ & 2\lambda_1 + \lambda_2 &\leq 5 \\ & 3\lambda_1 + \lambda_2 &\leq 6 \\ & \lambda_1, \lambda_2 &\geq 0 \end{aligned}$$

- that bounds the objective from below
- and which leads to the maximum bound

$$\begin{array}{rcl} \operatorname{Max} w = & 10\lambda_1 + 5\lambda_2 \\ & & 2\lambda_1 + \lambda_2 & \leq & 5 \\ & & 3\lambda_1 + \lambda_2 & \leq & 6 \\ & & & \lambda_1, \lambda_2 & \geq & 0 \end{array}$$

$$\begin{array}{rcl} \operatorname{Min} z = & 5x + 6y \\ (c_1) & & 2x + 3y & \geq & 10 \\ (c_2) & & & x + y & \geq & 5 \\ & & & & x, y & \geq & 0 \end{array}$$

What lower bound can you derive from the constraints ?

$$\begin{aligned} \operatorname{Max} w &= & 10\lambda_1 + 5\lambda_2 \\ & & 2\lambda_1 + \lambda_2 &\leq & 5 \\ & & 3\lambda_1 + \lambda_2 &\leq & 6 \\ & & \lambda_1, \lambda_2 &\geq & 0 \end{aligned}$$

Any feasible solution of the dual gives a lower bound $c_1 + c_2$ is $(\lambda_1, \lambda_2) = (1, 1)$ which gives w = 15 $c_1 + 3c_2$ is $(\lambda_1, \lambda_2) = (1, 3)$ which gives w = 25

What lower bound can you derive from the constraints ?

$$\begin{array}{rcl} \operatorname{Max} w = & 10\lambda_1 + 5\lambda_2 \\ & & 2\lambda_1 + \lambda_2 & \leq & 5 \\ (\mathsf{D}) & & 3\lambda_1 + \lambda_2 & \leq & 6 \\ & & \lambda_1, \lambda_2 & \geq & 0 \end{array}$$

The dual of the dual is the primal

(P)
$$\begin{array}{lll} \operatorname{Min} z = & \sum\limits_{i=1}^{n} c_{i} x_{i} \\ & \sum\limits_{i=1}^{n} a_{ij} x_{i} & \geq & b_{j} \quad \forall j = 1, \dots, m \\ & x_{i} & \geq & 0 \quad \forall i = 1, \dots, n \end{array}$$

- View the dual as the problem of the best linear combination of the constraints
- Any feasible solution of the dual gives a lower bound

Reduced cost based filtering

- Linear Programming duality
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

At**Most**NValue

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

At**Most**NValue

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

$$D(X_2) = \{2, 4\}$$

$$D(X_3) = \{1, 2\}$$

$$D(X_4) = \{1, 2, 3\}$$

$$D(X_5) = \{4, 5\}$$

$$D(X_6) = \{4, 5\}$$

$$D(N) = \{1, 2\}$$

At**Most**NValue

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

 $D(X_1) = \{1, 2, 3, 4, 5, 6\}$ $D(X_2) = \{2, 4\}$ $D(X_3) = \{1, 2\}$ $D(X_4) = \{1, 2, 3\}$ $D(X_5) = \{4, 5\}$ $D(X_6) = \{4, 5\}$ $D(N) = \{1, 2\}$

A solution: $\operatorname{ATMOSTNVALUE}([2, 2, 2, 2, 4, 4], 2)$

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

$D(X_1)$	=	$\{1, 2, 3, 4, 5, 6\}$	$D(X_1)$	=	$\{1, 2, \mathbf{X}, 4, 5, \mathbf{X}\}$
$D(X_2)$	=	$\{2, 4\}$	$D(X_2)$	=	$\{2, 4\}$
$D(X_3)$	=	$\{1, 2\}$	$D(X_3)$	=	$\{1, 2\}$
$D(X_4)$	=	$\{1, 2, 3\}$	$D(X_4)$	=	$\{1, 2, X\}$
$D(X_5)$	=	$\{4, 5\}$	$D(X_5)$	=	$\{4, 5\}$
$D(X_6)$	=	$\{4, 5\}$	$D(X_6)$	=	$\{4, 5\}$
D(N)	=	$\{1, 2\}$	D(N)	=	{X , 2}

A solution: ATMOSTNVALUE([2, 2, 2, 2, 4, 4], 2)

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

A solution: $\operatorname{ATMOSTNVALUE}([2, 2, 2, 2, 4, 4], 2)$

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

$$D(X_2) = \{2, 4\}$$

$$D(X_3) = \{1, 2\}$$

$$D(X_4) = \{1, 2, 3\}$$

$$D(X_5) = \{4, 5\}$$

$$D(X_6) = \{4, 5\}$$

$$D(N) = \{1, 2\}$$

Intersection graph of the domains

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

$$D(X_1) = \{1, 2, 3, 4, 5, 6\}$$

$$D(X_2) = \{2, 4\}$$

$$D(X_3) = \{1, 2\}$$

$$D(X_4) = \{1, 2, 3\}$$

$$D(X_5) = \{4, 5\}$$

$$D(X_6) = \{4, 5\}$$

$$D(N) = \{1, 2\}$$

A support of the lower bound of N= an independent set

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

 $D(X_1) = \{1, 2, 3, 4, 5, 6\}$ $D(X_2) = \{2, 4\}$ $D(X_3) = \{1, 2\}$ $D(X_4) = \{1, 2, 3\}$ $D(X_5) = \{4, 5\}$ $D(X_6) = \{4, 5\}$ $D(N) = \{1, 2\}$

Remove all values except {1,2,4,5} since $D(X_5) \cup D(X_3) = \{1, 2, 4, 5\}$

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
 - Greedy computation of independent sets
 - Cost-based filtering with Lagrangian relaxation
 - LP Reduced-costs

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
 - Greedy computation of independent sets

[Hebrard et al. 2006]

- Cost-based filtering with Lagrangian relaxation
- LP Reduced-costs

ATMOSTNVALUE $([X_1, \ldots, X_6], N)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
 - Greedy computation of independent sets

[Hebrard et al. 2006]

Cost-based filtering with Lagrangian relaxation

[Cambazard et al. 2015]

• LP Reduced-costs

 However we cannot express reasonings on mandatory values

- However we cannot express reasonings on mandatory values
 - Example: ATMOSTNVALUE($[X_1, X_2, X_3], N$)

$$D(X_1) = \{1, 2\}$$

$$D(X_2) = \{2, 3\}$$

$$D(X_3) = \{2, 4\}$$

$$D(N) = \{2\}$$

- However we cannot express reasonings on mandatory values
 - Example: ATMOSTNVALUE($[X_1, X_2, X_3], N$)

$$D(X_1) = \{1, 2\}$$

$$D(X_2) = \{2, 3\}$$

$$D(X_3) = \{2, 4\}$$

$$D(N) = \{2\}$$

How to propagate the fact that value 2 is mandatory?

