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Abstract

Nash-Williams proved that every graph has a well-balanced orien-
tation. A key ingredient in his proof is admissible odd-vertex pair-
ings. We show that for two slightly different definitions of admissible
odd-vertex pairings, deciding whether a given odd-vertex pairing is
admissible is co-NP-complete. This resolves a question of Frank. We
also show that deciding whether a given graph has an orientation that
satisfies arbitrary local arc-connectivity requirements is NP-complete.

1 Introduction

This article proves some negative results which are related to the strong
orientation theorem of Nash-Williams.

Our graphs are undirected unless specified otherwise. Let G = (V,E)
be a graph. For some disjoint X, Y ⊆ V , we use dG(X,Y ) for the number
of edges that are incident to one vertex in X and one vertex in Y . We use
dG(X) for dG(X, V − X). For some integer k, we say that X is k-edge-
connected if dG(X) ≥ k for all nonempty X ⊂ V . We abbreviate 1-edge-
connected to connected. A connected component of G is a maximal connected
subgraph. We denote byG[X] the subgraph of G induced by X. For a single
vertex v, we use dG(v) for dG({v}) and call this number the degree of v. We
call G eulerian if the degree of every vertex in V is even. For s, t ∈ V and
X ⊆ V , we say that X is an st̄-set if s ∈ X and t ∈ V −X. We use λG(s, t)
for the minimum of dG(X) over all st̄-sets X. By the undirected edge version
of Menger’s theorem [6], this is the same as the maximum size of a set of
edge-disjoint st-paths in G. For some nonempty X ⊂ V , we use RG(X) for

max{2bλG(s,t)
2
c : X is an st̄-set}. We define RG(∅) = RG(V ) = 0. For two
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graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set V , we use
G1 +G2 for (V,E1 ∪ E2).

Let D = (V,A) be a directed graph. For some X ⊆ V , we use d−D(X)
for the number of arcs in A entering X and d+

D(X) for d−D(V − X). For
a single vertex v, we use d−D(v) and d+

D(v) for d−D({v}) and d+D({v}), re-
spectively. We call D eulerian if d−D(v) = d+D(v) for all v ∈ V . We use
λD(s, t) for the minimum of d+D(X) over all st̄-sets X. By the directed arc
version of Menger’s theorem [6], this is the same as the maximum size of a
set of arc-disjoint st-paths in D. For two directed graphs D1 = (V,A1) and
D2 = (V,A2) on the same vertex set V , we use D1 +D2 for (V,A1 ∪A2). A

directed graph ~G that is obtained from a graph G = (V,E) by choosing an
orientation for each of its edges is called an orientation of G. The orientation
~G is called well-balanced if λ ~G(s, t) ≥ bλG(s,t)

2
c for all s, t ∈ V .

In 1960, Nash-Williams proved the following celebrated theorem on well-
balanced orientations [7].

Theorem 1. Every graph has a well-balanced orientation.

The key ingredient in the proof of Theorem 1 is the consideration of a
new graph F on V such that F is a perfect matching on the vertices in V
that are of odd degree in G. We call such a graph an odd-vertex pairing of
G. Observe that if F is an odd-vertex pairing of G, then G + F is eulerian.
Nash-Williams proves the existence of an odd-vertex pairing F such that for
every eulerian orientation ~G + ~F of G + F , the restricted orientation ~G is a
well-balanced orientation of G. We call an odd-vertex pairing F with this
property orientation-admissible.

Actually, Nash-Williams proves the existence of an odd-vertex pairing
with a somewhat stronger property: the odd-vertex pairings he finds satisfy
the cut condition dG(X) − dF (X) ≥ RG(X) for all X ⊆ V . We call such
an odd-vertex pairing cut-admissible. It is easy to prove that every cut-
admissible odd-vertex pairing is orientation-admissible. On the other hand,
not every orientation-admissible odd-vertex pairing is cut-admissible. An
example can be found in Figure 1.

The main difficulty in the proof of Theorem 1 is to show that for every
graph, there is a cut-admissible odd-vertex pairing. This part of the proof is
quite involved.

