Linear and dynamic programming for constraints

Hadrien Cambazard
G-SCOP, Université Grenoble Alpes

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a $0 / 1$ variable
- Filtering the lower bound of a $0 / 1$ variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

Reduced cost based filtering

- Linear Programming duality [Linear Programming, Chvatal, 2003]
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$	
$\left(c_{1}\right)$		
$\left(c_{2}\right)$	$2 x+3 y$	≥ 10
$x+y$	≥ 5	
x, y	≥ 0	

What lower bound can you derive from the constraints ?

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$	
$\left(c_{1}\right)$		
$\left(c_{2}\right)$	$2 x+3 y$	≥ 10
	$x+y$	≥ 5
x, y	≥ 0	

What lower bound can you derive from the constraints ?
Using c_{1} alone:

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	\geq	10
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ?
Using c_{1} alone:

$$
z=5 x+6 y \geq 2 x+3 y \geq 10
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	\geq	10
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ?
Using c_{1} alone:

$$
z=5 x+6 y \geq 2 x+3 y \geq 10
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	≥ 10	
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ?
Using c_{1} alone:

$$
z=5 x+6 y \geq \overbrace{2}^{2} x+3 y \geq 10
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	≥ 10	
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ?
Using c_{1} alone:

$$
z=5 x+6 y \geq \overbrace{2}^{2} x+3 x \geq 10
$$

And x, y positive

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	≥ 10	
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ? Using c_{1} alone:

$$
z=5 x+6 x \geq 2 x+\sqrt{3} x \geq 10 \quad \text { So } \quad z^{*} \geq 10
$$

And x, y positive

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
\\
2 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq 50
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} :
\ldots so $z^{*} \geq 10$

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
\\
2 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq 50
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$
$z=5 x+6 y \geq 3 x+4 y \geq 10+5=15$

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
5 x+3 y \\
\\
\\
x+y \\
x, y
\end{gathered} \geq 5 \begin{gathered}
\\
\\
\end{gathered}
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$
$\stackrel{c_{1}+c_{2}}{ }$

$$
z=5 x+6 y \geq 3 x+4 y \geq 10+5=15
$$

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
5 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq 5 \begin{gathered}
\\
\\
\end{gathered}
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$

$$
z=5 x+6 y \geq 3 x+4 y \geq 10+5=15
$$

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
5 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq \begin{gathered}
\\
\\
\end{gathered}
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$
$z=5 x+6 y \geq \sqrt{3 x+4} y \geq 10+5=15$

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
5 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq \begin{gathered}
\\
\\
\end{gathered}
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$
$z=5 x+6 y \geq \overbrace{}^{2} x+4 y \geq 10+5=15$
And x , y positive

Linear Programming duality

$$
\begin{array}{cc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right)
\end{array} \quad \begin{gathered}
5 x+3 y \\
\\
x+y \\
x, y
\end{gathered} \geq \begin{gathered}
\\
\\
\end{gathered}
$$

What lower bound can you derive from the constraints ?
Using c_{1} and c_{2} : $\quad .$. so $z^{*} \geq 10$
$z=5 x+6 y \geq \overbrace{}^{c_{1}+c_{2}} x+4 y \geq 10+5=15$ so $z^{*} \geq 15$
And x , y positive

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$	
$\left(c_{1}\right)$		
$\left(c_{2}\right)$	$2 x+3 y$	≥ 10
	$x+y$	≥ 5
x, y	≥ 0	

What lower bound can you derive from the constraints ?

And x , y positive

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$	$2 x+3 y$	\geq	10
$\left(c_{2}\right)$	$x+y$	\geq	5
	x, y	≥ 0	

What lower bound can you derive from the constraints?

c_{1}	implies	$z^{*} \geq 10$
$c_{1}+c_{2}$	implies	$z^{*} \geq 15$
$c_{1}+3 c_{2}$	implies	$z^{*} \geq 25$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$	$2 x+3 y$	\geq	10
$\left(c_{2}\right)$	$x+y$	\geq	5
	x, y	≥ 0	

What lower bound can you derive from the constraints ?

c_{1}	implies	$z^{*} \geq 10$
$c_{1}+c_{2}$	implies	$z^{*} \geq 15$
$c_{1}+3 c_{2}$	implies	$z^{*} \geq 25$

Is there a gap left?

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$	$2 x+3 y$	\geq	10
$\left(c_{2}\right)$	$x+y$	\geq	5
	x, y	≥ 0	

What lower bound can you derive from the constraints ?

c_{1}	implies	$z^{*} \geq 10$
$c_{1}+c_{2}$	implies	$z^{*} \geq 15$
$c_{1}+3 c_{2}$	implies	$z^{*} \geq 25$

Is there a gap left? No

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$			
$\left(c_{2}\right)$	$x+3 y$	\geq	10
	$x+y$	≥ 5	
	x, y	≥ 0	

What lower bound can you derive from the constraints ?

c_{1}	implies	$z^{*} \geq 10$
$c_{1}+c_{2}$	implies	$z^{*} \geq 15$
$c_{1}+3 c_{2}$	implies	$z^{*} \geq 25$

Is there a gap left? No

$$
(x, y)=(5,0) \quad \text { is feasible so } \quad z^{*} \leq 25
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$	
$\left(c_{1}\right)$		
$\left(c_{2}\right)$	$2 x+3 y$	≥ 10
	$x+y$	≥ 5
x, y	≥ 0	

What lower bound can you derive from the constraints ?

$$
\begin{array}{lll}
c_{1} & \text { implies } & z^{*} \geq 10 \\
c_{1}+c_{2} & \text { implies } & z^{*} \geq 15 \\
c_{1}+3 c_{2} & \text { implies } & z^{*} \geq 25
\end{array}
$$

Goal: a linear combination of the right hand sides

- that bounds the objective from below
- and which is maximum

Linear Programming duality

$$
\begin{aligned}
& \left(c_{1}\right) \\
& \left(c_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Min} z= & 5 x+6 y \\
2 x+3 y & \geq 10 \\
x+y & \geq 5 \\
x, y & \geq 0
\end{aligned}
$$

Goal: a linear combination of the right hand sides:

- that bounds the objective from below
- and which leads to the maximum bound

Linear Programming duality

Goal: a linear combination of the right hand sides:

- that bounds the objective from below
- and which leads to the maximum bound

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$	$2 x+3 y$	\geq	10
$\left(c_{2}\right)$	$x+y$	≥ 5	
	x, y	≥ 0	

Goal: a linear combination of the right hand sides:

- that bounds the objective from below
- and which leads to the maximum bound

$$
\operatorname{Max} w=\begin{array}{cl}
10 \lambda_{1}+5 \lambda_{2} & \\
2 \lambda_{1}+\lambda_{2} & \leq 5 \\
3 \lambda_{1}+\lambda_{2} & \leq 6 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{array}
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$		
$\left(c_{1}\right)$	$2 x+3 y$	\geq	10
$\left(c_{2}\right)$	$x+y$	≥ 5	
	x, y	≥ 0	

Goal: a linear combination of the right hand sides:
\square that bounds the objective from below

- and which leads to the maximum bound

$$
\operatorname{Max} w=\begin{array}{cc}
10 \lambda_{1}+5 \lambda_{2} \\
& \begin{array}{|ccc}
2 \lambda_{1}+\lambda_{2} & \leq & 5 \\
3 \lambda_{1}+\lambda_{2} & \leq & 6 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{array}
\end{array}
$$

Linear Programming duality

	$\operatorname{Min} z=5 x+6 y$	
$\left(c_{1}\right)$		
$\left(c_{2}\right)$	$x+3 y$	\geq
	$x+y$	≥ 5
	x, y	≥ 0

Goal: a linear combination of the right hand sides:
\square that bounds the objective from below and which leads to the maximum bound

$$
\begin{array}{ll}
\operatorname{Max} w=\frac{10 \lambda_{1}+5 \lambda_{2}}{} \\
\sqrt{2 \lambda_{1}+\lambda_{2}} \leq 5 \\
3 \lambda_{1}+\lambda_{2} & \leq 6 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{array}
$$

Linear Programming duality

$$
\begin{array}{ccc}
& \operatorname{Min} z=5 x+6 y \\
\left(c_{1}\right) \\
\left(c_{2}\right) & & \\
& 2 x+3 y & \geq \\
x+y & \geq \\
x, y & \geq 0
\end{array}
$$

What lower bound can you derive from the constraints ?

$$
\operatorname{Max} w=\begin{array}{cl}
10 \lambda_{1}+5 \lambda_{2} & \\
2 \lambda_{1}+\lambda_{2} & \leq 5 \\
3 \lambda_{1}+\lambda_{2} & \leq 6 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{array}
$$

Any feasible solution of the dual gives a lower bound $c_{1}+c_{2}$ is $\left(\lambda_{1}, \lambda_{2}\right)=(1,1)$ which gives $w=15$ $c_{1}+3 c_{2}$ is $\left(\lambda_{1}, \lambda_{2}\right)=(1,3)$ which gives $w=25$

Linear Programming duality

$$
\begin{array}{rlll}
\operatorname{Min} z= & 5 x+6 y \\
2 x+3 y & \geq & 10 \\
x+y & \geq & 5 \\
(P) & \geq
\end{array}
$$

What lower bound can you derive from the constraints ?

$$
\begin{array}{cl}
\operatorname{Max} w=\begin{array}{c}
10 \lambda_{1}+5 \lambda_{2} \\
\\
2 \lambda_{1}+\lambda_{2} \\
\end{array} \leq 5 \\
3 \lambda_{1}+\lambda_{2} & \leq 6 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{array}
$$

The dual of the dual is the primal

Linear Programming duality

(P)

$$
\begin{aligned}
\operatorname{Min} z= & \sum_{i=1}^{n} c_{i} x_{i} \\
& \sum_{i=1}^{n} a_{i j} x_{i} \geq b_{j} \quad \forall j=1, \ldots, m \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Max} w= & \sum_{\substack{j=1 \\
m}} b_{j} \lambda_{j} \\
& \sum_{j=1}^{m} a_{i j} \lambda_{j} \leq c_{i} \quad \forall i=1, \ldots, n \\
\lambda_{j} & \geq 0 \quad \forall j=1, \ldots, m
\end{aligned}
$$

- View the dual as the problem of the best linear combination of the constraints
- Any feasible solution of the dual gives a lower bound

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2,3\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{1,2\}
\end{aligned}
$$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2,3\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{1,2\}
\end{aligned}
$$

A solution: AtMostNValue ([2, 2, 2, 2, 4, 4], 2)

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{array}{ll}
D\left(X_{1}\right)=\{1,2,3,4,5,6\} & D\left(X_{1}\right)=\{1,2, \mathscr{K}, 4,5, \mathfrak{K}\} \\
D\left(X_{2}\right)=\{2,4\} & D\left(X_{2}\right)=\{2,4\} \\
D\left(X_{3}\right)=\{1,2\} & D\left(X_{3}\right)=\{1,2\} \\
D\left(X_{4}\right)=\{1,2,3\} & D\left(X_{4}\right)=\{1,2, \notin\} \\
D\left(X_{5}\right)=\{4,5\} & D\left(X_{5}\right)=\{4,5\} \\
D\left(X_{6}\right)=\{4,5\} & D\left(X_{6}\right)=\{4,5\} \\
D(N)=\{1,2\} & D(N)=\{\nless, 2\}
\end{array}
$$

A solution: AtMostNValue $([2,2,2,2,4,4], 2)$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{1}\right)=\{1,2, \mathscr{Z}, 4,5, \text { 㙇 }\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2, \not, \not\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{\mathbb{N}, 2\} \\
& D\left(X_{3}\right) \cap D\left(X_{5}\right)=\emptyset
\end{aligned}
$$

A solution: AtMostNValue $([2,2,2,2,4,4], 2)$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2,3\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{1,2\}
\end{aligned}
$$

Intersection graph of the domains

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2,3\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{1,2\}
\end{aligned}
$$

A support of the lower bound of $\mathrm{N}=$ an independent set

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2,3,4,5,6\} \\
& D\left(X_{2}\right)=\{2,4\} \\
& D\left(X_{3}\right)=\{1,2\} \\
& D\left(X_{4}\right)=\{1,2,3\} \\
& D\left(X_{5}\right)=\{4,5\} \\
& D\left(X_{6}\right)=\{4,5\} \\
& D(N)=\{1,2\}
\end{aligned}
$$

Remove all values except $\{1,2,4,5\}$ since $D\left(X_{5}\right) \cup D\left(X_{3}\right)=\{1,2,4,5\}$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
- Greedy computation of independent sets
- Cost-based filtering with Lagrangian relaxation
- LP Reduced-costs

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
- Greedy computation of independent sets
[Hebrard et al. 2006]
- Cost-based filtering with Lagrangian relaxation
- LP Reduced-costs

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{6}\right], N\right)$

Enforce the number of distinct values appearing in the set X to be at most N

- Enforcing Generalized-Arc-Consistency is NP-Hard
- Filtering algorithm can be based on:
- Greedy computation of independent sets
[Hebrard et al. 2006]
- Cost-based filtering with Lagrangian relaxation [Cambazard et al. 2015]
- LP Reduced-costs

AtMostNValue

- However we cannot express reasonings on mandatory values

AtMostNValue

- However we cannot express reasonings on mandatory values

Example: AtMostNValue $\left(\left[X_{1}, X_{2}, X_{3}\right], N\right)$

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\} \\
& D\left(X_{2}\right)=\{2,3\} \\
& D\left(X_{3}\right)=\{2,4\} \\
& D(N)=\{2\}
\end{aligned}
$$

AtMostNValue

- However we cannot express reasonings on mandatory values

Example: AtMostNValue $\left(\left[X_{1}, X_{2}, X_{3}\right], N\right)$

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\} \\
& D\left(X_{2}\right)=\{2,3\} \\
& D\left(X_{3}\right)=\{2,4\} \\
& D(N)=\{2\}
\end{aligned}
$$

How to propagate the fact that value 2 is mandatory?