ATMOSTNVALUE $([X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N)$ $Y_j \in \{0, 1\}$: value j occurs at least once

ATMOSTNVALUE $([X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N)$ $Y_j \in \{0, 1\}$: value j occurs at least once

Express reasonings on mandatory values

$$D(X_1) = \{1,2\} \qquad D(Y_1) = \{0,1\} \\ D(X_2) = \{2,3\} \qquad D(Y_2) = \{0,1\} \\ D(X_3) = \{2,4\} \qquad D(Y_3) = \{0,1\} \\ D(N) = \{2\} \qquad D(Y_4) = \{0,1\}$$

ATMOSTNVALUE $([X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N)$ $Y_j \in \{0, 1\}$: value j occurs at least once

Express reasonings on mandatory values

$$D(X_1) = \{1, 2\} \qquad D(Y_1) = \{0, 1\} D(X_2) = \{2, 3\} \qquad D(Y_2) = \{1, 2\} D(X_3) = \{2, 4\} \qquad D(Y_3) = \{0, 1\} D(N) = \{2\} \qquad D(Y_4) = \{0, 1\}$$

ATMOSTNVALUE $([X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N)$ $Y_j \in \{0, 1\}$: value j occurs at least once

Express reasonings on mandatory values

$$D(X_1) = \{1,2\} \qquad D(Y_1) = \{0,1\} \\ D(X_2) = \{2,3\} \qquad D(Y_2) = \{0,1\} \\ D(X_3) = \{2,4\} \qquad D(Y_3) = \{0,1\} \\ D(N) = \{2\} \qquad D(Y_4) = \{0,1\}$$

 $Y_2 = 1$

Note that domains of X cannot be filtered...

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

Consider the following example:

 $D(X_1) = \{1, 2\}$ $D(X_2) = \{2, 3\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{1, 2\}$

Consider the following example:

 $D(X_1) = \{1, 2\}$ $D(X_2) = \{2, 3\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{1, 2\}$

Consider the following example:

 $D(X_1) = \{ X, 2 \}$ $D(X_2) = \{ 2, X \}$ $D(X_3) = \{ 4, 5 \}$ $D(N) = \{ X, 2 \}$

Consider the following example:

 $D(X_1) = \{X, 2\} \quad D(X_2) = \{2, X\} \quad D(X_3) = \{4, 5\} \quad D(N) = \{X, 2\}$

The exact lower bound of N can be computed with the following MIP:

 $y_i \in \{0, 1\}$: do we use value i?

Consider the following example:

 $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$ Consider the linear relaxation:

Consider the following example:

 $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$ Consider the linear relaxation:

Notice that we don't need to state $y_i \leq 1$

Consider the following example:

 $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$ Consider the linear relaxation:

Notice that we don't need to state $y_i \leq 1$ First of all, we get $z^* = 2$

Consider the following example:

 $D(X_1) = \{ X, 2 \}$ $D(X_2) = \{ 2, X \}$ $D(X_3) = \{ 4, 5 \}$ $D(N) = \{ X, 2 \}$ Consider the linear relaxation:

Notice that we don't need to state $y_i \leq 1$ First of all, we get $z^* = 2$

Consider the following example:

 $D(X_1) = \{ X, 2 \}$ $D(X_2) = \{ 2, X \}$ $D(X_3) = \{ 4, 5 \}$ $D(N) = \{ X, 2 \}$ Consider the linear relaxation:

Notice that we don't need to state $y_i \leq 1$ First of all, we get $z^* = 2$

$$y_2^* = \begin{pmatrix} y_2^* & y_4^* \\ 0, 1, 0, 1, 0 \end{pmatrix}$$

$$egin{array}{c} y^* \ (y_1) \ (0) \ (y_2) \ (1) \ (y_3) \ (0) \ (y_4) \ (1) \ (y_5) \ (0) \end{array}$$

$$\lambda^* \ (\lambda_1) \ (0) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1)$$

$$egin{array}{c} y^* \ (y_1) \ (0) \ (y_2) \ (1) \ (y_3) \ (0) \ (y_4) \ (1) \ (y_5) \ (0) \end{array}$$

$$y_i \geq 0$$

Min z = $y_1 + y_2 + y_3 + y_4$ $+y_5$ \geq 1 y_1 $+y_2$ 1 $+y_3$ y_2 (P) $\stackrel{-}{\geq}$ 1 $\stackrel{\geq}{\geq}$ 1 $\stackrel{\geq}{\geq}$ 0 $+y_5$ y_4 y_1 y_i

 λ^*

$$\lambda^* \ (\lambda_1) \ (0) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1) \ (\gamma) \ (?)$$

Min z = $+y_4$ $+y_5$ $+y_2$ $+y_3$ y_1 \geq 1 $+y_{2}$ y_1 1 y_2 $+y_3$ (P) 1 $+y_5$ y_4 1 y_1 0 y_i

We can build a dual solution by setting γ greedily to $(1 - \lambda_1^*)$

 λ^*

Note that we are not solving the LP again

We can build a **feasible dual** solution by setting γ to $(1 - \lambda_1^*)$

We can build a **feasible dual** solution by setting γ to $(1 - \lambda_1^*)$ Thus $z^* + (1 - \lambda_1^*)$ is a lower bound of the modified problem

We can build a **feasible dual** solution by setting γ to $(1 - \lambda_1^*)$ Thus $z^* + (1 - \lambda_1^*)$ is a lower bound of the modified problem Upper bound of N So $z^* + (1 - \lambda_1^*) > 2 \implies y_1 \neq 1 \ (X_1 \neq 1)$

We can build a **feasible dual** solution by setting γ to $(1 - \lambda_1^*)$ Thus $z^* + (1 - \lambda_1^*)$ is a lower bound of the modified problem Upper bound of N So $z^* + \underbrace{(1 - \lambda_1^*)}_{\downarrow} > 2 \implies y_1 \neq 1 \quad (X_1 \neq 1)$ Reduced cost of y_1 (Slack of the dual constraint)

 $\lambda^* = (0, 1, 1)$

So $z^* + rc(y_1) > \overline{z} \implies y_1 \neq 1 \ (X_1 \neq 1)$

Reduced cost of y_1 : $rc(y_1) = (1 - \lambda_1^*) = 1$

So $z^* + rc(y_1) > \overline{z} \implies y_1 \neq 1 \ (X_1 \neq 1)$ Reduced cost of $y_1 : rc(y_1) = (1 - \lambda_1^*) = 1$ Reduced cost of $y_3 : rc(y_3) = (1 - \lambda_2^*) = (1 - 1) = 0$

So $z^* + rc(y_1) > \overline{z} \implies y_1 \neq 1 \ (X_1 \neq 1)$ Reduced cost of $y_1 : rc(y_1) = (1 - \lambda_1^*) = 1$ Reduced cost of $y_3 : rc(y_3) = (1 - \lambda_2^*) = (1 - 1) = 0$ We cannot filter value 3 using this dual solution

(0, 1)

Reduced cost of y_1 : $rc(y_1) = (1 - \lambda_1^*) = 0$

Reduced cost of y_1 : $rc(y_1) = (1 - \lambda_1^*) = 0$ Reduced cost of y_3 : $rc(y_3) = (1 - \lambda_2^*) = 1$

(0, 1)

Reduced cost of y_1 : $rc(y_1) = (1 - \lambda_1^*) = 0$ Reduced cost of y_3 : $rc(y_3) = (1 - \lambda_2^*) = 1$

Value 3 is now filtered but value 1 is not filtered anymore

• We are filtering the upper bound of y_1 or y_3

$$z^* + rc(y_i) > \overline{z} \implies y_i \neq 1$$

• We are filtering the upper bound of y_1 or y_3

$$z^* + rc(y_i) > \overline{z} \implies y_i \neq 1$$

- But if y_i is in the optimal LP solution (the basis), its reduced cost is 0
- This is due to the complementary slackness theorem:

Either the variable is 0, or the slack of the dual constraint (i.e. the reduced cost) is 0, or both

• We are filtering the upper bound of y_1 or y_3

$$z^* + rc(y_i) > \overline{z} \implies y_i \neq 1$$

- But if y_i is in the optimal LP solution (the basis), its reduced cost is 0
- This is due to the complementary slackness theorem:

Either the variable is 0, or the slack of the dual constraint (i.e. the reduced cost) is 0, or both

• How to filter the lower bound of y_i ?