Király and Szigeti use the existence of an orientation-admissible pairing to
prove the existence of well-balanced orientations with some extra properties
[5]. Nevertheless, most algorithmic considerations related to well-balanced
orientations remain hard to deal with due to the difficulty of the proof of
Theorem 1. In [1], Bernáth et al. provide a collection of negative results for
questions concerning well-balanced orientations with extra properties.
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Figure 1: The edges of G are marked in solid and those of F are marked
in dashed. The set X shows that F is not cut-admissible but F is trivially
orientation-admissible.

This naturally raises the following question which is asked by Frank in
[2] as Research Problem 9.8.1. For a given odd-vertex pairing, can its admis-
sibility properties be checked efficiently? The purpose of this work is to give
a negative answer to this question. More formally, we consider the following
two problems:

CUT-ADMISSIBILITY (CA):

Instance: A graph G and an odd-vertex pairing F of G.

Question: Is F cut-admissible in G?

ORIENTATION-ADMISSIBILITY (OA):

Instance: A graph G and an odd-vertex pairing F of G.

Question: Is F orientation-admissible in G?

While it is not clear whether CA and OA are in NP , they can easily
be seen to be in co-NP. As our main results, we prove the following two
theorems.

Theorem 2. CA is co-NP-complete.

Theorem 3. OA is co-NP-complete.

In the last part of this article, we consider another problem on graph
orientation. Given a graph G, we aim to find an orientation of G that meets
arbitrary local arc-connectivity requirements. Formally, we consider the fol-
lowing problem:

LOCAL ARC-CONNECTIVITY ORIENTATION (LACO):

Instance: A graph G and a requirement function r : V 2 → Z≥0.
Question: Is there an orientation ~G of G such that λ ~G(u, v) ≥ r(u, v) for all
u, v ∈ V 2?
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We were surprised not to find any previous work on the algorithmic
tractability of this problem. By a reduction using one of the negative re-
sults in [1], we fill this gap.

Theorem 4. LACO is NP-complete.

While the proof of Theorems 2 and 3 is slightly involved, the proof of
Theorem 4 is quite simple.

In Section 2, we give some preparatory results for the proof of Theorems
2 and 3. In Section 3, we give a reduction that serves as a proof for both
Theorem 2 and Theorem 3. Finally, in Section 4, we prove Theorem 4.

2 Preliminaries

In this section, we collect some preliminary results we need in our reduction.

2.1 A modified MAXCUT problem

The unweighted MAXCUT problem can be formulated as follows:

MAXCUT:

Instance: A graph H = (V,E) and a positive integer k.

Question: Is there some X ⊆ V such that dH(X) > k?

A proof of the following theorem can be found in [4].

Theorem 5. MAXCUT is NP-hard.

For our reduction in Section 3, we need a slightly adapted version of
MAXCUT.

ADAPTED MAXCUT(AMAXCUT):

Instance: A graph H = (V,E) such that |E| ≥ 6 is even and dH(v) is even
for all v ∈ V and an even integer k.

Question: Is there some X ⊆ V such that dH(X) > k?

Lemma 1. AMAXCUT is NP-hard.

Proof. We show this by a reduction from MAXCUT. Let (H = (V,E), k)
be an instance of MAXCUT. We may obviously suppose that |E| ≥ 3. Let
H ′ = (V,E ′) be the graph which is obtained from H by replacing every edge
of E by 2 parallel copies of itself. Observe that |E ′| = 2|E| ≥ 6 is even and
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dH′(v) = 2dH(v) is even for all v ∈ V . Further, for every X ⊆ V , we have
dH′(X) = 2dH(X). This yields that (H, k) is a positive instance of MAXCUT
if and only if (H ′, 2k) is a positive instance of AMAXCUT.