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{n}\right],\left[Y_{1}, \ldots, Y_{m}\right], N\right)$ $Y_{j} \in\{0,1\}$: value j occurs at least once

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{n}\right],\left[Y_{1}, \ldots, Y_{m}\right], N\right)$ $Y_{j} \in\{0,1\}$: value j occurs at least once

Express reasonings on mandatory values

$$
\begin{array}{ll}
D\left(X_{1}\right)=\{1,2\} & D\left(Y_{1}\right)=\{0,1\} \\
D\left(X_{2}\right)=\{2,3\} & D\left(Y_{2}\right)=\{0,1\} \\
D\left(X_{3}\right)=\{2,4\} & D\left(Y_{3}\right)=\{0,1\} \\
D(N)=\{2\} & D\left(Y_{4}\right)=\{0,1\}
\end{array}
$$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{n}\right],\left[Y_{1}, \ldots, Y_{m}\right], N\right)$ $Y_{j} \in\{0,1\}$: value j occurs at least once

Express reasonings on mandatory values

$$
\begin{array}{ll}
D\left(X_{1}\right)=\{1,2\} & D\left(Y_{1}\right)=\{0,1\} \\
D\left(X_{2}\right)=\{2,3\} & D\left(Y_{2}\right)=\{2,1\} \\
D\left(X_{3}\right)=\{2,4\} & D\left(Y_{3}\right)=\{0,1\} \\
D(N)=\{2\} & D\left(Y_{4}\right)=\{0,1\}
\end{array}
$$

AtMostNValue

AtMostNValue $\left(\left[X_{1}, \ldots, X_{n}\right],\left[Y_{1}, \ldots, Y_{m}\right], N\right)$ $Y_{j} \in\{0,1\}:$ value j occurs at least once

Express reasonings on mandatory values

$$
\begin{array}{ll}
D\left(X_{1}\right)=\{1,2\} & D\left(Y_{1}\right)=\{0,1\} \\
D\left(X_{2}\right)=\{2,3\} & D\left(Y_{2}\right)=\{Q, 1\} \\
D\left(X_{3}\right)=\{2,4\} & D\left(Y_{3}\right)=\{0,1\} \\
D(N)=\{2\} & D\left(Y_{4}\right)=\{0,1\}
\end{array}
$$

$Y_{2}=1$
Note that domains of X cannot be filtered...

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{1,2\} \quad D\left(X_{2}\right)=\{2,3\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{1,2\}$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{1,2\} \quad D\left(X_{2}\right)=\{2,3\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin, 2\}$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\mathcal{X}, 2\} \quad D\left(X_{2}\right)=\{2$, 㠷 $\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{X}, 2\}$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 弤 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
The exact lower bound of N can be computed with the following MIP:
$\operatorname{Min} z=\begin{array}{lllll}y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5}\end{array}$

$y_{1}+y_{2}$			$\geq 11 \quad$ (Domain of X_{1})	
$y_{2}+y_{3}$			(Domain of $\left.X_{2}\right)$	
y_{i}		$y_{4}+y_{5}$	$\geq 1 \quad$ (Domain of $\left.X_{3}\right)$	
				$\in\{0,1\}$

$y_{i} \in\{0,1\}$: do we use value i ?

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
Consider the linear relaxation:

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 弤 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
Consider the linear relaxation:

$$
\begin{array}{rlrlll}
\operatorname{Min} z=\begin{array}{rrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} \\
y_{1} & +y_{2} & & & \\
& y_{2} & +y_{3} & & \\
& & & y_{4} & +y_{5} \\
& \geq 1 \\
& & \geq 1 \\
y_{i} & & & & \\
& \geq & 1
\end{array}, ~
\end{array}
$$

Notice that we don't need to state $y_{i} \leq 1$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 弤 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
Consider the linear relaxation:

$$
\begin{array}{rrrrrr}
\left.\operatorname{Min} z=\begin{array}{rrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} \\
& & & \\
y_{1} & +y_{2} & & & \\
& y_{2} & +y_{3} & & \\
& & & & \\
& & & 1 \\
y_{i} & & & & \\
4 & & & \geq & \\
& & & 0
\end{array}\right)
\end{array}
$$

Notice that we don't need to state $y_{i} \leq 1$
First of all, we get $z^{*}=2$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 弤 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
Consider the linear relaxation:

$$
\begin{array}{rlrlll}
\operatorname{Min} z=\begin{array}{crrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
y_{1} & +y_{2} & & & & \geq 1 \\
& y_{2} & +y_{3} & & & \geq 1 \\
& & & y_{4} & +y_{5} & \geq 1 \\
& y_{i} & & & & \\
& \geq 0
\end{array}, ~
\end{array}
$$

Notice that we don't need to state $y_{i} \leq 1$
First of all, we get $z^{*}=2$

Reduced cost based filtering

Consider the following example:
$D\left(X_{1}\right)=\{\nless 2\} \quad D\left(X_{2}\right)=\left\{2\right.$, 弤 $\quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}$
Consider the linear relaxation:

$$
\begin{array}{rllllll}
\left.\operatorname{Min} z=\begin{array}{rrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} \\
y_{1} & +y_{2} & & & \\
& y_{2} & +y_{3} & & \\
& & & & \\
& & & 1 \\
& y_{i} & & & \\
4 & +y_{5} & \geq 1 \\
& & & &
\end{array}\right)
\end{array}
$$

Notice that we don't need to state $y_{i} \leq 1$
First of all, we get $z^{*}=2$

$$
y^{*}=(0,1,0,1,1,0)
$$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{x_{2}, 2\right\} D\left(X_{2}\right)=\left\{2\right.$, 犳 $D\left(X_{3}\right)=\{4,5\} D(N)=\left\{火_{2}\right\}$
$\operatorname{Min} z=\begin{array}{rrrrrr}y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\ & & & \\ y_{1} & +y_{2} & & & & \\ \text { (P) } & & y_{2} & +y_{3} & & \\ & & & & y_{4} & +y_{5} \\ & \geq & 1 \\ & y_{i} & & & & \\ & & & & & \end{array}$

$$
\begin{array}{rrrr}
\operatorname{Max} w=\begin{array}{rrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} \\
& & \\
\lambda_{1} & & \\
& \lambda_{1} & +\lambda_{2} \\
& & \leq 1 \\
\text { (D) } & & \lambda_{2} \\
& & \\
& & \lambda_{3}
\end{array} \leq 1 \\
& & & \lambda_{3} \\
& \leq 1 \\
& & & \\
& & \geq 0
\end{array}
$$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{x_{2}, 2\right\} D\left(X_{2}\right)=\left\{2\right.$, 犳 $D\left(X_{3}\right)=\{4,5\} D(N)=\left\{火_{2}\right\}$
$\begin{array}{rlrlrll}\operatorname{Min} z=\begin{array}{ccccc}y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} \\ & y_{1} & +y_{2} & & \\ \text { (P) } & & y_{2} & +y_{3} & \\ & & & \\ & & & & y_{4}\end{array}+y_{5} & \geq 1 \\ & y_{i} & & & & & \\ & & & & & \end{array}$

$$
\begin{align*}
& \operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3} \tag{2}\\
& \text { (D) } \begin{array}{rccc}
\lambda_{1} & & & \leq 1 \\
\lambda_{1} & +\lambda_{2} & & \leq 1 \\
& & \lambda_{2} & \\
& & \lambda_{3} & \leq 1 \\
& & \lambda_{3} & \leq 1 \\
& & & \geq 0
\end{array} \tag{1}
\end{align*}
$$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{x_{1}, 2\right\} D\left(X_{2}\right)=\left\{2\right.$, 犳 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{N}_{2}\right\}$
$\left.\operatorname{Min} z=\begin{array}{rrrrrr}y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\ \\ y_{1} & +y_{2} & & & & \\ \text { (P) } & & y_{2} & +y_{3} & & \\ & & \geq & 1 & \left(\lambda_{1}\right) \\ & & & & y_{4} & +y_{5} \\ & & \geq & 1 & \left(\lambda_{2}\right) \\ & y_{i} & & & & \\ & & & & & \\ & & & & \end{array}\right)$

$$
\begin{aligned}
& \operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& \text { (D) } \begin{array}{rrrr}
\lambda_{1} & & & \leq 1 \\
\lambda_{1} & +\lambda_{2} & & \leq 1 \\
& & \lambda_{2} & \\
& & \lambda_{3} & \leq 1 \\
& & \lambda_{3} & \leq 1 \\
& & & \\
& & & \\
& & &
\end{array}
\end{aligned}
$$

y^{*}
$\left(y_{1}\right)(0)$
$\left(y_{2}\right)(1)$
$\left(y_{3}\right)(0)$
$\left(y_{4}\right)(1)$
$\left(y_{5}\right)(0)$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{x_{1}, 2\right\} D\left(X_{2}\right)=\left\{2\right.$, 射 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{x_{2}\right\}$

$$
\begin{array}{rlrlrl}
\operatorname{Min} z=\begin{array}{rrrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
& y_{1} & +y_{2} & & & \\
\text { (P) } & & y_{2} & +y_{3} & & \\
& & & \geq & 1 \\
& & & & y_{4} & +y_{5}
\end{array} & \geq 1 \\
y_{i} & & & & & \geq
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(0)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)

$$
\begin{array}{rrrr}
\operatorname{Max} w=\begin{array}{rlrl}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & \\
\lambda_{1} & & & \leq 1 \\
\lambda_{1} & +\lambda_{2} & & \leq 1 \\
\text { (D) } & & \lambda_{2} & \\
& & & \leq 1 \\
& & \lambda_{3} & \leq 1 \\
& & \lambda_{3} & \leq 1 \\
& & & \\
& & \geq 0
\end{array}, ~
\end{array}
$$

y^{*}
$\left(y_{1}\right)(0)$
$\left(y_{2}\right)(1)$
$\left(y_{3}\right)(0)$
$\left(y_{4}\right)(1)$
$\left(y_{5}\right)(0)$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 佌 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}$
 Let's try to filter value 1 from X_{1} :

$$
\begin{aligned}
& \operatorname{Min} z=y_{1} \quad+y_{2} \quad+y_{3} \quad+y_{4} \quad+y_{5} \\
& \begin{array}{rrrr}
y_{1}+y_{2} & & & \geq 1 \\
y_{2}+y_{3} & & & \geq 1 \\
& & & y_{4}+y_{5}
\end{array} \\
& y_{i} \\
& \geq 0
\end{aligned}
$$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 佌 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}$
 Let's try to filter value 1 from X_{1} :

$$
\begin{aligned}
\operatorname{Min} z=\begin{array}{rrrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
& y_{1} & +y_{2} & & & \\
\text { (P) } & & y_{2} & +y_{3} & & \\
& & & y_{4} & +y_{5} & \geq 1 \\
& & \geq 1 \\
& & & & & \geq 1 \\
y_{1} & & & & \geq
\end{array}
\end{aligned}
$$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 佌 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}$
 Let's try to filter value 1 from X_{1} :

$$
\begin{aligned}
\operatorname{Min} z=\begin{array}{rrrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
y_{1} & +y_{2} & & & & \\
\text { (P) } & & y_{2} & +y_{3} & & \\
& & & y_{4} & +y_{5} & \geq 1 \\
& & & 1 \\
& & & & & \geq \\
y_{1} & & & & \geq & 0
\end{array}
\end{aligned}
$$