- Linear Programming duality
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of y_2 : $y_2 \neq 0$

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of $y_2: y_2 \neq 0$

Filter Upper bound $y_1 \neq 1$

- 1. Solve the **original** LP optimally
- 2. Use the optimal dual solution, to build a feasible dual solution to the problem that would include $y_1 \ge 1$

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of $y_2: y_2 \neq 0$

Filter Upper bound $y_1 \neq 1$

- 1. Solve the **original** LP optimally
- 2. Use the optimal dual solution, to build a feasible dual solution to the problem that would include $y_1 \ge 1$

Filter Lower bound $y_2 \neq 0$

- 1. Include in the original LP the constraint $y_2 \leq 1$
- 2. Solve the **modified** problem and perform **sensibility analysis** on the right hand side of $y_2 \leq 1$

Note that the upperbound constraint is now added **before** solving the LP

$$\lambda^* \ (\lambda_1) \ (1) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1) \ (heta) \ (-1)$$

$$\lambda^* \ (\lambda_1) \ (1) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1) \ (heta) \ (-1)$$

Min z = $+y_4$ $+y_3$ $+y_2$ $+y_5$ y_1 1 $+y_2$ y_1 1 $+y_3$ (P) y_2 $+y_5$ y_4 y_2 y_i

 $\lambda^* \ (\lambda_1) \ (1) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1) \ (heta) \ (-1)$

Decreasing the upperbound by ϵ increases the objective of **at** least $-\epsilon\theta^*$

Min z = $+y_2$ $+y_3$ $+y_4$ $+y_5$ y_1 1 $+y_2$ y_1 1 (P) y_2 $+y_3$ $+y_5$ y_4 y_2 y_i

Decreasing the upperbound by ϵ increases the objective of **at least** $-\epsilon\theta^*$

Feasibility of the dual solution is not affected by the change !

 $Max \ w = \lambda_1 + \lambda_2 + \lambda_3 + \theta$

 $y_2 \le 1$

Max $w = \lambda_1 + \lambda_2 + \lambda_3 + \theta$ $y_2 \le 1$ Max $w' = \lambda_1 + \lambda_2 + \lambda_3 + (1 - \epsilon)\theta$ $y_2 \le (1 - \epsilon)$

$$\lambda^* \ (\lambda_1) \ (1) \ (\lambda_2) \ (1) \ (\lambda_3) \ (1) \ (heta) \ (-1)$$

Max
$$w = \lambda_1 + \lambda_2 + \lambda_3 + \theta$$

Max $w' = \lambda_1 + \lambda_2 + \lambda_3 + (1 - \epsilon)\theta$ $y_2 \le (1 - \epsilon)$

Max
$$w = \lambda_1 + \lambda_2 + \lambda_3 + \theta$$

Max $w' = \lambda_1 + \lambda_2 + \lambda_3 + (1 - \epsilon)\theta$ $y_2 \le (1 - \epsilon)$

 λ^*

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set the upper bound of y_2 to 0, the increase is at least of $-\theta^*$

 λ^*

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set the upper bound of y_2 to 0, the increase is at least of $-\theta^*$

$$z^* - \theta^* = 2 - (-1) > \overline{z} = 2 \implies y_2 \neq 0 \ (Y_2 = 1)$$

If we ignore θ and compute the reduced cost of y_2 :

 λ^*

If we ignore θ and compute the reduced cost of y_2 :

 λ^*

If we ignore θ and compute the reduced cost of y_2 :

$$rc(y_2) = 1 - \lambda_1^* - \lambda_2^* = -1$$

If we ignore θ and compute the reduced cost of y_2 :

$$rc(y_2) = 1 - \lambda_1^* - \lambda_2^* = -1$$

And the filtering rule can be seen as :

If we ignore θ and compute the reduced cost of y_2 :

$$rc(y_2) = 1 - \lambda_1^* - \lambda_2^* = -1$$

And the filtering rule can be seen as :

$$z^* - rc(y_2) > \overline{z} \implies y_2 \neq 0 \ (Y_2 = 1)$$

Reduced cost based filtering $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$

• To filter the lower bound of y_2 ?

We include the upper bound constraints in the LP: $y_i \leq 1$ And compute the reduced cost by ignoring the dual variables of these constraints

$$z^* - rc(y_i) > \overline{z} \implies y_i \neq 0$$

Reduced cost based filtering $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$

• To filter the lower bound of y_2 ?

We include the upper bound constraints in the LP: $y_i \leq 1$ And compute the reduced cost by ignoring the dual variables of these constraints

$$z^* - rc(y_i) > \overline{z} \implies y_i \neq 0$$

• To filter the upper bound of y_1 or y_3

$$z^* + rc(y_i) > \overline{z} \implies y_i \neq 1$$

But if y_i is in the optimal LP solution (the basis), its reduced cost is 0 (complementary slackness)

Reduced cost based filtering $D(X_1) = \{X, 2\}$ $D(X_2) = \{2, X\}$ $D(X_3) = \{4, 5\}$ $D(N) = \{X, 2\}$

• To filter the lower bound of y_2 ?

$$z^* - rc(y_i) > \overline{z} \implies y_i \neq 0$$

• To filter the upper bound of y_1 or y_3

$$z^* + rc(y_i) > \overline{z} \implies y_i \neq 1$$

In any case, the reduced cost can be interpreted as a lower bound of the variation of the objective function per unit of change of the variable

Reduced cost based filtering

- Linear Programming duality
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

Consider one variable $x_k \in [\underline{x_k}, \overline{x_k}]$ and suppose the LP is solved with the simplex algorithm handling bounds directly

Proposition 1 (Reduced cost) Let x^* and λ^* be a pair of primal and dual feasible solutions of (P) and (D), satisfying the complementary slackness conditions. The reduced cost of variable x_k is denoted $rc(x_k)$ and defined as :

$$rc(x_k) = c_k - (\sum_{j=1}^m a_{kj}\lambda_j^*)$$

1. If $x_k^* = \underline{x_k}$ then $rc(x_k) \ge 0$ 2. If $x_k^* = \overline{x_k}$ then $rc(x_k) \le 0$ 3. If $\underline{x_k} < x_k^* < \overline{x_k}$ then $rc(x_k) = 0$

Proposition 1 (Reduced cost) Let x^* and λ^* be a pair of primal and dual feasible solutions of (P) and (D), satisfying the complementary slackness conditions. The reduced cost of variable x_k is denoted $rc(x_k)$ and defined as :

$$rc(x_k) = c_k - \left(\sum_{j=1}^m a_{kj}\lambda_j^*\right)$$

1. If
$$x_k^* = \underline{x_k}$$
 then $rc(x_k) \ge 0$
2. If $x_k^* = \overline{x_k}$ then $rc(x_k) \le 0$
3. If $\underline{x_k} < x_k^* < \overline{x_k}$ then $rc(x_k) = 0$