2.2 Augmented (α, β)-grids

In this subsection, we introduce a class of grid-like graphs which will be used
as a gadget in our reduction. A grid is a graph on ground set {1, . . . , µ} ×
{1, . . . , ν} for some positive integers µ, ν where two vertices (i1, j1) and (i2, j2)
are adjacent if |i1 − i2| + |j1 − j2| = 1. For some i ∈ {1, . . . , µ}, we call
{(i, 1), . . . , (i, ν)} the row i. Similarly, for some j ∈ {1, . . . , ν}, we call
{(1, j), . . . , (µ, j)} the column j.

In order to define augmented (α, β)-grids for an odd integer α≥ 3 and an
integer β≥ 2, we first consider a grid with αβ rows and α+1

2
columns. Now,

for some 1 ≤ γ ≤ β, let Lγ= {l1, . . . , lγ} = {(α, 1), (2α, 1), . . . , (γα, 1)} and
Pγ= {p1, . . . , pγ} = {(α, α+1

2
), (2α, α+1

2
), . . . , (γα, α+1

2
)}. We use L for Lβ

and P for Pβ. We now create the augmented (α, β)-grid W by adding an
edge from (1, j) to (αβ, j) for all j = 1, . . . , α+1

2
and by adding parallel edges

in the columns 1 and α+1
2

in a way that none of them is incident to a vertex
in L∪P and that every vertex in V (W )−(L∪P ) has degree 4 in W . Observe
that this is possible because both α− 1 and α+ 1 are even. An example can
be found in Figure 2.

l1

l2

l3

l4

p2

p3

p4

p1

Figure 2: An augmented (3, 4)-grid.

Later, when W is not clear from the context, we use L(W ) for the set L
etc. We now collect some properties of augmented (α, β)-grids.
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Lemma 2. Let W = (V,E) be an augmented (α, β)-grid for some odd integer
α ≥ 3 and some integer β ≥ 2. Then W is 3-edge-connected and if dW (X) =
3 for some nonempty X ⊂ V , then X = {v} or X = V − {v} for some
v ∈ L(W ) ∪ P (W ).

Proof. Let ∅ ⊂ X ⊂ V such that dW (X) ≤ 3. Observe that every row that
intersects both X and V − X contributes at least 1 to dW (X) and every
column that intersects both X and V −X contributes at least 2 to dW (X).
It follows that one of X or V −X is contained in one row and one column.
We obtain that |X| = 1 or |V − X| = 1 and so the statement follows by
construction.

Lemma 3. Let W = (V,E) be an augmented (α, β)-grid for some odd integer
α ≥ 3 and some integer β ≥ 2. Further, let X ⊆ V such that both W [X]
and W [V −X] have a connected component containing at least two vertices
of L(W ) ∪ P (W ). Then dW (X) > α.

Proof. Suppose for the sake of a contradiction that there is some X ⊆ V such
that both W [X] and W [V − X] have a connected component containing
at least two vertices of L(W ) ∪ P (W ) and dW (X) ≤ α. We choose X so
that the total number of connected components of W [X] and W [V −X] is
minimized. First suppose that W [X] is disconnected. It follows from the
assumption that W [X] has a connected component C such that W [X] − C
has a connected component containing at least two vertices in L(W )∪P (W ).
Let X ′ = X−V (C). We obtain dW (X ′) ≤ dW (X) ≤ α, a contradiction to the
minimal choice of X. It follows that W [X] is connected. Similarly, W [V −X]
is connected.

If every column contains an element of X and an element of V −X, each
column contributes 2 to dW (X) and so dW (X) ≥ 2α+1

2
> α. We may hence

suppose by symmetry that there is a column that is completely contained in
X and that there are two vertices li1 , li2 ∈ (V −X) ∩ L. Observe that every
path from li1 to li2 intersects at least |i1 − i2|α + 1 > α rows. Each of these
rows contributes 1 to dW (X), so dW (X) > α.

2.3 Eulerian orientations

For the proof of the co-NP completeness of OA, we need the following result
on eulerian orientations which can be found in [3].