	λ^{*}
$\left(\lambda_{1}\right)$	(0)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(γ)	$(?)$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{U}_{2}, 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
 Let's try to filter value 1 from X_{1} :

$$
\begin{aligned}
\operatorname{Min} z=\begin{array}{rrrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
y_{1} & +y_{2} & & & & \\
\text { (P) } & & y_{2} & +y_{3} & & \\
& & & y_{4} & +y_{5} & \geq 1 \\
& & & 1 \\
& & & & \geq & 1 \\
y_{1} & & & & &
\end{array}
\end{aligned}
$$

| | λ^{*} |
| :--- | :--- | :--- |
| $\left(\lambda_{1}\right)$ | (0) |
| $\left(\lambda_{2}\right)$ | (1) |
| $\left(\lambda_{3}\right)$ | (1) |
| (γ) | $(?)$ |

$$
\begin{array}{rrrl}
\operatorname{Max} w=\begin{array}{rrrl}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} \\
\lambda_{1} & & & \begin{array}{|c}
+\gamma \\
+\gamma \\
\hline
\end{array}
\end{array} \leq 1 \\
\lambda_{1} & +\lambda_{2} & & \\
& \lambda_{2} & & \\
& & \lambda_{3} & \\
& \leq 1 \\
\lambda_{j}, & \gamma & \lambda_{3} & \\
& \leq 1 \\
& \leq 0
\end{array}
$$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 犳 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
 Let's try to filter value 1 from X_{1} :

$$
\begin{aligned}
& \begin{aligned}
\operatorname{Min} z=\begin{array}{rrrrrr}
y_{1} & +y_{2} & +y_{3} & +y_{4} & +y_{5} & \\
y_{1} & +y_{2} & & & & \\
\text { (P) } & & y_{2} & +y_{3} & & \\
& & & y_{4} & +y_{5} & \geq \\
& & 1 \\
& & & & 1 \\
y_{1} & & & & 1 \\
y_{i} & & & & & 0
\end{array}
\end{aligned}
\end{aligned}
$$

We can build a dual
solution by setting γ
greedily to ($1-\lambda_{1}^{*}$)
Note that we are not
solving the LP again

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 好 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}\right. \\
& \begin{array}{ccccc}
\operatorname{Max} w=\begin{array}{llll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma \\
& & & \\
\lambda_{1} & & & \\
& & & \\
\lambda_{1} & +\lambda_{2} & & \leq 1
\end{array} \\
& \lambda_{2} & & \leq 1
\end{array} \quad \lambda^{*}=(0,1, \overline{1}) \\
& \begin{array}{lll}
& \lambda_{3} & \leq 1 \\
\lambda_{j}, \gamma & & \geq 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{*}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 对 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}\right. \\
& \begin{array}{rrrrrl}
\operatorname{Max} w=\begin{array}{lllll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
\lambda_{1} & & & & \\
& +\gamma & \leq 1
\end{array} \\
\lambda_{1} & +\lambda_{2} & & & \leq 1
\end{array} \quad \lambda^{*}=(0,1, \overline{1})
\end{aligned}
$$

We can build a feasible dual solution by setting γ to ($1-\lambda_{1}^{*}$)

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{*}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 对 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{*}=(0,1,1)
\end{aligned}
$$

We can build a feasible dual solution by setting γ to ($1-\lambda_{1}^{*}$)
Thus $z^{*}+\left(1-\lambda_{1}^{*}\right)$ is a lower bound of the modified problem

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{x}, 2\} \quad D\left(X_{2}\right)=\{2, \text { 对 }\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{*}, 2\}
\end{aligned}
$$

We can build a feasible dual solution by setting γ to ($1-\lambda_{1}^{*}$)
Thus $z^{*}+\left(1-\lambda_{1}^{*}\right)$ is a lower bound of the modified problem

So

$$
z^{*}+\left(1-\lambda_{1}^{*}\right)>2 \Longrightarrow y_{1} \neq 1\left(X_{1} \neq 1\right)
$$

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{*}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 加 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}\right.
\end{aligned}
$$

We can build a feasible dual solution by setting γ to ($1-\lambda_{1}^{*}$)
Thus $z^{*}+\left(1-\lambda_{1}^{*}\right)$ is a lower bound of the modified problem

So

Reduced cost of $y_{1} \quad$ (Slack of the dual constraint)

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{\nless}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 加 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}\right. \\
& \begin{array}{rrrrrl}
\operatorname{Max} w=\begin{array}{lllll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
\lambda_{1} & & & & \\
& +\gamma & \leq 1
\end{array} \\
\lambda_{1} & +\lambda_{2} & & & \leq 1
\end{array} \quad \lambda^{*}=(0,1, \overline{1}) \\
& \text { So } z^{*}+r c\left(y_{1}\right)>\bar{z} \Longrightarrow y_{1} \neq 1\left(X_{1} \neq 1\right)
\end{aligned}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=1$

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{\not}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 对 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin, 2\}\right. \\
& \begin{array}{rrrrrl}
\operatorname{Max} w=\begin{array}{lllll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
\lambda_{1} & & & & \\
& +\gamma & \leq 1
\end{array} \\
\lambda_{1} & +\lambda_{2} & & & \leq 1
\end{array} \quad \lambda^{*}=(0,1, \overline{1}) \\
& \text { So } z^{*}+r c\left(y_{1}\right)>\bar{z} \Longrightarrow y_{1} \neq 1\left(X_{1} \neq 1\right)
\end{aligned}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=1$
Reduced cost of $y_{3}: r c\left(y_{3}\right)=\left(1-\lambda_{2}^{*}\right)=(1-1)=0$

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{\nless}, 2\} \quad D\left(X_{2}\right)=\left\{2, \text { 加 } \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\nless 2\}\right. \\
& \begin{array}{rrrrrl}
\operatorname{Max} w=\begin{array}{lllll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
\lambda_{1} & & & & \\
& +\gamma & \leq 1
\end{array} \\
\lambda_{1} & +\lambda_{2} & & & \leq 1
\end{array} \quad \lambda^{*}=(0,1, \overline{1}) \\
& \text { So } z^{*}+r c\left(y_{1}\right)>\bar{z} \Longrightarrow y_{1} \neq 1\left(X_{1} \neq 1\right)
\end{aligned}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=1$
Reduced cost of $y_{3}: r c\left(y_{3}\right)=\left(1-\lambda_{2}^{*}\right)=(1-1)=0$
We cannot filter value 3 using this dual solution

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathcal{K}_{2}^{2\}} D\left(X_{2}\right)=\left\{2, \text { 好 } D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{K}_{2}\right\}\right.\right.
\end{gathered}
$$

$$
\begin{array}{cccccc}
\operatorname{Max} w=\begin{array}{rlrll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
\\
\lambda_{1} & & & +\gamma & \leq 1
\end{array} & \text { But consider } \\
\lambda_{1} & +\lambda_{2} & & & \leq 1 & \lambda^{*}=(1,0,1) \\
& \lambda_{2} & & & \leq 1 & \\
& & \lambda_{3} & & \leq 1 & \\
& & \lambda_{3} & \leq 1 & \\
& \lambda_{j}, & \gamma & & & \\
& & & &
\end{array}
$$

$$
\begin{aligned}
& \text { Reduced cost based filtering } \\
& D\left(X_{1}\right)=\{\mathbb{x}, 2\} \quad D\left(X_{2}\right)=\{2, \text { 对 }\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{*}, 2\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But consider } \\
& \lambda^{*}=(1,0,1)
\end{aligned}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=0$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{L}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{N}_{2}\right\}$

$$
\begin{array}{crrrrl}
\operatorname{Max} w=\begin{array}{rrrrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
& \lambda_{1} & & & +\gamma \\
& \leq 1 & \text { But consider } \\
\lambda_{1} & +\lambda_{2} & & & \leq 1
\end{array} \\
& \lambda_{2} & & & \leq 1 & \lambda^{*}=(1,0,1) \\
& & \lambda_{3} & \leq 1 & \\
& & \lambda_{3} & \leq 1 & \\
& \lambda_{j}, & \gamma & & & \geq 0
\end{array}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=0$
Reduced cost of $y_{3}: r c\left(y_{3}\right)=\left(1-\lambda_{2}^{*}\right)=1$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{L}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{N}_{2}\right\}$

$$
\begin{array}{crrrrl}
\operatorname{Max} w=\begin{array}{lllll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\gamma & \\
& & & \\
\lambda_{1} & & & +\gamma & \leq 1
\end{array} & \text { But consider } \\
\lambda_{1} & +\lambda_{2} & & & \leq 1 & \lambda^{*}=(1,0,1) \\
& \lambda_{2} & & & \leq 1 & \\
& & \lambda_{3} & & \leq 1 & \\
& & \lambda_{3} & \leq 1 & \\
& \lambda_{j}, & \gamma & & & \geq 0
\end{array}
$$

Reduced cost of $y_{1}: r c\left(y_{1}\right)=\left(1-\lambda_{1}^{*}\right)=0$
Reduced cost of $y_{3}: r c\left(y_{3}\right)=\left(1-\lambda_{2}^{*}\right)=1$
Value 3 is now filtered but value 1 is not filtered anymore

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathbb{N}_{2}, 2\right\} D\left(X_{2}\right)=\left\{2, \text { 外 } D\left(X_{3}\right)=\{4,5\} D(N)=\{\mathbb{*}, 2\}\right.
\end{gathered}
$$

- We are filtering the upper bound of y_{1} or y_{3}

$$
z^{*}+r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 1
$$

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathbb{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2, \text { 奴 } D\left(X_{3}\right)=\{4,5\} D(N)=\left\{\mathbb{N}_{2}\right\}\right.
\end{gathered}
$$

- We are filtering the upper bound of y_{1} or y_{3}

$$
z^{*}+r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 1
$$

- But if y_{i} is in the optimal LP solution (the basis), its reduced cost is 0
- This is due to the complementary slackness theorem:

Either the variable is 0 , or the slack of the dual constraint (i.e. the reduced cost) is 0 , or both

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathcal{N}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2, \text { 对 } D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{*}_{2}, 2\right\}\right.
\end{gathered}
$$

- We are filtering the upper bound of y_{1} or y_{3}

$$
z^{*}+r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 1
$$

- But if y_{i} is in the optimal LP solution (the basis), its reduced cost is 0
- This is due to the complementary slackness theorem:

Either the variable is 0 , or the slack of the dual constraint (i.e. the reduced cost) is 0 , or both

- How to filter the lower bound of y_{i} ?

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a $0 / 1$ variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathbb{N}_{2}, 2\right\} D\left(X_{2}\right)=\left\{2, \text { 外 } D\left(X_{3}\right)=\{4,5\} D(N)=\left\{\mathbb{K}_{2}\right\}\right.
\end{gathered}
$$

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of $y_{2}: y_{2} \neq 0$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{K}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{K}_{2}\right\}$

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of $y_{2}: y_{2} \neq 0$

Filter Upper bound $y_{1} \neq 1$

1. Solve the original LP optimally
2. Use the optimal dual solution, to build a feasible dual solution to the problem that would include $y_{1} \geq 1$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{K}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{K}_{2}\right\}$

Let's try to prove that value 2 is mandatory i.e. filter the lower bound of $y_{2}: y_{2} \neq 0$

Filter Upper bound $y_{1} \neq 1$

1. Solve the original LP optimally
2. Use the optimal dual solution, to build a feasible dual solution to the problem that would include $y_{1} \geq 1$

Filter Lower bound $y_{2} \neq 0$

1. Include in the original LP the constraint $y_{2} \leq 1$
2. Solve the modified problem and perform sensibility analysis on the right hand side of $y_{2} \leq 1$

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{U}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\notin 2\}$

Let's try to prove that value 2 is mandatory :

Reduced cost based filtering $D\left(X_{1}\right)=\left\{\mathcal{K}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
 Let's try to prove that value 2 is mandatory :

Note that the upperbound constraint is now added before solving the LP

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{1}, 2\}$Let's try to prove that value 2 is mandatory :

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Note that the upperbound constraint is now added before solving the LP

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2,8\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{1}, 2\}$Let's try to prove that value 2 is mandatory :

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

\(\operatorname{Max} w=\begin{gathered}\lambda_{1}

\lambda_{1}\end{gathered}+_{2}+\lambda_{3}\)| $+\theta$ |
| :---: |
| λ_{1} |

Note that the upperbound constraint is now added before solving the LP

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{1}, 2\}$Let's try to prove that value 2 is mandatory :

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{X}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{1}, 2\}$Let's try to prove that value 2 is mandatory :

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{*}, 2\}$Let's try to prove that value 2 is mandatory :

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Decreasing the upperbound by ϵ increases the objective of at least $-\epsilon \theta^{*}$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{N}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{N}_{2}\right\}$

Let's try to prove that value 2 is mandatory :

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Decreasing the upperbound by ϵ increases the objective of at least $-\epsilon \theta^{*}$

Feasibility of the dual solution is not affected by the change!