Upper bound

If
$$rc(x_k) > 0$$
 then $x_k \leq \underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}$ in any solution of cost less than \overline{z}

Lower bound

If $rc(x_k) < 0$ then $x_k \ge \overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}$ in any solution of cost less than \overline{z}

Upper bound If $rc(x_k) > 0$ then $x_k \le \underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}$ in any solution of cost less than \overline{z}

Lower bound

If
$$rc(x_k) < 0$$
 then $x_k \ge \overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}$ in any solution of cost less than \overline{z}

• In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_k

Upper bound

If $rc(x_k) > 0$ then $x_k \leq \lfloor \underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)} \rfloor$ in any solution of cost less than \overline{z}

Lower bound

If
$$rc(x_k) < 0$$
 then $x_k \ge \left[\overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}\right]$ in any solution of cost less than \overline{z}

• In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_k

Upper bound

If $rc(x_k) > 0$ then $x_k \leq |\underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}|$ in any solution of cost less than \overline{z}

Lower bound

If
$$rc(x_k) < 0$$
 then $x_k \ge \left[\overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}\right]$ in any solution of cost less than \overline{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_k
- Floor and ceil if x are integers in the original problem

Upper bound

If $rc(x_k) > 0$ then $x_k \leq \lfloor \underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)} \rfloor$ in any solution of cost less than \overline{z}

Lower bound

If
$$rc(x_k) < 0$$
 then $x_k \ge \left[\overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}\right]$ in any solution of cost less than \overline{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_k
- Floor and ceil if x are integers in the original problem
- Technique referred to as Variable Fixing

Upper bound

If $rc(x_k) > 0$ then $x_k \leq \lfloor \underline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)} \rfloor$ in any solution of cost less than \overline{z}

Lower bound

If
$$rc(x_k) < 0$$
 then $x_k \ge \left[\overline{x_k} + \frac{(\overline{z} - z^*)}{rc(x_k)}\right]$ in any solution of cost less than \overline{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_k
- Floor and ceil if x are integers in the original problem
- Technique referred to as **Variable Fixing** [Nemhauser and Wolsey. Integer and Combinatorial Optimization. 1988]?

Reduced cost based filtering

- Linear Programming duality
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{1, 2\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{1, 2\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

with
$$y_2 \in [0, 1]$$

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{\emptyset, 1\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{1, 2\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{\emptyset, 1\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

$$y_1^* = \underline{y_1} \text{ and } rc(y_1) = 1 - \lambda_1^* = 0$$

$$y_2^* = \overline{y_2} \text{ and } rc(y_2) = 1 - \lambda_1^* - \lambda_2^* - \lambda_3^* = -2$$

$$y_3^* = \underline{y_2} \text{ and } rc(y_3) = 1 - \lambda_2^* = 0$$

$$y_4^* = \underline{y_3} \text{ and } rc(y_4) = 1 - \lambda_3^* = 0$$

 $D(X_1) = \{1, 2\}, \ D(X_2) = \{2, 3\}, \ D(X_3) = \{2, 4\}, \ D(N) = \{2\}$ $D(Y_1) = \{0, 1\}, \ D(Y_2) = \{\emptyset, 1\}, \ D(Y_3) = \{2, 4\}, \ D(Y_4) = \{0, 1\}$

$$y_1^* = \underline{y_1} \text{ and } rc(y_1) = 1 - \lambda_1^* = 0$$

$$y_2^* = \overline{y_2} \text{ and } rc(y_2) = 1 - \lambda_1^* - \lambda_2^* - \lambda_3^* = -2$$

$$y_3^* = \underline{y_2} \text{ and } rc(y_3) = 1 - \lambda_2^* = 0$$

$$y_4^* = \underline{y_3} \text{ and } rc(y_4) = 1 - \lambda_3^* = 0$$

$$y_2 \ge \lceil \overline{y_2} + \frac{(z^* - z)}{rc(y_2)} \rceil = \lceil 1 + \frac{2 - 1}{-2} \rceil = \lceil 0.5 \rceil = 1$$

Reduced cost based filtering

- Linear Programming duality
- First example: At**Most**NValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

• Assignment problem (used as a lower bound for TSP)

 $\operatorname{Min} \ \sum_{i,j} x_{ij} c_{ij}$

• Assignment problem (used as a lower bound for TSP)

 $\operatorname{Min} \ \sum_{i,j} x_{ij} c_{ij}$

• Assignment problem (used as a lower bound for TSP)

Min $\sum_{i \in j} x_{ij} c_{ij}$

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)

• Assignment problem (used as a lower bound for TSP)

Min $\sum_{i \in j} x_{ij} c_{ij}$

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)

[Milano and al. 2006]

• Assignment problem (used as a lower bound for TSP)

Min $\sum_{i \in i} x_{ij} c_{ij}$

а D е

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)

• Global cardinality with costs (ref? folklore?)

• **Cumulative** (LP formulation with cutting planes)

(Picture from the global constraint catalog)

• **Bin-Packing** (Arc-flow formulation ...)

[Valério de Carvalho 1999] [Cambazard. 2010]

- Linear relaxation of global constraints
 [Refalo, 2000]: Linear formulation of Constraint
 Programming models and Hybrid Solvers
 - ★ AllDifferent
 - ★ Element
 - ★ Among
 - ★ Cycle

- (Picture from [Foccaci, 2002])
- Cost-based filtering
 [Focacci, Lodi, Milano. 2002]: Embedding relaxations in global constraints for solving TSP and TSPTW

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
 - Filtering the upper bound of a 0/1 variable
 - Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

Dynamic programming for global constraints

• Linear equation

- General principles
- Regular and variants
- WeightedCircuit
- Table constraint and MDD domains ?

Linear equation

Linear equation

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{0, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{0, 1, 2, 3, 4\}$ Q: Give the arc-consistent domains $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{0, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$ Q: Give the arc-consistent domains

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{0, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{8, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

 $\overline{x_1}$?

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

Q: Give the arc-consistent domains

Lower bound for the rest $\overline{x_1}$? of the expression $3\overline{x_1} + (-2\overline{x_2} + 4\underline{x_3}) \le 7$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

• Let's start with linear inequalities first and enforce GAC:

$$3x_1 - 2x_2 + 4x_3 \le 7$$

 $D(x_1) = \{0, 1, 2, 3, 4\}$ $D(x_2) = \{3, 1, 2, 3, 4\}$ $D(x_3) = \{2, 3, 4\}$

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

• Update the upper bound of variables with a positive coefficient $(k < n_1)$

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

• Update the upper bound of variables with a positive coefficient $(k < n_1)$

Lower bound for the rest of the expression

$$\overline{x_k} \leftarrow \lfloor \frac{c - \left(\sum_{i=1 \land i \neq k}^{n_1 - 1} a_i \underline{x_i} - \sum_{i=n_1}^n b_i \overline{x_i}\right)}{a_k}$$

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

• Update the upper bound of variables with a positive coefficient $(k < n_1)$

Lower bound for the rest of the expression

$$\overline{x_k} \leftarrow \lfloor \frac{c - \left(\sum_{i=1 \land i \neq k}^{n_1 - 1} a_i \underline{x_i} - \sum_{i=n_1}^n b_i \overline{x_i}\right)}{a_k} \rfloor$$