Theorem 6. Let G,F be graphs on the same vertex set V such that G + F
is an eulerian graph and let ~F be an orientation of F . Then there is an
orientation ~G of G such that ~G + ~F is eulerian if and only if dG(X) ≥
d+~F (X)− d−~F (X) for all X ⊆ V .
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3 The reduction for admissibility

This section is dedicated to giving a reduction proving that CA and OA are
co-NP-complete. In a first step, we reduce AMAXCUT to a problem which
is somewhat similar to CA but has a more local cut condition. Next, we
modify this construction to obtain a reduction for CA. Finally we show that
the obtained instance is positive for OA if and only if it is positive for CA.

3.1 The intermediate cut problem

Let (H = (VH, EH), k) be an instance of AMAXCUT. We abbreviate |VH |
and |EH | to n and m, respectively. Let M = mn − k. We now create a
graph G1 = (V1, E1) with V1 = VH ∪ {q, s, t} where q, s and t are 3 new
vertices. Let E1 consist of M edges from q to s, m edges from s to every
v ∈ VH and m edges from t to every v ∈ VH . A schematic drawing of G1 can
be found in Figure 3.

t

M edges

m edges

q s

VH

Figure 3: A schematic drawing of G1.

Lemma 4. There is some qt̄-set X ⊆ V1 such that dG1(X)−dH(X∩VH) < M
if and only if (H, k) is a positive instance of AMAXCUT.

Proof. First suppose that (H, k) is a positive instance of AMAXCUT, so
there is some X ⊆ VH such that dH(X) > k. Let X ′ = {q, s} ∪X. Observe
that X ′ is a qt̄-set and dG1(X

′) = mn. This yields dG1(X
′)− dH(X ′ ∩ VH) =

dG1(X
′)− dH(X) < M .

Now suppose that there is some qt̄-set X ⊆ V1 such that dG1(X)−dH(X∩
VH) < M .
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Claim 1. s ∈ X.

Proof. Suppose otherwise. If X = {q}, then dG1(X)−dH(X∩VH) = M−0 ≮
M , a contradiction. We may hence suppose that X contains some v ∈ VH . It
follows from dH(X∩VH) ≤ m and construction that dG1(X)−dH(X∩VH) ≥
dG1(q, s) + dG1(v, t)−m = M +m−m ≮M , a contradiction.

By Claim 1 and construction, we obtain dG1(X) = mn. This yields
dH(X ∩ VH) > dG1(X)−M = mn−M = k, so (H, k) is a positive instance
of AMAXCUT.

3.2 The main construction

We now construct an instance (G2, F ) of CA. The graph G2 = (V2, E2) is
obtained from G1 by replacing all vertices in V1 − {q, t} by certain gadgets.

For every v ∈ VH , G2 contains an augmented (M +m+ 1,m+ dH(v)
2

)-grid
W v. Further, G2 contains an augmented (M+m+1,M+ k

2
)-gridW s. Observe

that W v for all v ∈ VH and W s are well-defined because m, k,M and dH(v)
for all v ∈ VH are even. Let V2 = ∪v∈VHV (W v)∪V (W s)∪{q, t}. We now add
an edge from q to each vertex in LM(W s). We next add a perfect matching
between (L(W s)−LM(W s))∪P (W s) and ∪v∈VHLm(W v). Observe that this
is possible because |(L(W s) − LM(W s)) ∪ P (W s)| = k

2
+ M + k

2
= mn =

|∪v∈VH Lm(W v)|. Finally, we add an edge from every vertex in ∪v∈VHPm(W v)
to t. Observe that G1 can be obtained from G2 by contracting each W v and
W s into single vertices.

We now prove an important property of G2.

Lemma 5. For any ∅ ⊂ X ⊂ V2, we have

RG2(X) = 2bmin{max{dG2(v) : v ∈ X},max{dG2(v) : v ∈ V2 −X}}
2

c.

Proof. As G1 is 4-edge-connected and Lemma 2 applied to W s and W v for
all v ∈ VH , we obtain that λG2(u, v) = min{dG2(u), dG2(v)} for all u, v ∈ V2
with {u, v} 6= {q, t}. This shows the statement for all ∅ ⊂ X ⊂ V2 such that
{q, t} ⊆ X or {q, t} ⊆ V2−X. On the other hand, if X is a qt̄-set or a tq̄-set,
we have min{max{dG2(v) : v ∈ X},max{dG2(v) : v ∈ V2 −X}} = M . As M
is even, it hence suffices to prove that λG2(q, t) = M .