Reduced cost based filtering

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Reduced cost based filtering

$\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta \quad y_{2} \leq 1$

Reduced cost based filtering

$$
\begin{array}{ll}
\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta & y_{2} \leq 1 \\
\operatorname{Max} w^{\prime}=\lambda_{1}+\lambda_{2}+\lambda_{3}+(1-\epsilon) \theta & y_{2} \leq(1-\epsilon)
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Reduced cost based filtering

$\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta$	$y_{2} \leq 1$
$\operatorname{Max} w^{\prime}=\lambda_{1}+\lambda_{2}+\lambda_{3}+(1-\epsilon) \theta$	$y_{2} \leq(1-\epsilon)$

Reduced cost based filtering

$\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta$	$y_{2} \leq 1$
$\operatorname{Max} w^{\prime}=\lambda_{1}+\lambda_{2}+\lambda_{3}+(1-\epsilon) \theta$	$y_{2} \leq(1-\epsilon)$

$$
w^{\prime *}=w^{*}-\epsilon \theta^{*}
$$

exact increase

Reduced cost based filtering

$\begin{array}{ll}\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta & y_{2} \leq 1 \\ \operatorname{Max} w^{\prime}=\lambda_{1}+\lambda_{2}+\lambda_{3}+(1-\epsilon) \theta & y_{2} \leq(1-\epsilon)\end{array}$

$$
w^{*}=w^{*}-\epsilon \theta^{*}
$$

lower bound of the increase

$$
w^{\prime *} \geq w^{*}-\epsilon \theta^{*}
$$

Reduced cost based filtering

$$
\begin{array}{ll}
\operatorname{Max} w=\lambda_{1}+\lambda_{2}+\lambda_{3}+\theta & y_{2} \leq 1 \\
\operatorname{Max} w^{\prime}=\lambda_{1}+\lambda_{2}+\lambda_{3}+(1-\epsilon) \theta & y_{2} \leq(1-\epsilon)
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

$$
w^{*}=w^{*}-\epsilon \theta^{*}
$$

lower bound of the increase

$$
w^{\prime *} \geq w^{*}-\epsilon \theta^{*}
$$

Decreasing the upperbound by ϵ increases the objective of at least $-\epsilon \theta^{*}$

Reduced cost based filtering

Let's try to prove that value 2 is mandatory :

$$
\begin{array}{rrrrr}
\operatorname{Max} w=\begin{array}{rrrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\theta \\
\lambda_{1} & & & \boxed{-\epsilon \theta} \\
\lambda_{1} & +\lambda_{2} & & +\theta
\end{array} & \leq 1 \\
\text { (D) } & \lambda_{2} & & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
& & \lambda_{3} & \leq 1 \\
\lambda_{j} & & & \leq 0 \\
\hline \theta & & & & \leq 0 \\
\hline
\end{array}
$$

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{*}, 2\}$Let's try to prove that value 2 is mandatory :

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set the upper bound of y_{2} to 0 , the increase is at least of $-\theta^{*}$

Reduced cost based filtering

 $D\left(X_{1}\right)=\{\mathbb{1}, 2\} \quad D\left(X_{2}\right)=\{2$, 对 $\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{*}, 2\}$Let's try to prove that value 2 is mandatory:

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set the upper bound of y_{2} to 0 , the increase is at least of $-\theta^{*}$

$$
z^{*}-\theta^{*}=2-(-1)>\bar{z}=2 \Longrightarrow y_{2} \neq 0\left(Y_{2}=1\right)
$$

Reduced cost based filtering

$D\left(X_{1}\right)=\left\{\psi_{1}, 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
Let's try to prove that value 2 is mandatory :

$$
\begin{array}{rlrl}
\operatorname{Max} w=\begin{array}{llll}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\theta \\
\lambda_{1} & & & \\
\lambda_{1} & +\lambda_{2} & & +\theta
\end{array} & \leq 1 \\
\text { (D) } & \lambda_{2} & & \\
& & \lambda_{3} & \\
& & \leq 1 \\
\lambda_{j} & & & \leq 1 \\
\lambda_{3} & & \leq 1 \\
\theta & & & \\
\hline
\end{array}
$$

	λ^{*}
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

If we ignore θ and compute the reduced cost of y_{2} :

Reduced cost based filtering

 $D\left(X_{1}\right)=\left\{\psi_{1}, 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$Let's try to prove that value 2 is mandatory :

$$
\begin{array}{rrrrr}
\operatorname{Max} w=\begin{array}{rrrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\theta \\
\lambda_{1} & & & -\epsilon \theta \\
\lambda_{1} & +\lambda_{2} & & +\theta
\end{array} & \leq 1 \\
\text { (D) } & \lambda_{2} & & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
\lambda_{j} & & & \geq 0 \\
\hline \theta & & & \leq & \\
\hline
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

If we ignore θ and compute the reduced cost of y_{2} :

Reduced cost based filtering

$D\left(X_{1}\right)=\left\{\psi_{1}, 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
Let's try to prove that value 2 is mandatory :

$$
\begin{align*}
& \operatorname{Max} w=\begin{array}{lll}
\lambda_{1} \\
\lambda_{1} & +\lambda_{2} & +\lambda_{3} \\
\lambda_{1} & +\theta-\epsilon \theta \\
\leq 1
\end{array} \tag{1}\\
& \text { (D) } \tag{3}
\end{align*}
$$

(λ_{2}) (1)
(θ) (-1)

If we ignore θ and compute the reduced cost of y_{2} :

$$
r c\left(y_{2}\right)=1-\lambda_{1}^{*}-\lambda_{2}^{*}=-1
$$

Reduced cost based filtering

$D\left(X_{1}\right)=\left\{\psi_{1}, 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{火, 2\}$
Let's try to prove that value 2 is mandatory :

$$
\begin{array}{rrrrr}
\operatorname{Max} w=\begin{array}{rrrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\theta \\
\lambda_{1} & & & -\epsilon \theta \\
\lambda_{1} & +\lambda_{2} & & +\theta
\end{array} & \leq 1 \\
\text { (D) } & \lambda_{2} & & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
\lambda_{j} & & & \geq 0 \\
\hline \theta & & & & \leq 0 \\
\hline
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

If we ignore θ and compute the reduced cost of y_{2} :

$$
r c\left(y_{2}\right)=1-\lambda_{1}^{*}-\lambda_{2}^{*}=-1
$$

And the filtering rule can be seen as :

Reduced cost based filtering

$D\left(X_{1}\right)=\{\mathbb{x}, 2\} \quad D\left(X_{2}\right)=\{2,8\} \quad D\left(X_{3}\right)=\{4,5\} \quad D(N)=\{\mathbb{X}, 2\}$
Let's try to prove that value 2 is mandatory :

$$
\begin{array}{rrrrr}
\operatorname{Max} w=\begin{array}{rrrr}
\lambda_{1} & +\lambda_{2} & +\lambda_{3} & +\theta \\
\lambda_{1} & & & -\epsilon \theta \\
\lambda_{1} & +\lambda_{2} & & \boxed{+\theta}
\end{array} \leq 1 \\
& \leq 1 \\
\text { (D) } & \lambda_{2} & & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
& & \lambda_{3} & & \leq 1 \\
\lambda_{j} & & & & \leq \\
\hline \theta & & & \leq & 0 \\
\hline
\end{array}
$$

λ^{*}	
$\left(\lambda_{1}\right)$	(1)
$\left(\lambda_{2}\right)$	(1)
$\left(\lambda_{3}\right)$	(1)
(θ)	(-1)

If we ignore θ and compute the reduced cost of y_{2} :

$$
r c\left(y_{2}\right)=1-\lambda_{1}^{*}-\lambda_{2}^{*}=-1
$$

And the filtering rule can be seen as :

$$
z^{*}-r c\left(y_{2}\right)>\bar{z} \Longrightarrow y_{2} \neq 0 \quad\left(Y_{2}=1\right)
$$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{K}_{2} 2\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 对 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{K}_{2}\right\}$

- To filter the lower bound of y_{2} ?

We include the upper bound constraints in the LP: $y_{i} \leq 1$
And compute the reduced cost by ignoring the dual variables of these constraints

$$
z^{*}-r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 0
$$

> Reduced cost based filtering$D\left(X_{1}\right)=\left\{\mathcal{N}_{2}^{2}\right\} \quad D\left(X_{2}\right)=\left\{2\right.$, 好 $D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{*}_{2}\right\}$

- To filter the lower bound of y_{2} ?

We include the upper bound constraints in the LP: $y_{i} \leq 1$
And compute the reduced cost by ignoring the dual variables of these constraints

$$
z^{*}-r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 0
$$

- To filter the upper bound of y_{1} or y_{3}

$$
z^{*}+r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 1
$$

But if y_{i} is in the optimal LP solution (the basis), its reduced cost is 0 (complementary slackness)

$$
\begin{gathered}
\text { Reduced cost based filtering } \\
D\left(X_{1}\right)=\left\{\mathcal{K}_{2}\right\} \quad D\left(X_{2}\right)=\left\{2, \text { 对 } D\left(X_{3}\right)=\{4,5\} \quad D(N)=\left\{\mathcal{N}_{2}\right\}\right.
\end{gathered}
$$

- To filter the lower bound of y_{2} ?

$$
z^{*}-r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 0
$$

- To filter the upper bound of y_{1} or y_{3}

$$
z^{*}+r c\left(y_{i}\right)>\bar{z} \Longrightarrow y_{i} \neq 1
$$

In any case, the reduced cost can be interpreted as a lower bound of the variation of the objective function per unit of change of the variable

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

General principles

$$
\begin{aligned}
\operatorname{Min} z= & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { (P) } & \sum_{i=1}^{n} a_{i j} x_{i} \geq b_{j} \quad \forall j=1, \ldots, m \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, n
\end{aligned}
$$

Consider one variable $x_{k} \in\left[\underline{x_{k}}, \overline{x_{k}}\right]$
and suppose the LP is solved with the simplex algorithm handling bounds directly
$\operatorname{Max} w=\sum_{j=1}^{m} b_{j} \lambda_{j}$
(D)

$$
\begin{aligned}
\sum_{j=1}^{m} a_{i j} \lambda_{j} & \leq c_{i} \quad \forall i=1, \ldots, n \\
\lambda_{j} & \geq 0 \quad \forall j=1, \ldots, m
\end{aligned}
$$

General principles

$$
\begin{array}{rlll}
\operatorname{Max} w= & \sum_{j=1}^{m} b_{j} \lambda_{j} & & x_{k} \in\left[\underline{x_{k}}, \overline{x_{k}}\right] \\
\text { (D) } & \sum_{j=1}^{m} a_{i j} \lambda_{j} \leq c_{i} \quad \forall i=1, \ldots, n & \\
& \lambda_{j} & \geq 0 \quad \forall j=1, \ldots, m &
\end{array}
$$

Proposition 1 (Reduced cost) Let x^{*} and λ^{*} be a pair of primal and dual feasible solutions of (P) and (D), satisfying the complementary slackness conditions. The reduced cost of variable x_{k} is denoted $r c\left(x_{k}\right)$ and defined as :

$$
r c\left(x_{k}\right)=c_{k}-\left(\sum_{j=1}^{m} a_{k j} \lambda_{j}^{*}\right)
$$

1. If $x_{k}^{*}=\underline{x_{k}}$ then $r c\left(x_{k}\right) \geq 0$
2. If $x_{k}^{*}=\overline{x_{k}}$ then $r c\left(x_{k}\right) \leq 0$
3. If $\underline{x_{k}}<x_{k}^{*}<\overline{x_{k}}$ then $r c\left(x_{k}\right)=0$

General principles

Proposition 1 (Reduced cost) Let x^{*} and λ^{*} be a pair of primal and dual feasible solutions of (P) and (D), satisfying the complementary slackness condiions. The reduced cost of variable x_{k} is denoted $r c\left(x_{k}\right)$ and defined as :

$$
r c\left(x_{k}\right)=c_{k}-\left(\sum_{j=1}^{m} a_{k j} \lambda_{j}^{*}\right)
$$

1. If $x_{k}^{*}=\underline{x_{k}}$ then $r c\left(x_{k}\right) \geq 0$
2. If $x_{k}^{*}=\overline{x_{k}}$ then $r c\left(x_{k}\right) \leq 0$
3. If $\underline{x_{k}}<x_{k}^{*}<\overline{x_{k}}$ then $r c\left(x_{k}\right)=0$

Upper bound

If $r c\left(x_{k}\right)>0$ then $x_{k} \leq \underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq \overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}$ in any solution of cost less than \bar{z}

General principles

Upper bound
If $r c\left(x_{k}\right)>0$ then $x_{k} \leq \underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq \overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}$ in any solution of cost less than \bar{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_{k}

General principles

Upper bound

If $r c\left(x_{k}\right)>0$ then $x_{k} \leq\left\lfloor\underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right\rfloor$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq\left[\overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right]$ in any solution of cost less than \bar{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_{k}

General principles

Upper bound

If $r c\left(x_{k}\right)>0$ then $x_{k} \leq\left\lfloor\underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right\rfloor$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq\left[\overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right]$ in any solution of cost less than \bar{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_{k}
- Floor and ceil if x are integers in the original problem

General principles

Upper bound

If $r c\left(x_{k}\right)>0$ then $x_{k} \leq\left\lfloor\underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right\rfloor$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq\left[\overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right]$ in any solution of cost less than \bar{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_{k}
- Floor and ceil if x are integers in the original problem
- Technique referred to as Variable Fixing

General principles

Upper bound

If $r c\left(x_{k}\right)>0$ then $x_{k} \leq\left\lfloor\underline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right\rfloor$ in any solution of cost less than \bar{z}
Lower bound
If $r c\left(x_{k}\right)<0$ then $x_{k} \geq\left[\overline{x_{k}}+\frac{\left(\bar{z}-z^{*}\right)}{r c\left(x_{k}\right)}\right]$ in any solution of cost less than \bar{z}

- In any case, the reduced cost can be interpreted as a lower bound of the increase of the objective per unit of change of x_{k}
- Floor and ceil if x are integers in the original problem
- Technique referred to as Variable Fixing [Nemhauser and Wolsey. Integer and Combinatorial Optimization. 1988]?