• Update the upper bound of variables with a negative coefficient $(k \ge n_1)$

$$\underline{x_k} \leftarrow \left\lceil \frac{\left(\sum_{i=1}^{n_1-1} a_i \underline{x_i} - \sum_{i=n_1 \wedge i \neq k}^n b_i \overline{x_i}\right) - c}{b_k} \right\rceil$$

[Laurière, 1978]

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

• Update the upper bound of variables with a positive coefficient $(k < n_1)$

Lower bound for the rest of the expression

$$\overline{x_k} \leftarrow \lfloor \frac{c - \left(\sum_{i=1 \land i \neq k}^{n_1 - 1} a_i \underline{x_i} - \sum_{i=n_1}^n b_i \overline{x_i}\right)}{a_k}$$

• Update the upper bound of variables with a negative coefficient $(k \ge n_1)$

$$\underline{x_k} \leftarrow \left\lceil \frac{\left(\sum_{i=1}^{n_1-1} a_i \underline{x_i} - \sum_{i=n_1 \wedge i \neq k}^n b_i \overline{x_i}\right) - c}{b_k} \right\rceil$$

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

• Is a fixed point needed between the two rules ?

• Does that achieve BC or GAC ?

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

Is a fixed point needed between the two rules ?
 No, the rules and updates are not on the same bounds

• Does that achieve BC or GAC ?

$$\sum_{i=1}^{n_1-1} a_i x_i - \sum_{i=n_1}^n b_i x_i \le c$$

Suppose for sake of simplicity: $\forall i \ a_i, b_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

Is a fixed point needed between the two rules ?
 No, the rules and updates are not on the same bounds

• Does that achieve BC or GAC ?

Only bounds are updated but all remaining values have a support so it achieves GAC

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

```
D(x_1) = \{0, 1, 2\}D(x_2) = \{0, 1\}D(x_3) = \{0, 1\}
```

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

```
D(x_1) = \{0, 1, 2\}

D(x_2) = \{0, 1\} Q: Give the arc-consistent domains

D(x_3) = \{0, 1\}
```

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

 $D(x_1) = \{0, \mathbf{X}, 2\}$ $D(x_2) = \{0, 1\}$ Q: Give the arc-consistent domains $D(x_3) = \{0, 1\}$

- Consider now: $2x_1 + 3x_2 + 4x_3 = 7$
 - $D(x_1) = \{0, \mathbf{X}, 2\}$ $D(x_2) = \{\mathbf{X}, 1\}$ $D(x_3) = \{0, 1\}$

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

 $D(x_1) = \{0, \mathbf{X}, 2\}$ $D(x_2) = \{\mathbf{X}, 1\}$ $D(x_3) = \{0, 1\}$ Q: Give the arc-consistent domains

Q: How does a CP solver usually filters that constraint?

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

 $D(x_1) = \{0, \mathbf{x}, 2\}$ $D(x_2) = \{\mathbf{x}, 1\}$ Q: Give the arc-consistent domains $D(x_3) = \{0, 1\}$

Q: How does a CP solver usually filters that constraint?

Q: What values are removed in the example with this technique ?

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

 $D(x_1) = \{0, \bigstar, 2\}$ $D(x_2) = \{\bigstar, 1\}$ $D(x_3) = \{0, 1\}$ Q: Give the arc-consistent domains

Q: How does a CP solver usually filters that constraint?

Apply previous filtering algorithm for both (until fixed-point) : $2x_1 + 3x_2 + 4x_3 \ge 7$ $2x_1 + 3x_2 + 4x_3 \le 7$

Q: What values are removed in the example with this technique ?

• Consider now: $2x_1 + 3x_2 + 4x_3 = 7$

 $D(x_1) = \{0, \bigstar, 2\}$ $D(x_2) = \{\bigstar, 1\}$ Q: Give the arc-consistent domains $D(x_3) = \{0, 1\}$

Q: How does a CP solver usually filters that constraint?

Apply previous filtering algorithm for both (until fixed-point) : $\begin{array}{l} 2x_1 + 3x_2 + 4x_3 \geq 7 \\ 2x_1 + 3x_2 + 4x_3 \leq 7 \end{array}$

Q: What values are removed in the example with this technique ? None

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

Q: What is the complexity of achieving GAC ?

Q: What is the complexity of achieving BC?

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

Q: What is the complexity of achieving GAC?

- Consider only {0,1} domains
- It is as hard as subset sum: « given an integer k and a set
 S of integers, is there a subset of S that sums to k ? »

Q: What is the complexity of achieving BC?

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

Q: What is the complexity of achieving GAC ?

- Consider only {0,1} domains
- It is as hard as subset sum: « given an integer k and a set
 S of integers, is there a subset of S that sums to k ? »
- Q: What is the complexity of achieving BC?
 - BC and GAC are the same on {0,1} domains...
 - So BC is just as hard

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

 The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

 The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support = a path from s to t ex: (2,1,0)

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support = a path from s to t ex: (2,1,0)

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support = a path from s to t
 ex: (2,1,0)
a value of a domain = a set of
arcs in the graph

ex: Value 0 of x_2

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support = a path from s to t
 ex: (2,1,0)
a value of a domain = a set of
arcs in the graph

ex: Value 0 of x_2

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support = a path from s to t ex: (2,1,0)

a value of a domain = a set of arcs in the graph

ex: Value 0 of x_2

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

 $2x_1 + 3x_2 + 4x_3 = 7 \quad D(x_1) = \{0, \mathbf{X}, 2\} \quad D(x_2) = \{\mathbf{X}, 1\} \quad D(x_3) = \{0, 1\}$

• The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

- 1. forward pass: mark arcs in a breath-first search from s to t
- 2. backward pass: mark arcs in a breath-first search from t to s
- 3. remove all non-marked arcs

The dynamic programming approach: formulate it **a path problem** in a graph with a **pseudo-polynomial size**...

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

- 1. forward pass: mark arcs in a breath-first search from s to t
- 2. backward pass: mark arcs in a breath-first search from t to s
- 3. remove all non-marked arcs

Complexity: O(nmc)(positive domains and coefficients)

The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

[Trick. 2003]

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

- 1. forward pass: mark arcs in a breath-first search from s to t
- 2. backward pass: mark arcs in a breath-first search from t to s
- 3. remove all non-marked arcs

Complexity: O(nmc)(positive domains and coefficients)

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

f(i, K) =true if sum K can be reached with x_1, \ldots, x_i

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

f(i, K) = true if sum K can be reached with x_1, \ldots, x_i

$$f(i,K) = \bigvee_{v_k \in D(x_i)} f(i-1,K-a_i v_k)$$

We are looking for f(n,c)

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

f(i, K) = true if sum K can be reached with x_1, \ldots, x_i

$$f(i,K) = \bigvee_{v_k \in D(x_i)} f(i-1,K-a_i v_k)$$

We are looking for f(n,c)

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

f(i, K) =true if sum K can be reached with x_1, \ldots, x_i

$$f(i, K) = \bigvee_{v_k \in D(x_i)} f(i - 1, K - a_i v_k)$$
$$f(0, K) = \text{false} \quad K \neq 0$$
$$f(0, 0) = \text{true}$$

We are looking for f(n,c)

$$\sum_{i=1}^{n} a_i x_i = c$$

Suppose for sake of simplicity: $\forall i \ a_i \in \mathbb{N}^*$ and $D(x_i) \subset \mathbb{N}$

f(i, K) =true if sum K can be reached with x_1, \ldots, x_i

$$f(i, K) = \bigvee_{v_k \in D(x_i)} f(i - 1, K - a_i v_k)$$
$$f(0, K) = \text{false} \quad K \neq 0$$
$$f(0, 0) = \text{true}$$

We are looking for f(n, c)Complexity: O(nmc)

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains ?