We have λG2(q, t) ≤ dG2(q) = M . Next, there is an edge between q and
lj1(W

s) for all j1 = 1, . . . ,M which can be concatenated to a path from
lj1(W

s) to pj1(W
s) using only vertices of a single row of W s. Now there is

an edge from pj1(W
s) to a vertex lj2(W

v) for some j2 ∈ {1, . . . ,m} and some
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v ∈ VH . Finally, there is a path from lj2(W
v) to pj2(W

v) and an edge from
pj2(W

v) to t. This yields a set of M edge-disjoint qt-paths, so λG2(q, t) ≥M .

For some v ∈ VH , letBv denote (L(W v)−Lm(W v))∪(P (W v)−Pm(W v)).
Now we define F to be an odd-vertex pairing of G2 in the following way: For
every uv ∈ EH , F contains an edge between Bu and Bv. This is possible
because for every v ∈ VH , the set of vertices in V (W v) which are of odd
degree in G2 is exactly Bv and |Bv| = dH(v).

3.3 Reduction for CA

This subsection is dedicated to proving the following lemma which gives a
relation of the cut sizes in G1 and G2.

Lemma 6. (G2, F ) is a negative instance of CA if and only if there is some
qt̄-set X ⊆ V1 such that dG1(X)− dH(X ∩ VH) < M .

Proof. First suppose that there is some qt̄-set X ⊆ V1 such that dG1(X) −
dH(X ∩ VH) < M . Let X ′ ⊆ V2 be the set that contains q ∪ ∪v∈XV (W v)
and that contains V (W s) if X contains s. Then Lemma 5 yields dG2(X

′) −
dF (X ′) = dG1(X) − dH(X ∩ VH) < M = RG2(X

′), so (G2, F ) is a negative
instance of AC.

Now suppose that (G2, F ) is a negative instance of CA, so there is some
X ⊂ V2 such that dG2(X)− dF (X) < RG2(X). We choose X among all such
sets such that dG2(X) is minimal.

Claim 2. Let W ∈ W s ∪{W v : v ∈ VH}. Then each connected component of
W [X] or W [V2 −X] contains at least two vertices of L(W ) ∪ P (W ).

Proof. By symmetry and as dG2(X) = dG2(V2 −X), it suffices to prove the
statement for W [X]. For the sake of a contradiction, suppose that for the
vertex set C of a connected component of W [X], we have |C ∩ (L(W ) ∪
P (W ))| ≤ 1.

First suppose that X = C. If X consists of a single vertex v with dF (v) =
1, Lemma 5 yields dG2(X)− dF (X) = 3− 1 = 2 = RG2(X), a contradiction.
Otherwise, Lemma 2 yields dG2(X) ≥ 4 and so, as dF (X) ≤ 1 and G + F
is eulerian, we obtain by Lemma 5 that dG2(X) − dF (X) ≥ 4 = RG2(X), a
contradiction.

We may hence suppose that X ′= X − C is nonempty, so, by Lemma 5
and as q, t /∈ V (W ), we have RG2(X) − RG2(X

′) ≤ 4 − 2 = 2. If C consists
of a single vertex v with dF (v) = 0, we obtain dG2(X

′)− dF (X ′) ≤ dG2(X)−
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2 − dF (X) ≤ RG2(X) − 2 ≤ RG2(X
′), a contradiction to the minimality of

X. Otherwise, Lemma 2 yields dG2(X)− dG2(X
′) ≤ dW (X)− 1 ≤ 4− 1 = 3

and dF (X ′) − dF (X) ≤ 1. This yields dG2(X
′) − dF (X ′) = (dG2(X) − 3) −

(dF (X)− 1) ≤ RG2(X)− 2 ≤ RG2(X
′), a contradiction to the minimality of

X.