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

AtMostNValue

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, \quad D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, D\left(Y_{2}\right)=\{4,1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, D\left(Y_{2}\right)=\{0,1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Min} z=\begin{array}{llll}
y_{1} & +y_{2} & +y_{3} & +y_{4} \\
y_{1}+y_{2}
\end{array} \quad \text { with } y_{2} \in[0,1] \\
& \begin{array}{llll}
& \begin{array}{lll}
y_{2}+y_{3} & & \geq 1 \\
& y_{2} & \\
y_{i} & & \\
& & \\
& & \geq \\
\hline
\end{array} &
\end{array}
\end{aligned}
$$

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, D\left(Y_{2}\right)=\{0,1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

$$
\begin{array}{rrrrrrl}
\operatorname{Min} z=\begin{array}{cccc}
y_{1} & +y_{2} & +y_{3} & +y_{4} \\
y_{1} & +y_{2} & & \\
& & \geq &
\end{array} \quad \text { with } y_{2} \in[0,1] \\
& y_{2} & +y_{3} & & \geq & 1 & y^{*}=(0,1,0,0) \\
y_{2} & & +y_{4} & \geq & 1
\end{array}
$$

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, D\left(Y_{2}\right)=\{0,1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

$$
\begin{array}{rrrrlll}
\operatorname{Min} z=\begin{array}{llll}
y_{1} & +y_{2} & +y_{3} & +y_{4} \\
y_{1} & +y_{2} & & \\
& & \geq 1 & \text { with } y_{2} \in[0,1] \\
& y_{2} & +y_{3} & \\
y_{2} & & +y_{4} & \geq 1
\end{array} & y^{*}=(0,1,0,0) \\
y_{i} & & & \geq & & \lambda^{*}=(1,1,1)
\end{array}
$$

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, \quad D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, \quad D\left(Y_{2}\right)=\{2,1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

$$
\begin{array}{rrrrlll}
\operatorname{Min} z=\begin{array}{rllll}
y_{1} & +y_{2} & +y_{3} & +y_{4} & \\
& & & \text { with } y_{2} \in[0,1] \\
y_{1} & +y_{2} & & & \geq 1
\end{array} & \\
& y_{2} & +y_{3} & & \geq & y^{*}=(0,1,0,0) \\
& y_{2} & & +y_{4} & \geq 1 & y^{*}=(1,1,1)
\end{array}
$$

$$
\begin{aligned}
& y_{1}^{*}=\underline{y_{1}} \text { and } r c\left(y_{1}\right)=1-\lambda_{1}^{*}=0 \\
& y_{2}^{*}=\overline{y_{2}} \text { and } r c\left(y_{2}\right)=1-\lambda_{1}^{*}-\lambda_{2}^{*}-\lambda_{3}^{*}=-2 \\
& y_{3}^{*}=\underline{y_{2}} \text { and } r c\left(y_{3}\right)=1-\lambda_{2}^{*}=0 \\
& y_{4}^{*}=\underline{y_{3}} \text { and } r c\left(y_{4}\right)=1-\lambda_{3}^{*}=0
\end{aligned}
$$

AtMostNValue

$$
\begin{aligned}
& D\left(X_{1}\right)=\{1,2\}, \quad D\left(X_{2}\right)=\{2,3\}, D\left(X_{3}\right)=\{2,4\}, D(N)=\{2\} \\
& D\left(Y_{1}\right)=\{0,1\}, D\left(Y_{2}\right)=\{\text { \& }, 1\}, D\left(Y_{3}\right)=\{2,4\}, D\left(Y_{4}\right)=\{0,1\}
\end{aligned}
$$

$$
\begin{array}{rrrrlll}
\operatorname{Min} z=\begin{array}{cccc}
y_{1} & +y_{2} & +y_{3} & +y_{4} \\
y_{1} & +y_{2} & & \\
& & \geq 1 & \text { with } y_{2} \in[0,1] \\
& y_{2} & +y_{3} & \\
y_{2} & & +y_{4} & \geq 1
\end{array} & y^{*}=(0,1,0,0) \\
y_{i} & & & & \geq 0 & \lambda^{*}=(1,1,1)
\end{array}
$$

$$
\begin{aligned}
& y_{1}^{*}=\underline{y_{1}} \text { and } r c\left(y_{1}\right)=1-\lambda_{1}^{*}=0 \\
& y_{2}^{*}=\overline{y_{2}} \text { and } r c\left(y_{2}\right)=1-\lambda_{1}^{*}-\lambda_{2}^{*}-\lambda_{3}^{*}=-2 \\
& y_{3}^{*}=\underline{y_{2}} \text { and } r c\left(y_{3}\right)=1-\lambda_{2}^{*}=0 \\
& y_{4}^{*}=\underline{y_{3}} \text { and } r c\left(y_{4}\right)=1-\lambda_{3}^{*}=0
\end{aligned}
$$

$$
y_{2} \geq\left\lceil\overline{y_{2}}+\frac{\left(z^{*}-z\right)}{r c\left(y_{2}\right)}\right\rceil=\left\lceil 1+\frac{2-1}{-2}\right\rceil=\lceil 0.5\rceil=1
$$

Reduced cost based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

LP relaxations used for global constraints

- Assignment problem (used as a lower bound for TSP)

$\operatorname{Min} \sum_{i, j} x_{i j} c_{i j}$

LP relaxations used for global constraints

- Assignment problem (used as a lower bound for TSP)

$\operatorname{Min} \sum_{i, j} x_{i j} c_{i j}$

LP relaxations used for global constraints

- Assignment problem (used as a lower bound for TSP)

$\operatorname{Min} \sum_{i, j} x_{i j} c_{i j}$

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)

LP relaxations used for global constraints

- Assignment problem (used as a lower bound for TSP)

$\operatorname{Min} \sum_{i, j} x_{i j} c_{i j}$

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)
[Milano and al. 2006]

LP relaxations used for global constraints

- Assignment problem (used as a lower bound for TSP)

$\operatorname{Min} \sum_{i, j} x_{i j} c_{i j}$

Used as a relaxation for TSP (relax connectivity but keep degree 2 constraints)
[Milano and al. 2006]

- Global cardinality with costs (ref ? folklore ?)

LP relaxations used for global constraints

- Cumulative (LP formulation with cutting planes)

- Bin-Packing (Arc-flow formulation ...)
[Valério de Carvalho 1999] [Cambazard. 2010]

LP relaxations used for global constraints

- Linear relaxation of global constraints
[Refalo, 2000]: Linear formulation of Constraint Programming models and Hybrid Solvers
\star AllDifferent
\star Element
\star Among
\star Cycle

- Cost-based filtering
[Focacci, Lodi, Milano. 2002]: Embedding relaxations in global constraints for solving TSP and TSPTW

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Table constraint and MDD domains ?

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2,3,4\} \\
& D\left(x_{2}\right)=\{0,1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3,4\}
\end{aligned}
$$

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2,3,4\} \\
& D\left(x_{2}\right)=\{0,1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3,4\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{0,1,2, x_{2}, 4\right\} \\
& D\left(x_{2}\right)=\{0,1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3,4\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2, \text { 为, 嵝 } \\
& D\left(x_{2}\right)=\{0,1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3,4\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2, \text { 为, 嵝 }\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3,4\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

－Let＇s start with linear inequalities first and enforce GAC：

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2, \text { 为为 }\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 准 }\}
\end{aligned}
$$

Q：Give the arc－consistent domains

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2, x, \text { 为 }\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 法 }\}
\end{aligned}
$$

Q: Give the arc-consistent domains

$$
\overline{x_{1}} ?
$$

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2,2, x, \text { 为 }\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 凝 }\}
\end{aligned}
$$

Q: Give the arc-consistent domains
$\overline{x_{1}} ?$
Lower bound for the rest

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2, x, *\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 沙 }\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Lower bound for the rest
$\overline{x_{1}} ?$

$$
\begin{aligned}
& C \text { of the expi } \\
& 3 \overline{x_{1}}+\left(-2 \overline{x_{2}}+4 x_{3}\right) \leq 7 \\
& 3 \overline{x_{1}}+(-8+8) \leq 7
\end{aligned}
$$

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2,2, x\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 凝 }\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Lower bound for the rest
$\overline{x_{1}} ?$

$$
\begin{aligned}
& \nearrow \text { of the expression } \\
& 3 \overline{x_{1}}+\left(-2 \overline{x_{2}}+4 \underline{x_{3}}\right) \leq 7 \\
& 3 \overline{x_{1}}+(-8+8) \leq 7 \\
& \overline{x_{1}} \leq\left\lfloor\frac{7}{3}\right\rfloor=2
\end{aligned}
$$

Linear equation

- Let's start with linear inequalities first and enforce GAC:

$$
3 x_{1}-2 x_{2}+4 x_{3} \leq 7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{0,1,2, x, x^{2}\right\} \\
& D\left(x_{2}\right)=\{x, 1,2,3,4\} \\
& D\left(x_{3}\right)=\{2,3, \text { 泩 }\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Lower bound for the rest
$\overline{x_{1}} ?$

\[

\]

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Update the upper bound of variables with a positive coefficient ($k<n_{1}$)

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Update the upper bound of variables with a positive coefficient $\left(k<n_{1}\right)$

Lower bound for the rest of the expression

$$
\overline{x_{k}} \leftarrow\left\lfloor\frac{c-\left(\sum_{i=1 \wedge i \neq k}^{n_{1}-1} a_{i} \underline{\left.x_{i}-\sum_{i=n_{1}}^{n} b_{i} \overline{x_{i}}\right)}\right.}{a_{k}}\right\rfloor
$$

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Update the upper bound of variables with a positive coefficient ($k<n_{1}$)

Lower bound for the rest of the expression

$$
\overline{x_{k}} \leftarrow\left\lfloor\frac{c-\left[\left(\sum_{i=1 \wedge i \neq k}^{n_{1}-1} a_{i} \underline{\left.\underline{x_{i}}-\sum_{i=n_{1}}^{n} b_{i} \overline{x_{i}}\right)}\right.\right.}{a_{k}}\right\rfloor
$$

- Update the upper bound of variables with a negative coefficient ($k \geq n_{1}$)

$$
\underline{x_{k}} \leftarrow\left\lceil\frac{\left(\sum_{i=1}^{n_{1}-1} a_{i} \underline{x_{i}}-\sum_{i=n_{1} \wedge i \neq k}^{n} b_{i} \overline{x_{i}}\right)-c}{b_{k}}\right\rceil
$$

Linear equation

[Laurière, 1978]

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Update the upper bound of variables with a positive coefficient $\left(k<n_{1}\right)$

Lower bound for the rest of the expression

$$
\overline{x_{k}} \leftarrow\left\lfloor\frac{c-\left(\sum_{i=1 \wedge i \neq k}^{n_{1}-1} a_{i} \underline{\left.x_{i}-\sum_{i=n_{1}}^{n} b_{i} \overline{x_{i}}\right)}\right.}{a_{k}}\right\rfloor
$$

- Update the upper bound of variables with a negative coefficient $\left(k \geq n_{1}\right)$

$$
\underline{x_{k}} \leftarrow\left\lceil\frac{\left(\sum_{i=1}^{n_{1}-1} a_{i} \underline{x_{i}}-\sum_{i=n_{1} \wedge i \neq k}^{n} b_{i} \overline{x_{i}}\right)-c}{b_{k}}\right\rceil
$$

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Is a fixed point needed between the two rules?
- Does that achieve BC or GAC ?

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Is a fixed point needed between the two rules ?

No, the rules and updates are not on the same bounds

- Does that achieve BC or GAC ?

Linear equation

$$
\sum_{i=1}^{n_{1}-1} a_{i} x_{i}-\sum_{i=n_{1}}^{n} b_{i} x_{i} \leq c
$$

Suppose for sake of simplicity: $\forall i a_{i}, b_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$

- Is a fixed point needed between the two rules ?

No, the rules and updates are not on the same bounds

- Does that achieve BC or GAC ?

Only bounds are updated but all remaining values have a support so it achieves GAC

Linear equation

- Consider now: $2 x_{1}+3 x_{2}+4 x_{3}=7$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2\} \\
& D\left(x_{2}\right)=\{0,1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Linear equation

- Consider now: $2 x_{1}+3 x_{2}+4 x_{3}=7$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0,1,2\} \\
& D\left(x_{2}\right)=\{0,1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Consider now

$$
2 x_{1}+3 x_{2}+4 x_{3}=7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0, \text { 水, } 2\} \\
& D\left(x_{2}\right)=\{0,1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Consider now

$$
2 x_{1}+3 x_{2}+4 x_{3}=7
$$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0, \text { 水, } 2\} \\
& D\left(x_{2}\right)=\{\notin, 1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Linear equation

- Consider now: $2 x_{1}+3 x_{2}+4 x_{3}=7$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0, \text { 水, } 2\} \\
& D\left(x_{2}\right)=\{\not 又, 1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Q: How does a CP solver usually filters that constraint?