General principles

- 1. Formulate the problem of **existence of a support** as **a path problem** in a graph of **pseudo-polynomial size**
- 2. Define properly the graph model:
 - support = a path, shortest path, longest path, ...
 - values of domains = arcs, nodes
- 3. Apply a forward-backward pass to mark edges-nodes with
 - the value of the **best** path **supporting them**
- 4. Remove all values not supported in the graph

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Table constraint and MDD domains ?

- Regular : REGULAR($[X_1, \ldots, X_n], A$) Automaton [Pesant, 2004]
 - Propagation based on breath-first-search in the unfolded automaton

Regular : REGULAR([X₁,...,X_n],A) [Pesant, 2004]
 Propagation based on breath-first-search in the unfolded automaton

Automaton

- Cost regular : REGULAR($[X_1, \ldots, X_n], A$) $\land \sum_{i=1}^n c_{iX_i} = Z$
 - Propagation based on shortest/longest path in the unfolded automaton
 [Demassey, Pesant, Rousseau, 2004]

Regular : REGULAR([X₁,...,X_n],A) [Pesant, 2004]
 Propagation based on breath-first-search in the unfolded automaton

Automaton

- Cost regular : REGULAR($[X_1, \ldots, X_n], A$) $\land \sum_{i=1}^n c_{iX_i} = Z$
 - Propagation based on shortest/longest path in the unfolded automaton
 [Demassey, Pesant, Rousseau, 2004]
- Multi-cost regular : Multi-cost Regular($[X_1, \ldots, X_n], [Z^1, \ldots, Z^R], A$) Regular($[X_1, \ldots, X_n], A$) \land ($\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0, \ldots, R$)
 - Propagation based on resource constrained shortest/longest path
 - Sequencing and counting at the same time
 - Personnel scheduling
 - Routing
 - Example: combine Regular and GCC

[Menana, Demassey, 2009]

• Multi-cost regular :

 $\operatorname{Regular}([X_1,\ldots,X_n],A) \land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0,\ldots,R)$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

• Multi-cost regular :

 $\operatorname{Regular}([X_1,\ldots,X_n],A) \land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0,\ldots,R)$

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

Multi-cost regular :

 $\operatorname{Regular}([X_1,\ldots,X_n],A) \land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0,\ldots,R)$

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

Multi-cost regular :

 $\operatorname{Regular}([X_1,\ldots,X_n],A) \land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0,\ldots,R)$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

R,D	R	= 2 _X	$_{1}X_{2}$	X_3	X_4	X_5	X_6	X_7			X_1	X_2	X_3	X_4 .	X_5	X_6	X_7
	N	c_D^1 1	1	1	1	1	1	1		c_D^2	0	0	0	0	0	0	0
((s))	$\begin{pmatrix} 1 \end{pmatrix}$	c_N^1 o	0	0	0	0	0	0		c_N^2	1	1	1	1	1	1	1
		c^1_R o	0	0	0	0	0	0		c_R^2	0	0	0	0	0	0	0
	К																
	\frown	\frown									\frown						
	x 1) ×		1)~?				x (1)			(1	20					

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

• Multi-cost regular :

 $\operatorname{Regular}([X_1,\ldots,X_n],A) \land (\sum_{i=1}^n c_{iX_i}^r = Z^r, \forall r = 0,\ldots,R)$

 $X_1 X_2 X_3 X_4 X_5 X_6 X_7$

- Example:
 - Schedule 7 shifts of type: night (N), day (D), rest (R)
 - (1) "A Rest must follow a Night shift"
 - (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains ?

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], z$)

 $next_i$: immediate successor of ${\bf i}$ in the tour

- z : distance of the tour
- d : matrix of distances. d_{ij} is the distance of arc (i,j)

next variables must form a tour and $\sum_{i=1}^{n} d_{i,next_i} = z$

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], z$)

 $next_i$: immediate successor of **i** in the tour

z : distance of the tour

d : matrix of distances. d_{ij} is the distance of arc (i,j)

next variables must form a tour and $\sum_{i=1}^{n} d_{i,next_i} = z$

$$z = (1 + 3 + 3 + 2 + 1) = 10$$

 $next_1 = 3$
 $next_3 = 2$
...
 $next_5 = 1$

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], z$)

 $next_i$: immediate successor of **i** in the tour

- z : distance of the tour
- d : matrix of distances. d_{ij} is the distance of arc (i,j)

next variables must form a tour and $\sum_{i=1}^{n} d_{i,next_i} = z$

- Filter the lower bound of z by solving a relaxation of the TSP
- Detect mandatory/forbidden arcs regarding the upper bound of z
- Applications in routing

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], z$)

 $next_i$: immediate successor of **i** in the tour

- z : distance of the tour
- d : matrix of distances. d_{ij} is the distance of arc (i,j)

next variables must form a tour and $\sum_{i=1}^{n} d_{i,next_i} = z$

- Many problems involve side-constraints such as precedences, time-windows, vehicle capacity, ... constraining the position of a city/client in the tour or relative positions of clients
- A useful variable for reasoning:

 pos_i : position of city **i** in the tour

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], [pos_1, \ldots, pos_n], z$)

 $next_i$: immediate successor of **i** in the tour

 pos_i : position of city **i** in the tour

- z : distance of the tour
- d : matrix of distances. d_{ij} is the distance of arc (i,j)

WEIGHTEDCIRCUIT($[next_1, \ldots, next_n], [pos_1, \ldots, pos_n], z$)

 $next_i$: immediate successor of **i** in the tour

- pos_i : position of city **i** in the tour
 - z : distance of the tour
 - d : matrix of distances. d_{ij} is the distance of arc (i,j)

$$\begin{array}{ll} z = (1+3+3+2+1) = 10 \\ next_1 = 3 & pos_1 = 1 \\ next_3 = 2 & pos_2 = 3 \\ \dots & pos_3 = 2 \\ next_5 = 1 & pos_4 = 4 \\ pos_5 = 5 \end{array}$$

Relaxation of TSP to filter \underline{z} ?

Definition 1

- Connectivity
- Degree 2

Definition 1 Connectivity Degree 2 Connectivity Degree 2 One-Tree 2 1 b a

1

2

a

2

[Held and Karp. 1970]

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

• Degree 2

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

[Held and Karp. 1970]

[Christophides et al. 1981]

support of \underline{z} = a shortest path

support of \underline{z} = a shortest path

value 5 of $next_4$

support of \underline{z} = a shortest path

value 5 of $next_4$

support of \underline{z} = a shortest path

value 5 of $next_4$

value 2 of pos_3

n-path relaxation: a circuit of n-arcs

 $f^*(k,i)$: length of an optimal path starting from 1 and reaching in exactly k arcs.

We are looking for $f^*(n,1)$

n-path relaxation: a circuit of n-arcs

 $f^*(k, i)$: length of an optimal path starting from 1 and reaching in exactly k arcs.