Linear equation

- Consider now: $2 x_{1}+3 x_{2}+4 x_{3}=7$

$$
\begin{aligned}
& D\left(x_{1}\right)=\{0, \text { 水, } 2\} \\
& D\left(x_{2}\right)=\{\not 又, 1\} \\
& D\left(x_{3}\right)=\{0,1\}
\end{aligned}
$$

Q: Give the arc-consistent domains

Q: How does a CP solver usually filters that constraint?

Q: What values are removed in the example with this technique?

Linear equation

－Consider now

$$
2 x_{1}+3 x_{2}+4 x_{3}=7
$$

$D\left(x_{1}\right)=\{0, ⿻ 上 丨, 2\}$
$D\left(x_{2}\right)=\{\notin, 1\}$
Q：Give the arc－consistent domains $D\left(x_{3}\right)=\{0,1\}$

Q：How does a CP solver usually filters that constraint？
Apply previous filtering algorithm for both（until fixed－point）：

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3} \geq 7 \\
& 2 x_{1}+3 x_{2}+4 x_{3} \leq 7
\end{aligned}
$$

Q：What values are removed in the example with this technique？

Linear equation

－Consider now

$$
2 x_{1}+3 x_{2}+4 x_{3}=7
$$

$D\left(x_{1}\right)=\{0, ⿻ 上 丨, 2\}$
$D\left(x_{2}\right)=\{\notin, 1\}$
Q：Give the arc－consistent domains $D\left(x_{3}\right)=\{0,1\}$

Q：How does a CP solver usually filters that constraint？
Apply previous filtering algorithm for both（until fixed－point）：

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3} \geq 7 \\
& 2 x_{1}+3 x_{2}+4 x_{3} \leq 7
\end{aligned}
$$

Q：What values are removed in the example with this technique？
None

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
Q: What is the complexity of achieving GAC ?

Q: What is the complexity of achieving BC?

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
Q: What is the complexity of achieving GAC ?

- Consider only $\{0,1\}$ domains
- It is as hard as subset sum: « given an integer \boldsymbol{k} and a set \boldsymbol{S} of integers, is there a subset of \boldsymbol{S} that sums to \boldsymbol{k} ? "

Q: What is the complexity of achieving BC ?

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
Q: What is the complexity of achieving GAC ?

- Consider only $\{0,1\}$ domains
- It is as hard as subset sum: « given an integer \boldsymbol{k} and a set \boldsymbol{S} of integers, is there a subset of \boldsymbol{S} that sums to \boldsymbol{k} ? "

Q: What is the complexity of achieving BC ?

- $B C$ and GAC are the same on $\{0,1\}$ domains...
- So BC is just as hard

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{\notin, 1\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{\propto, 1\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{$, 1$\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support $=$ a path from s to t ex: $(2,1,0)$

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{\notin, 1\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support $=$ a path from s to t ex: $(2,1,0)$

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{\notin, 1\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support $=$ a path from s to t ex: $(2,1,0)$
a value of a domain = a set of arcs in the graph
ex: Value 0 of x_{2}

Linear equation

$2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0$, 水, 2$\} \quad D\left(x_{2}\right)=\{\notin, 1\} \quad D\left(x_{3}\right)=\{0,1\}$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support $=$ a path from s to t ex: $(2,1,0)$
a value of a domain = a set of arcs in the graph
ex: Value 0 of x_{2}

Linear equation

$$
2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0, \text { 水, } 2\} \quad D\left(x_{2}\right)=\{\notin, 1\} \quad D\left(x_{3}\right)=\{0,1\}
$$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

a support $=$ a path from s to t ex: $(2,1,0)$
a value of a domain = a set of arcs in the graph

$$
\text { ex: Value } 0 \text { of } x_{2}
$$

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Linear equation

$$
2 x_{1}+3 x_{2}+4 x_{3}=7 \quad D\left(x_{1}\right)=\{0, \text { 水, } 2\} \quad D\left(x_{2}\right)=\{\text { \& }, 1\} \quad D\left(x_{3}\right)=\{0,1\}
$$

- The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

1. forward pass: mark arcs in a breath-first search from s to t
2. backward pass: mark arcs in a breath-first search from t to s
3. remove all non-marked arcs

Linear equation

The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

1. forward pass: mark arcs in a breath-first search from s to t
2. backward pass: mark arcs in a breath-first search from t to s
3. remove all non-marked arcs

Complexity: $O(n m c)$
(positive domains and coefficients)

Linear equation

The dynamic programming approach: formulate it a path problem in a graph with a pseudo-polynomial size...

Filtering:

- remove all arcs that do not belong to a path-support
- remove values when they loose all their supporting arcs

Algorithm:

1. forward pass: mark arcs in a breath-first search from s to t
2. backward pass: mark arcs in a breath-first search from t to s
3. remove all non-marked arcs

Complexity: $O(n m c)$
(positive domains and coefficients)

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
$f(i, K)=$ true if sum \mathbf{K} can be reached with x_{1}, \ldots, x_{i}

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
$f(i, K)=$ true if sum \mathbf{K} can be reached with x_{1}, \ldots, x_{i}

$$
f(i, K)=\vee_{v_{k} \in D\left(x_{i}\right)} f\left(i-1, K-a_{i} v_{k}\right)
$$

We are looking for $f(n, c)$

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
$f(i, K)=$ true if sum \mathbf{K} can be reached with x_{1}, \ldots, x_{i}

$$
f(i, K)=v_{v_{k} \in D\left(x_{i}\right)} f\left(i-1, K-a_{i} v_{k}\right)
$$

We are looking for $f(n, c)$

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
$f(i, K)=$ true if sum \mathbf{K} can be reached with x_{1}, \ldots, x_{i}

$$
\begin{aligned}
& f(i, K)=\bigvee_{v_{k} \in D\left(x_{i}\right)} f\left(i-1, K-a_{i} v_{k}\right) \\
& f(0, K)=\text { false } K \neq 0 \\
& f(0,0)=\text { true }
\end{aligned}
$$

We are looking for $f(n, c)$

Linear equation

$$
\sum_{i=1}^{n} a_{i} x_{i}=c
$$

Suppose for sake of simplicity: $\forall i \quad a_{i} \in \mathbb{N}^{*}$ and $D\left(x_{i}\right) \subset \mathbb{N}$
$f(i, K)=$ true if sum \mathbf{K} can be reached with x_{1}, \ldots, x_{i}

$$
\begin{aligned}
& f(i, K)=\bigvee_{v_{k} \in D\left(x_{i}\right)} f\left(i-1, K-a_{i} v_{k}\right) \\
& f(0, K)=\text { false } K \neq 0 \\
& f(0,0)=\text { true }
\end{aligned}
$$

We are looking for $f(n, c)$
Complexity: $O(n m c)$

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains?

General principles

1. Formulate the problem of existence of a support as a path problem in a graph of pseudo-polynomial size
2. Define properly the graph model:

- support = a path, shortest path, longest path, ...
- values of domains = arcs, nodes

3. Apply a forward-backward pass to mark edges-nodes with

- the value of the best path supporting them

4. Remove all values not supported in the graph

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Table constraint and MDD domains ?

Regular and variants

Regular and variants

- Regular: Regular($\left[X_{1}, \ldots, X_{n}\right]$,A $)$
[Pesant, 2004]
- Propagation based on breath-first-search in the unfolded automaton

Regular and variants

- Regular: $\operatorname{Regular}\left(\left[X_{1}, \ldots, X_{n}\right]\right.$, (A) $)$ [Pesant, 2004]
- Propagation based on breath-first-search in the unfolded automaton
- Cost regular : REGULAR $\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge \sum_{i=1}^{n} c_{i X_{i}}=Z$
- Propagation based on shortest/longest path in the unfolded automaton
[Demassey, Pesant, Rousseau, 2004]

Regular and variants

- Regular: $\operatorname{Regular}\left(\left[X_{1}, \ldots, X_{n}\right]\right.$, (A) $)$

入 Automaton

- Propagation based on breath-first-search in the unfolded automaton
- Cost regular : REGULAR $\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge \sum_{i=1}^{n} c_{i X_{i}}=Z$
- Propagation based on shortest/longest path in the unfolded automaton
[Demassey, Pesant, Rousseau, 2004]
- Multi-cost regular : Multi-cost $\operatorname{Regular}\left(\left[X_{1}, \ldots, X_{n}\right],\left[Z^{1}, \ldots, Z^{R}\right], A\right)$ $\operatorname{Regular}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Propagation based on resource constrained shortest/longest path
- Sequencing and counting at the same time
- Personnel scheduling
[Menana, Demassey, 2009]
- Routing
- Example: combine Regular and GCC

Regular and variants

Regular and variants

- Multi-cost regular :
$\operatorname{REGULAR}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Example:
- Schedule 7 shifts of type: night (N), day (D), rest (R)
- (1) "A Rest must follow a Night shift"

- (2) "Exactly $\mathbf{3}$ day shifts and $\mathbf{1}$ night shift must take place in the week"

Regular and variants

- Multi-cost regular :
$\operatorname{Regular}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Example:
- Schedule 7 shifts of type: night (N), day (D), rest (R)
- (1) "A Rest must follow a Night shift"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
\mathbf{D}	\mathbf{R}	\mathbf{N}	\mathbf{R}	\mathbf{D}	\mathbf{D}	\mathbf{R}

- (2) "Exactly 3 day shifts and 1 night shift must take place in the week"

$$
R=2
$$

$$
\begin{gathered}
\text { D R N } \\
\operatorname{GCC}\left(\left[X_{1}, \ldots, X_{7}\right],[3,0,1],[3,7,1]\right)
\end{gathered}
$$

Regular and variants

- Multi-cost regular :
$\operatorname{REGULAR}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Example:
- Schedule 7 shifts of type: night (N), day (D), rest (R)
- (1) "A Rest must follow a Night shift"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
\mathbf{D}	\mathbf{R}	\mathbf{N}	\mathbf{R}	\mathbf{D}	\mathbf{D}	\mathbf{R}

- (2) "Exactly $\mathbf{3}$ day shifts and 1 night shift must take place in the week"

$$
R=2
$$

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$							
c_{D}^{1}	1	1	1	1	1	1	1
c_{N}^{1}	0	0	0	0	0	0	0
c_{R}^{1}	0	0	0	0	0	0	0

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$							
c_{D}^{2}	0	0	0	0	0	0	0
c_{N}^{2}	1	1	1	1	1	1	1
c_{R}^{2}	0	0	0	0	0	0	0

Regular and variants

- Multi-cost regular :
$\operatorname{REGULAR}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Example:
- Schedule 7 shifts of type: night (N), day (D), rest (R)
- (1) "A Rest must follow a Night shift"

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$
\mathbf{D}

- (2) "Exactly $\mathbf{3}$ day shifts and $\mathbf{1}$ night shift must take place in the week"

$$
R=2
$$

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$							
c_{D}^{1}	1	1	1	1	1	1	1
c_{N}^{1}	0	0	0	0	0	0	0
c_{R}^{1}	0	0	0	0	0	0	0

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$							
c_{D}^{2}	0	0	0	0	0	0	-
c_{N}^{2}	1	1	1	1	1	1	1
c_{R}^{2}	0	0	0	0	0	0	0

Regular and variants

- Multi-cost regular :
$\operatorname{REGULAR}\left(\left[X_{1}, \ldots, X_{n}\right], A\right) \wedge\left(\sum_{i=1}^{n} c_{i X_{i}}^{r}=Z^{r}, \forall r=0, \ldots, R\right)$
- Example:
- Schedule 7 shifts of type: night (N), day (D), rest (R)
- (1) "A Rest must follow a Night shift"

$X_{1} X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$
\mathbf{D}
\mathbf{D}
\mathbf{R}

- (2) "Exactly $\mathbf{3}$ day shifts and $\mathbf{1}$ night shift must take place in the week"

$$
R=2
$$

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$						
1	1	1	1	1	1	1
N 0	0	0	0	0	0	
0	0	0	0	0	0	0

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}$						
2 0 0 0 0 0 0 0 c_{D}^{2} 1 1 1 1 1 1 1 c_{R}^{2} 0 0 0 0 0 0 0						

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains?