We are looking for $f^*(n,1)$

$$f^*(k,i) = \min_{j \in D(pred_i)} (f^*(k-1,j) + d_{ji}) \quad \forall k, \forall i \text{ s.t } k \in D(pos_i)$$

n-path relaxation: a circuit of n-arcs

 $f^*(k, i)$: length of an optimal path starting from 1 and reaching in exactly k arcs.

We are looking for $f^*(n,1)$

$$f^*(k,i) = \min_{j \in D(pred_i)} (f^*(k-1,j) + d_{ji}) \quad \forall k, \forall i \text{ s.t } k \in D(pos_i)$$

Filtering of both successors and positions

Complexity in $O(n^3)$

one-tree versus n-path

one-tree versus n-path

[Ducomman et al. 2016]

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains ?

Reformulations of global constraints

- Reformulating global constraints with small arity constraints to simulate the DP algorithm with AC on the corresponding constraint network:
 - ★ Regular
 - ★ Bound AllDifferent
 - ★ Bound GCC
 - ★ Slides

[Quimper and Walsh, 2007]

[Bessiere et al. 2009]

[Bessiere et al. 2008]

Reformulations of global constraints

- Reformulating global constraints with small arity constraints to simulate the DP algorithm with AC on the corresponding constraint network:
 - ★ Regular [Quimper and Walsh, 2007] ★ Bound AllDifferent
 - ★ Bound GCC
 - ★ Slides

[Bessiere et al. 2009]

[Bessiere et al. 2008]

- MDD domains, a form of Dynamic programming ?
 - Multi-valued Decision Diagram MDD consistency
 - Explicit representation of more refined potential solution space [Hooker et al. 2007]
 - Limited width defines relaxation MDD
 - Overcome the current limit that : « constraints are communicating through domains »

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
 - Filtering the upper bound of a 0/1 variable
 - Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

> Nadia Brauner, Hadrien Cambazard, Benoît Cance, Nicolas Catusse, Pierre Lemaire Univ. Grenoble Alpes, G-SCOP

> > Anne-Marie Lagrange, Pascal Rubini CNRS, IPAG

Planet that orbits a star \neq sun

• Earth twin ?

$pprox\,$ 2000 planets discovered

- A few dozens with direct imaging
- Some light years distance from earth
- million times less brilliant than their stars

New Observation tools:

VLT SPHERE

- Anne-Marie Lagrange
- Beta pictoris b (2008)

Extrasolar planet observation

From earth: the VLT (Chili)

The Astrophysicists

- Survey potential stars
- Book a fixed set of nights within the budget

About 100.000 euros a night

• Decide the observation schedule for each night to **maximize scientific interest**

Extrasolar planet observation

From earth: the VLT (Chili)

Main constraints

- Visibility period of the stars
- Position in the sky influence
 - Quality of the observation
 - Length of the observation
- Some stars are scientifically more important than others
- Calibration (runs, earthquake)

Observation *i* **in night** *j*

 $[r_i^j, d_i^j[$: visibility interval

 $p_{p_i}^{j_j}$: duration of the observation

 w_i : scientific interest

The meridian instant $m_i = \frac{d_i^j - r_i^j}{2}$ is a mandatory instant of observation, that is for every star i: $p_i^j \ge \frac{d_i^j - r_i^j}{2}$

The observations must be scheduled by non-decreasing meridian time

The meridian instant $m_i = \frac{d_i^j - r_i^j}{2}$ is a mandatory instant of observation, that is for every star i: $p_i^j \ge \frac{d_i^j - r_i^j}{2}$

The observations must be scheduled by non-decreasing meridian time

The meridian instant $m_i = \frac{d_i^j - r_i^j}{2}$ is a mandatory instant of observation, that is for every star i: $p_i^j \geq \frac{d_i^j - r_i^j}{2}$

The observations must be scheduled by non-decreasing meridian time

A solution

Star Scheduler A MIP model

Star Scheduler A MIP model

Star Scheduler A MIP model

Very poor linear relaxation, does not scale in memory $O(n^2m)$

Star Scheduler - A CP model

A CP model:

• Use optional tasks of CPO and NoOverlap for each night

Star Scheduler - A CP model

A CP model:

• Use optional tasks of CPO and NoOverlap for each night

$$\begin{array}{ll} \max \, z = \sum_{i} w_{i} z_{i} \\ \sum_{j} z_{i}^{j} = z_{i} & \forall \, i \\ z_{i}^{j} = 1 \Leftrightarrow \underline{task_{i}^{j}} \text{ is present} & \forall \, i \, \forall \, j \\ \text{NOOVERLAP}([task_{1}^{j}, \ldots, task_{n}^{j}]) & \forall \, j \end{array}$$

Star Scheduler - A CP model

A CP model:

• Use optional tasks of CPO and NoOverlap for each night

$$\max z = \sum_{i} w_{i} z_{i}$$

$$\sum_{j} z_{i}^{j} = z_{i} \qquad \forall i$$

$$z_{i}^{j} = 1 \Leftrightarrow \underline{task_{i}^{j}} \text{ is present} \qquad \forall i \forall j$$

$$\text{NOOVERLAP}([task_{1}^{j}, \dots, task_{n}^{j}]) \qquad \forall j$$

- + precedences when on the same night
- + clique of known incompatible observations
- Best results (LNS) with a blackbox model but remains unable to handle the real-life dataset (800 observations, 142 nights)
- No effective filtering and no interesting global upper bound

Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t $\sum_i w_i$ is maximized

Find and schedule a subset S of observations s.t $\sum_i w_i$ is maximized

• Suppose observation 3 is scheduled

- Suppose observation 3 is scheduled
- 6 is incompatible

- Suppose observation 3 is scheduled
- 6 is incompatible
- Left and right subproblems are independent (observations are scheduled in non-decreasing time of their meridians)

f(i,t) : maximum interest with observations 1 to i (schedule order) and such that i ends before time t

$$f(i,t) = \begin{cases} \max(f(i-1,t), f(i-1,t-p_i) + w_i) & i \in [1,n], t \in [r_i + p_i, d_i] \\ f(i-1,t) & i \in [1,n], t \in [0, r_i + p_i[\\ i \in [1,n], t \in]d_i, T] \\ 0 & i = 0, t \in [0,T] \end{cases}$$

f(n,T) can be found in O(nT)

Star Scheduler - An improved CP model

$$\begin{array}{l} \max \ z = \sum_{j} interest \ of \ night \ \mathbf{j} \\ \sum_{j} z_{i}^{j} \leq 1 & \forall i \\ \hline \mathbf{NIGHTNOOVERLAP}([z_{1}^{j}, \ldots, z_{n}^{j}], interest_{j}) & \forall j \end{array}$$

- Update <u>interest</u> based on the observations assigned in the night
- Filter observations that can not fit in the night anymore
- Filter $\overline{interest_j}$ using DP
- Force (in the night) observations that are mandatory to reach *interest_j*

Star Scheduler - An improved CP model

$$\begin{array}{l} \text{interest of night } \mathbf{j} \\ \max \ z = \sum_{j} \textit{interest}_{j} \\ \sum_{j} z_{i}^{j} \leq 1 \\ \hline \mathbf{NIGHTNOOVERLAP}([z_{1}^{j}, \ldots, z_{n}^{j}], \textit{interest}_{j}) \quad \forall \, j \end{array}$$

- + scheduling is excluded from the search space
- + strong filtering for each night
- nights remains filtered independently, no strong lower bound

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$

$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j$$

$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$$

$$\rho_{j}^{k} \in \{0,1\} \qquad \forall k \in \Omega_{j}, \forall j$$

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} = 1 \quad \text{iff } \mathbf{k} \text{-th schedule of night } \mathbf{j} \text{ is selected}$$

$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \quad \forall j$$

$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$$

$$\rho_{j}^{k} \in \{0,1\} \quad \forall k \in \Omega_{j}, \forall j$$

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} = 1 \quad \text{iff } \mathbf{k} \text{-th schedule of night } \mathbf{j} \text{ is selected}$$

$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \quad \forall j$$

$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$$

$$\rho_{j}^{k} \in \{0,1\} \quad \forall k \in \Omega_{j}, \forall j$$

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} = 1$$

$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1$$

$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1$$

$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1$$

$$\forall j$$

$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1$$

$$\forall i$$

$$\rho_{j}^{k} \in \{0,1\}$$

$$\forall k \in \Omega_{j}, \forall j$$

- One variable (a column) = one night schedule
- Constraints of the LP:
 - Exactly one schedule for each night
 - One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$\begin{array}{l} \max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} &= 1 \quad \text{iff } \mathbf{k} \text{-th schedule of night } \mathbf{j} \text{ is selected} \\ \\ \sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \quad \forall j \quad (\text{exactly one schedule for each night}) \\ \\ \sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \text{ (observations are assigned to at most one night)} \\ \\ \rho_{j}^{k} \in \{0,1\} \quad \forall k \in \Omega_{j}, \forall j \end{array}$$

An extended LP formulation

 Ω_j : the set all possible schedules of night j $s_{i,j}^k = 1$ iff observation i belongs to the k-th schedule of night j $(s_{1,j}^k,\ldots,s_{n,j}^k)$: 0/1 description of the k-th schedule of night j $w_j^k = \sum_i w_i s_{i,j}^k$: interest of the k-th schedule of night j

$$\begin{array}{l} \max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} &= 1 \quad \text{iff } \mathbf{k} \text{-th schedule of night } \mathbf{j} \text{ is selected} \\ \\ \sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \quad \forall j \quad (\text{exactly one schedule for each night}) \\ \\ \sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \text{ (observations are assigned to at most one night)} \\ \\ \rho_{j}^{k} \in \{0,1\} \quad \forall k \in \Omega_{j}, \forall j \end{array}$$

 $\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} \longrightarrow = 1 \text{ iff } \mathbf{k} \text{-th schedule of night } \mathbf{j} \text{ is selected } \rho_{j}^{k} \in \{0, 1\}$ $\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \quad (\text{exactly one schedule for each night})$ $\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad (\text{observations are assigned to at most one night})$

The LP relaxation can be solved by **column generation**:

- Iteratively add a variable (schedule) of maximum reduced cost
- Only a tiny fraction of the variables are needed

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$
$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j$$
$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \ \forall i$$

The LP relaxation can be solved by **column generation**:

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$
$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j \quad (\alpha_{j})$$
$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \quad (\beta_{i})$$

The LP relaxation can be solved by **column generation**:

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$
$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j \quad (\alpha_{j})$$
$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \quad (\beta_{i})$$

The LP relaxation can be solved by **column generation**:

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$
$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j \quad (\alpha_{j})$$
$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \quad (\beta_{i})$$

The LP relaxation can be solved by **column generation**:

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$
$$rc(\rho_j^k) = \sum_i (w_i - \beta_i) s_{i,j}^k - \alpha_j$$

$$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$$
$$\sum_{k \in \Omega_{j}} \rho_{j}^{k} = 1 \qquad \forall j \quad (\alpha_{j})$$
$$\sum_{j} \sum_{k \in \Omega_{j}} s_{i,j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i \quad (\beta_{i})$$

The LP relaxation can be solved by **column generation**:

• Iteratively add a variable (schedule) of maximum reduced cost

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$
$$rc(\rho_j^k) = \sum_i (w_i - \beta_i) s_{i,j}^k - \alpha_j$$

- Solve the one night problem where w_i is replaced by $(w_i - \beta_i)$

Star Scheduler - An improved CP model

$$\max z = \sum_{j} interest_{j}$$

$$\sum_{j} z_{i}^{j} \leq 1 \qquad \forall i$$

$$\text{NIGHTNOOVERLAP}([z_{1}^{j}, \dots, z_{n}^{j}], interest_{j}) \quad \forall j$$

$$\text{OBJECTIVE}([z_{1}^{1}, \dots, z_{n}^{m}], z)$$

Solve the LP relaxation by column generation:

- Filter the upper bound of z
- Reduced-cost filtering to exclude/force observations into nights ?

Branch and price algorithm implemented in a CP framework

• The reduced cost of the **k**-th schedule of night **j**

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

• The reduced cost of the **k**-th schedule of night **j**

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

• How to filter the upper bound of a z_i^j variable, i.e. excluding observation **i** from night **j**?

• The reduced cost of the **k**-th schedule of night **j**

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

- How to filter the upper bound of a z_i^j variable, i.e. excluding observation **i** from night **j**?
- What is smallest decrease of the objective over all possible schedules that includes **i** in night **j**?

The reduced cost of the k-th schedule of night j

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

- How to filter the upper bound of a z_i^j variable, i.e. excluding observation **i** from night **j**?
- What is smallest decrease of the objective over all possible schedules that includes **i** in night **j**?

$$z_{LP}^* + \max_{k \in \Omega_j | s_{i,j}^k = 1} (rc(\rho_j^k)) < \underline{z} \implies z_i^j \neq 1$$

The reduced cost of the k-th schedule of night j

$$rc(\rho_j^k) = w_j^k - \alpha_j - \sum_i s_{i,j}^k \beta_i$$

- How to filter the upper bound of a z_i^j variable, i.e. excluding observation **i** from night **j**?
- What is smallest decrease of the objective over all possible schedules that includes **i** in night **j**?

$$z_{LP}^* + \max_{\substack{k \in \Omega_j | s_{i,j}^k = 1}} (rc(\rho_j^k)) < \underline{z} \implies z_i^j \neq 1$$

• The two steps backward-forward resolution of the DP provides exactly this information.

Star Scheduler -Results

Branch and price proves to be extremely efficient (benchmark of 21 instances):

- The real-life instance (800 observations, 142 nights) is solved optimally in less than 10 minutes
- 18 instances are solved optimally between 1 to 20 minutes
- 3 instances remains open in 2h time limit but the optimality gap is less than 0.11 %
- All feasible solutions significantly improves the MIP/CP approach

Star Scheduler -Results

[Catusse et al. 2016]

Branch and price proves to be extremely efficient (benchmark of 21 instances):

- The real-life instance (800 observations, 142 nights) is solved optimally in less than 10 minutes
- 18 instances are solved optimally between 1 to 20 minutes
- 3 instances remains open in 2h time limit but the optimality gap is less than 0.11 %
- All feasible solutions significantly improves the MIP/CP approach

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
 - Filtering the upper bound of a 0/1 variable
 - Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP
- **3.** Illustration with a real-life application

Conclusion

Focus of this talk:

Investigate/understand filtering techniques beyond polynomial sub-problems (beyond local-consistencies)

Help us to grow a better understanding of OR