Weighted Circuit

WeightedCircuit ([next ${ }_{1}, \ldots$, next $\left._{n}\right], z$)
next ${ }_{i}$: immediate successor of \mathbf{i} in the tour
z : distance of the tour
$d:$ matrix of distances. $d_{i j}$ is the distance of arc (i,j)
next variables must form a tour and $\quad \sum_{i=1}^{n} d_{i, \text { next }}^{i}+$

Weighted Circuit

WeightedCircuit ([next ${ }_{1}, \ldots$, next $\left._{n}\right], z$)
next ${ }_{i}$: immediate successor of \mathbf{i} in the tour
z : distance of the tour
d : matrix of distances. $d_{i j}$ is the distance of arc (i, j)
next variables must form a tour and $\quad \sum_{i=1}^{n} d_{i, \text { next }}^{i} 10 z$

$$
\begin{aligned}
& z=(1+3+3+2+1)=10 \\
& \text { next }_{1}=3 \\
& \text { next }_{3}=2 \\
& \quad \cdots \\
& \text { next }_{5}=1
\end{aligned}
$$

Weighted Circuit

WeightedCircuit ([next ${ }_{1}, \ldots$, next $\left.\left._{n}\right], z\right)$
next ${ }_{i}$: immediate successor of \mathbf{i} in the tour
z : distance of the tour
d : matrix of distances. $d_{i j}$ is the distance of arc (i, j)
next variables must form a tour and $\sum_{i=1}^{n} d_{i, \text { next }}^{i}$ $=z$

- Filter the lower bound of z by solving a relaxation of the TSP
- Detect mandatory/forbidden arcs regarding the upper bound of z
- Applications in routing

Weighted Circuit

WeightedCircuit ([next ${ }_{1}, \ldots$, next $\left._{n}\right], z$)
next ${ }_{i}$: immediate successor of \mathbf{i} in the tour
z : distance of the tour
d : matrix of distances. $d_{i j}$ is the distance of arc (i,j)
next variables must form a tour and $\quad \sum_{i=1}^{n} d_{i, \text { next }}^{i}+$

- Many problems involve side-constraints such as precedences, time-windows, vehicle capacity, ... constraining the position of a city/client in the tour or relative positions of clients
- A useful variable for reasoning: pos_{i} : position of city \mathbf{i} in the tour

Weighted Circuit

$\mathrm{Weighted}^{\operatorname{Circuit}}\left(\left[\right.\right.$ next $_{1}, \ldots$, next $\left._{n}\right],\left[\operatorname{pos}_{1}, \ldots\right.$, pos $\left.\left._{n}\right], z\right)$
$n e x t_{i}$: immediate successor of \mathbf{i} in the tour pos $_{i}$: position of city \mathbf{i} in the tour
z : distance of the tour
d : matrix of distances. $d_{i j}$ is the distance of arc (i, j)

Weighted Circuit

$\mathrm{Weighted}^{\operatorname{Circuit}}\left(\left[\right.\right.$ next $_{1}, \ldots$, next $\left._{n}\right],\left[\right.$ pos $_{1}, \ldots$, pos $\left.\left._{n}\right], z\right)$
$n e x t_{i}$: immediate successor of \mathbf{i} in the tour
pos $_{i}$: position of city \mathbf{i} in the tour
z : distance of the tour
d : matrix of distances. $d_{i j}$ is the distance of arc (i, j)

$$
\begin{array}{lr}
z=(1+3+3+2+1)=10 \\
\text { next }_{1}=3 & \operatorname{pos}_{1}=1 \\
\text { next }_{3}=2 & \operatorname{pos}_{2}=3 \\
\cdots & \operatorname{pos}_{3}=2 \\
\text { next }_{5}=1 & \operatorname{pos}_{4}=4 \\
\operatorname{pos}_{5}=5
\end{array}
$$

Relaxation of TSP to filter \underline{z} ?

Weighted Circuit - TSP relaxations

Weighted Circuit - TSP relaxations

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

One-Tree

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

One-Tree

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

- Connectivity Degree 2

Assignment

One-Tree

Definition 2

- Circuit n arcs
- Degree 2
[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

Assignment

[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

Definition 1

- Connectivity
- Degree 2

Assignment

[Held and Karp. 1970]

Definition 2

- Circuit n arcs
- Degree 2
- Circuit n arcs
- Degree 2

Shortest path with n arcs

[Christophides et al. 1981]

n-path relaxation

n-path relaxation
support of $\underline{z}=$ a shortest path

value 5 of next $_{4}$

n-path relaxation

support of $\underline{z}=$ a shortest path

value 5 of next $_{4}$

n-path relaxation
support of $\underline{z}=$ a shortest path

value 5 of next $_{4}$
value 2 of pos_{3}

n-path relaxation

n-path relaxation: a circuit of n-arcs
$f^{*}(k, i)$: length of an optimal path starting from 1 and reaching i in exactly \mathbf{k} arcs.
We are looking for $f^{*}(n, 1)$

n-path relaxation

n-path relaxation: a circuit of n-arcs
$f^{*}(k, i)$: length of an optimal path starting from 1 and reaching i in exactly \mathbf{k} arcs.
We are looking for $f^{*}(n, 1)$
$f^{*}(k, i)=\min _{j \in D\left(\text { pred }_{i}\right)}\left(f^{*}(k-1, j)+d_{j i}\right) \quad \forall k, \forall i$ s.t $k \in D\left(\right.$ pos $\left._{i}\right)$

n-path relaxation

n-path relaxation: a circuit of n-arcs
$f^{*}(k, i)$: length of an optimal path starting from 1 and reaching i in exactly \mathbf{k} arcs.
We are looking for $f^{*}(n, 1)$
$f^{*}(k, i)=\min _{j \in D\left(p r e d_{i}\right)}\left(f^{*}(k-1, j)+d_{j i}\right) \quad \forall k, \forall i$ s.t $k \in D\left(p o s_{i}\right)$

Filtering of both successors and positions

Complexity in $O\left(n^{3}\right)$

one-tree versus n-path

one-tree versus n-path

[Ducomman et al. 2016]

Dynamic programming for global constraints

- Linear equation
- General principles
- Regular and variants
- WeightedCircuit
- Reformulation of global constraints and MDD domains ?

Reformulations of global constraints

- Reformulating global constraints with small arity constraints to simulate the DP algorithm with AC on the corresponding constraint network:
\star Regular
\star Bound AllDifferent
\star Bound GCC
\star Slides
[Quimper and Walsh, 2007]
\} [Bessiere et al. 2009]
[Bessiere et al. 2008]

Reformulations of global constraints

- Reformulating global constraints with small arity constraints to simulate the DP algorithm with AC on the corresponding constraint network:
\star Regular
\star Bound AllDifferent
\star Bound GCC
\star Slides
[Quimper and Walsh, 2007]
\} [Bessiere et al. 2009]
[Bessiere et al. 2008]
- MDD domains, a form of Dynamic programming ?
- Multi-valued Decision Diagram MDD consistency
- Explicit representation of more refined potential solution space
[Hooker et al. 2007]
- Limited width defines relaxation MDD
- Overcome the current limit that : « constraints are communicating through domains »

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing,

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. Illustration with a real-life application

Star scheduler

Nadia Brauner, Hadrien Cambazard, Benoît Cance, Nicolas Catusse, Pierre Lemaire Univ. Grenoble Alpes, G-SCOP

Anne-Marie Lagrange, Pascal Rubini CNRS, IPAG

Star Scheduler

Planet that orbits a star \neq sun

- Earth twin?
≈ 2000 planets discovered
- A few dozens with direct imaging
- Some light years distance from earth
- million times less brilliant than their stars

New Observation tools:

VLT SPHERE

- Anne-Marie Lagrange
- Beta pictoris b (2008)

Star Scheduler

Extrasolar planet observation

From earth: the VLT (Chili)

The Astrophysicists

- Survey potential stars
- Book a fixed set of nights within the budget

About 100.000 euros a night

- Decide the observation schedule for each night to maximize scientific interest

Star Scheduler

Extrasolar planet observation

From earth: the VLT (Chili)

Main constraints

- Visibility period of the stars
- Position in the sky influence
- Quality of the observation
- Length of the observation
- Some stars are scientifically more important than others
- Calibration (runs, earthquake)

Star Scheduler

Observation i in night j

$$
\left[r_{i}^{j}, d_{i}^{j}[: \text { visibility interval }\right.
$$

$p_{\boldsymbol{q}_{i}}^{j_{j}}$: duration of the observation

w_{i} : scientific interest

Star Scheduler

$r_{i}^{j} p_{i}^{j} d_{i}^{j}$

The meridian instant $m_{i}=\frac{d_{i}^{j}-r_{i}^{j}}{2}$ is a mandatory instant of observation, that is for every star $\mathbf{i}: p_{i}^{j} \geq \frac{d_{i}^{j}-r_{i}^{j}}{2}$

The observations must be scheduled by non-decreasing meridian time

Star Scheduler

\square

The meridian instant $m_{i}=\frac{d_{i}^{j}-r_{i}^{j}}{2}$ is a mandatory instant of observation, that is for every star $\mathbf{i}: p_{i}^{j} \geq \frac{d_{i}^{j}-r_{i}^{j}}{2}$

The observations must be scheduled by non-decreasing meridian time

Star Scheduler

The meridian instant $m_{i}=\frac{d_{i}^{j}-r_{i}^{j}}{2}$ is a mandatory instant of observation, that is for every star $\mathbf{i}: p_{i}^{j} \geq \frac{d_{i}^{j}-r_{i}^{j}}{2}$

The observations must be scheduled by non-decreasing meridian time

Star Scheduler

Star Scheduler

A solution

Star Scheduler A MIP model

$$
\sum_{j} z_{i}^{j}=z_{i} \longrightarrow 1 \text { iff } \mathbf{i} \text { is observed in night } \mathbf{j}
$$

visibility interval
of night j $\left\{\begin{array}{r}r_{i}^{j} z_{i}^{j} \leq t_{i} \longrightarrow=\text { starting time of } \mathbf{i} \\ t_{i}+p_{i}^{j} z_{i}^{j} \leq d_{i}^{j} z_{i}^{j}+M\left(1-z_{i}^{j}\right)\end{array}\right.$
$\mathrm{i} 1<\mathrm{i} 2$ if on the $\left\{\begin{array}{l}z_{i_{1}}^{j}+z_{i_{2}}^{j} \leq \xrightarrow[y_{i_{1}, i_{2}}]{ }+1 \\ t_{i_{1}}+p_{i_{1}}=1 \text { iff } \mathbf{i 1} \text { and } \mathbf{i 2} \text { are } \\ \text { observed the same night }\end{array}\right.$ same night

$$
t_{i_{1}}+p_{i_{1}}^{j} \leq t_{i_{2}}+M\left(1-y_{i_{1}, i_{2}}\right)
$$

Star Scheduler A MIP model

i: observations $\max \sum_{i} w_{i} z_{i} \longrightarrow=1$ iff \mathbf{i} is observed
j: nights

$$
\sum_{j} z_{i}^{j}=z_{i} \longrightarrow=1 \text { iff } \mathbf{i} \text { is observed in night } \mathbf{j}
$$

visibility interval
of night j $\left\{\begin{array}{r}r_{i}^{j} z_{i}^{j} \leq t_{i} \longrightarrow=\text { starting time of } \mathbf{i} \\ t_{i}+p_{i}^{j} z_{i}^{j} \leq d_{i}^{j} z_{i}^{j}+M\left(1-z_{i}^{j}\right)\end{array}\right.$
$\mathrm{i} 1<\mathrm{i} 2$ if on the $\left\{\begin{array}{l}z_{i_{1}}^{j}+z_{i_{2}}^{j} \leq \xrightarrow[y_{i_{1}, i_{2}}]{ }+1 \\ t_{i_{1}}+\begin{array}{l}=1 \text { iff } \mathbf{i 1} \text { and } \mathbf{i 2} \text { are } \\ \text { observed the same night }\end{array}\end{array}\right.$ same night

$$
t_{i_{1}}+p_{i_{1}}^{j} \leq t_{i_{2}}+M\left(1-y_{i_{1}, i_{2}}\right)
$$

Star Scheduler A MIP model

$$
\sum_{j} z_{i}^{j}=z_{i} \longrightarrow=1 \text { iff } \mathbf{i} \text { is observed in night } \mathbf{j}
$$

visibility interval
of night j $\left\{\begin{array}{r}r_{i}^{j} z_{i}^{j} \leq t_{i} \longrightarrow=\text { starting time of } \mathbf{i} \\ t_{i}+p_{i}^{j} z_{i}^{j} \leq d_{i}^{j} z_{i}^{j}+M\left(1-z_{i}^{j}\right)\end{array}\right.$
$\mathrm{i} 1<\mathrm{i} 2$ if on the $\left\{\begin{array}{l}z_{i_{1}}^{j}+z_{i_{2}}^{j} \leq \xrightarrow[y_{i_{1}, i_{2}}]{ }+1 \\ t_{i_{1}}+p_{i_{2}}=1 \text { iff } \mathbf{i 1} \text { and } \mathbf{i 2} \text { are } \\ \text { observed the same night }\end{array}\right.$ same night

$$
t_{i_{1}}+p_{i_{1}}^{j} \leq t_{i_{2}}+M\left(1-y_{i_{1}, i_{2}}\right)
$$

Very poor linear relaxation, does not scale in memory $O\left(n^{2} m\right)$

Star Scheduler - A CP model

A CP model:

- Use optional tasks of CPO and NoOverlap for each night

Star Scheduler - A CP model

A CP model:

- Use optional tasks of CPO and NoOverlap for each night

$$
\begin{array}{ll}
\max z=\sum_{i} w_{i} z_{i} & \\
\sum_{j} z_{i}^{j}=z_{i} & \forall i \\
z_{i}^{j}=1 \Leftrightarrow \operatorname{task} k_{i}^{j} \text { is present } & \forall i \forall j \\
\operatorname{NoOVERLAP}([\operatorname{task} & 1 \\
\left.\left., \ldots, \operatorname{task}_{n}^{j}\right]\right) & \forall j
\end{array}
$$

Star Scheduler - A CP model

A CP model:

- Use optional tasks of CPO and NoOverlap for each night

$$
\begin{array}{ll}
\max z=\sum_{i} w_{i} z_{i} & \\
\sum_{j} z_{i}^{j}=z_{i} & \forall i \\
\left.z_{i}^{j}=1 \Leftrightarrow \operatorname{task}_{i}^{j}\right] \text { is present } & \forall i \forall j \\
\operatorname{NoOvERLAP}\left(\left[\operatorname{task}_{1}^{j}, \ldots, \text { task }_{n}^{j}\right]\right) & \forall j
\end{array}
$$

+ precedences when on the same night
+ clique of known incompatible observations
- Best results (LNS) with a blackbox model but remains unable to handle the real-life dataset (800 observations, 142 nights)
- No effective filtering and no interesting global upper bound

Star Scheduler - The single night problem

Star Scheduler - The single night problem

Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t
$\sum_{i} w_{i}$ is maximized

Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t
$\sum_{i} w_{i}$ is maximized

Star Scheduler - The single night problem

Star Scheduler - The single night problem

- Suppose observation 3 is scheduled

Star Scheduler - The single night problem

- Suppose observation 3 is scheduled
- 6 is incompatible

Star Scheduler - The single night problem

- Suppose observation 3 is scheduled
- 6 is incompatible
- Left and right subproblems are independent (observations are scheduled in non-decreasing time of their meridians)

Star Scheduler - The single night problem

$f(i, t)$: maximum interest with observations 1 to i (schedule order) and such that i ends before time t

$$
f(i, t)= \begin{cases}\max \left(f(i-1, t), f\left(i-1, t-p_{i}\right)+w_{i}\right) & i \in[1, n], t \in\left[r_{i}+p_{i}, d_{i}\right] \\ f(i-1, t) & i \in[1, n], t \in\left[0, r_{i}+p_{i}[\right. \\ f\left(i, d_{i}\right) & \left.i \in[1, n], t \in] d_{i}, T\right] \\ 0 & i=0, t \in[0, T]\end{cases}
$$

$f(n, T)$ can be found in $O(n T)$

Star Scheduler - An improved CP model

- Update interest $_{j}$ based on the observations assigned in the night
- Filter observations that can not fit in the night anymore
- Filter $\overline{\text { interest }_{j}}$ using DP
- Force (in the night) observations that are mandatory to reach interest $_{j}$

Star Scheduler - An improved CP model

+ scheduling is excluded from the search space
+ strong filtering for each night
- nights remains filtered independently, no strong lower bound

Star Scheduler - Back to MIP

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest
$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\begin{array}{ll}
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 & \forall j \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 & \forall i \\
\rho_{j}^{k} \in\{0,1\} & \forall k \in \Omega_{j}, \forall j
\end{array}
$$

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$$
\begin{array}{cl}
\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \mid \rho_{j}^{k}
\end{array} \xrightarrow[\begin{array}{c}
=\begin{array}{c}
1 \text { iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\
\text { selected }
\end{array} \\
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 \\
\forall j \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1
\end{array}]{\forall i} \begin{array}{cl}
\rho_{j}^{k} \in\{0,1\} & \forall k \in \Omega_{j}, \forall j
\end{array}
$$

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} \longrightarrow$| $=\begin{array}{l}1 \text { iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\ \text { selected }\end{array}$ |
| :--- |

$\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 \quad \forall j$
$\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$
$\rho_{j}^{k} \in\{0,1\}$
$\forall k \in \Omega_{j}, \forall j$

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \left\lvert\, \rho_{j}^{k} \longrightarrow$| $=\begin{array}{l}1 \text { iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\ \text { selected }\end{array}$ |
| :--- |\right.

$$
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1
$$

$\forall j$
(exactly one schedule for each night)
$\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$
$\rho_{j}^{k} \in\{0,1\}$
$\forall k \in \Omega_{j}, \forall j$

Star Scheduler - Back to MIP

An extended LP formulation:

- One variable (a column) = one night schedule
- Constraints of the LP:
- Exactly one schedule for each night
- One observation occurs in at most one schedule
- Objective is the find the combination of schedules with maximum interest

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} \longrightarrow$| $=\begin{array}{l}1 \text { iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\ \text { selected }\end{array}$ |
| :--- |

$$
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1
$$

$\forall j$
(exactly one schedule for each night)
$\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \quad \forall i$ (observations are assigned to at most one night)
$\rho_{j}^{k} \in\{0,1\}$
$\forall k \in \Omega_{j}, \forall j$

Star Scheduler - Back to MIP

An extended LP formulation

Ω_{j} : the set all possible schedules of night j
$s_{i, j}^{k}=1$ iff observation \mathbf{i} belongs to the \mathbf{k}-th schedule of night \mathbf{j}
$\left(s_{1, j}^{k}, \ldots, s_{n, j}^{k}\right): 0 / 1$ description of the \mathbf{k}-th schedule of night \mathbf{j}
$w_{j}^{k}=\sum_{i} w_{i} s_{i, j}^{k}$: interest of the \mathbf{k}-th schedule of night \mathbf{j}

$$
\begin{array}{cl}
\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k} \longrightarrow \begin{array}{c}
\begin{array}{c}
\text { 1 iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\
\text { selected }
\end{array} \\
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1
\end{array} \quad \forall j \quad \begin{array}{c}
\text { (exactly one schedule } \\
\text { for each night) }
\end{array} \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 & \forall i \text { (observations are assigned to at } \\
\rho_{j}^{k} \in\{0,1\} & \forall k \in \Omega_{j}, \forall j \text { most one night) }
\end{array}
$$

Star Scheduler - Back to MIP

$$
\begin{gathered}
\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k}\left[\rho_{j}^{k} \longrightarrow \begin{array}{c}
=1 \text { iff } \mathbf{k} \text {-th schedule of night } \mathbf{j} \text { is } \\
\text { selected } \rho_{j}^{k} \in\{0,1\}
\end{array}\right. \\
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 \quad \text { (exactly one schedule for each night) } \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \begin{array}{c}
\text { (observations are assigned to at } \\
\text { most one night) }
\end{array}
\end{gathered}
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost
- Only a tiny fraction of the variables are needed

Star Scheduler - Back to MIP

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 \quad \forall j
$$

$$
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \forall i
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost

Star Scheduler - Back to MIP

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\begin{array}{ll}
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 & \forall j \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 & \forall i
\end{array} \begin{aligned}
& \left(\alpha_{j}\right) \\
& \left(\beta_{i}\right)
\end{aligned}
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost

Star Scheduler - Back to MIP

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\begin{array}{ll}
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 & \forall j \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 & \forall i
\end{array} \begin{aligned}
& \left(\alpha_{j}\right) \\
& \left(\beta_{i}\right)
\end{aligned}
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

Star Scheduler - Back to MIP

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\begin{aligned}
& \sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 \\
& \sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 \forall i
\end{aligned} \begin{aligned}
& \left(\alpha_{j}\right) \\
& \left(\beta_{i}\right)
\end{aligned}
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost

$$
\begin{aligned}
& r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i} \\
& r c\left(\rho_{j}^{k}\right)=\sum_{i}\left(w_{i}-\beta_{i}\right) s_{i, j}^{k}-\alpha_{j}
\end{aligned}
$$

Star Scheduler - Back to MIP

$\max \sum_{j} \sum_{k \in \Omega_{j}} w_{j}^{k} \rho_{j}^{k}$

$$
\begin{array}{ll}
\sum_{k \in \Omega_{j}} \rho_{j}^{k}=1 & \forall j \\
\sum_{j} \sum_{k \in \Omega_{j}} s_{i, j}^{k} \rho_{j}^{k} \leq 1 & \forall i
\end{array} \begin{aligned}
& \left(\alpha_{j}\right) \\
& \left(\beta_{i}\right)
\end{aligned}
$$

The LP relaxation can be solved by column generation:

- Iteratively add a variable (schedule) of maximum reduced cost

$$
\begin{aligned}
& r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i} \\
& r c\left(\rho_{j}^{k}\right)=\sum_{i}\left(w_{i}-\beta_{i}\right) s_{i, j}^{k}-\alpha_{j}
\end{aligned}
$$

- Solve the one night problem where w_{i} is replaced by

$$
\left(w_{i}-\beta_{i}\right)
$$

Star Scheduler - An improved CP model

$$
\begin{aligned}
\max z= & \sum_{j} \text { interest }_{j} \\
& \sum_{j} z_{i}^{j} \leq 1
\end{aligned}
$$

NightNoOverlap $\left(\left[z_{1}^{j}, \ldots, z_{n}^{j}\right]\right.$, interest $\left.{ }_{j}\right) \quad \forall j$
Objective $\left(\left[z_{1}^{1}, \ldots, z_{n}^{m}\right], z\right)$
Solve the LP relaxation by column generation:

- Filter the upper bound of z
- Reduced-cost filtering to exclude/force observations into nights?

Branch and price algorithm implemented in a CP framework

Star Scheduler - Back to MIP

- The reduced cost of the \mathbf{k}-th schedule of night \mathbf{j}

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

Star Scheduler - Back to MIP

- The reduced cost of the \mathbf{k}-th schedule of night \mathbf{j}

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

- How to filter the upper bound of a z_{i}^{j} variable, i.e. excluding observation \mathbf{i} from night \mathbf{j} ?

Star Scheduler - Back to MIP

- The reduced cost of the \mathbf{k}-th schedule of night \mathbf{j}

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

- How to filter the upper bound of a z_{i}^{j} variable, i.e. excluding observation \mathbf{i} from night \mathbf{j} ?
- What is smallest decrease of the objective over all possible schedules that includes \mathbf{i} in night \mathbf{j} ?

Star Scheduler - Back to MIP

- The reduced cost of the \mathbf{k}-th schedule of night \mathbf{j}

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

- How to filter the upper bound of a z_{i}^{j} variable, i.e. excluding observation \mathbf{i} from night \mathbf{j} ?
- What is smallest decrease of the objective over all possible schedules that includes \mathbf{i} in night \mathbf{j} ?

$$
z_{L P}^{*}+\max _{k \in \Omega_{j} \mid s_{i, j}^{k}=1}\left(r c\left(\rho_{j}^{k}\right)\right)<\underline{z} \Longrightarrow z_{i}^{j} \neq 1
$$

Star Scheduler - Back to MIP

- The reduced cost of the \mathbf{k}-th schedule of night \mathbf{j}

$$
r c\left(\rho_{j}^{k}\right)=w_{j}^{k}-\alpha_{j}-\sum_{i} s_{i, j}^{k} \beta_{i}
$$

- How to filter the upper bound of a z_{i}^{j} variable, i.e. excluding observation \mathbf{i} from night \mathbf{j} ?
- What is smallest decrease of the objective over all possible schedules that includes \mathbf{i} in night \mathbf{j} ?

$$
z_{L P}^{*}+\max _{k \in \Omega_{j} \mid s_{i, j}^{k}=1}\left(r c\left(\rho_{j}^{k}\right)\right)<\underline{z} \Longrightarrow z_{i}^{j} \neq 1
$$

- The two steps backward-forward resolution of the DP provides exactly this information.

Star Scheduler Results

Branch and price proves to be extremely efficient (benchmark of 21 instances):

- The real-life instance (800 observations, 142 nights) is solved optimally in less than 10 minutes
- 18 instances are solved optimally between 1 to 20 minutes
- 3 instances remains open in $2 h$ time limit but the optimality gap is less than 0.11%
- All feasible solutions significantly improves the MIP/CP approach

Star Scheduler Results
[Catusse et al. 2016]
Branch and price proves to be extremely efficient (benchmark of 21 instances):

- The real-life instance (800 observations, 142 nights) is solved optimally in less than 10 minutes
- 18 instances are solved optimally between 1 to 20 minutes
- 3 instances remains open in 2 h time limit but the optimality gap is less than 0.11 \%
- All feasible solutions significantly improves the MIP/CP approach

Outline

1. Reduced-costs based filtering

- Linear Programming duality
- First example: AtMostNValue
- Filtering the upper bound of a 0/1 variable
- Filtering the lower bound of a 0/1 variable
- General principles
- Second example
- Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

- Linear equation, WeightedCircuit
- General principles
- Other relationships of DP and CP

3. IIIlustration with a real-life application

Conclusion

Focus of this talk:
Investigate/understand filtering techniques beyond polynomial sub-problems (beyond local-consistencies)

Help us to grow a better understanding of OR