We are now ready to show that V (W ) ⊆ X or V (W ) ∩ X 6= ∅ for
every W ∈ W s ∪ {W v : v ∈ VH}. Suppose otherwise, then by Claim 2,
both W [X] and W [V2 − X] have a connected component each containing
at least two vertices of L(W ) ∪ P (W ). By Lemmas 3 and 5, this yields
dG2(X)− dF (X) ≥M +m+ 1−m > M ≥ RG′(X), a contradiction.

Now let X∗ ⊆ V1 be the set of vertices that contains v whenever V (W v) ⊆
X and s if V (W s) ⊆ X. Observe that dG2(X) = dG1(X

∗) ≥ 2m by construc-
tion. Also, observe that dF (X) = dH(X∗ ∩ VH). By symmetry, we may
suppose that q ∈ X. If X is not a qt̄-set, Lemma 5 yields dG2(X)− dF (X) ≥
dG1(X

∗) − m ≥ 2m − m = m > 4 ≥ RG2(X), a contradiction. If X∗ is a
qt̄-set, by Lemma 5, we obtain dG1(X

∗)−dH(X∗∩VH) = dG2(X)−dF (X) <
RG2(X) = M .

3.4 Reduction for OA

The following result can be obtained by analogous methods to the proof of
Lemma 6. Several arguments simplify.

Lemma 7. There is no X ⊆ V2 such that dG2(X) < dF (X).

We here prove the following result that allows for a reduction for OA.
While this proof does not require any new arguments apart from Lemma
7, we include it here for the sake of selfcontainment. The first implication
is part of the proof of Nash-Williams of Theorem 1 in [7] while the second
implication can be found in a similar form in [5].

Lemma 8. (G2, F ) is a negative instance of OA if and only if (G2, F ) is a
negative instance of CA.

Proof. First suppose that (G2, F ) is a negative instance of OA. Then there is

an eulerian orientation ~G2 + ~F of G2 + F such that ~G2 is not well-balanced.

This means that there are some u, v ∈ V2 such that λ ~G2
(u, v) < bλG2

(u,v)

2
c.

Therefore there is some uv̄-set X ⊂ V2 such that d+~G2
(X) < bλG2

(u,v)

2
c. As

G2 + F is eulerian, we obtain that dF (X) ≥ d−~G2
(X) − d+~G2

(X) = dG2(X) −
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2d+~G2
(X) > dG2(X)−2bλG2

(s,t)

2
c ≥ dG2(X)−RG2(X), so (G2, F ) is a negative

instance of CA.
For the other direction, suppose that (G2, F ) is a negative instance of CA,

so there is some X ⊂ V2 such that dG2(X)−dF (X) < RG2(X). Let u ∈ X and

v ∈ V2−X such that RG2(X) = 2bλG2
(u,v)

2
c. Let ~F be an orientation of F such

that all the edges with exactly one endvertex in X are directed away from X.
By Lemma 7 and Theorem 6, there is an orientation ~G2 ofG2 such that ~G2+ ~F
is eulerian. This yields λ ~G2

(u, v) ≤ d+~G2
(X) = 1

2
(dG2(X) +dF (X))−d+~F (X) =

1
2
(dG2(X) + dF (X))− dF (X) = 1

2
(dG2(X)− dF (X)) < 1

2
RG2(X) = bλG2

(u,v)

2
c.

We obtain that ~G2 is not well-balanced, so (G2, F ) is a negative instance of
OA.

3.5 Conclusion

By Lemmas 4 and 6, we obtain that (G2, F ) is a negative instance of CA if
and only if (H, k) is a positive instance of AMAXCUT. By Lemma 1 and as
the size of (G2, F ) is polynomial in the size of (H, k), we obtain Theorem 2.

By Lemmas 4, 6 and 8, we obtain that (G2, F ) is a negative instance of
OA if and only if (H, k) is a positive instance of AMAXCUT. By Lemma
1 and as the size of (G2, F ) is polynomial in the size of (H, k), we obtain
Theorem 3.

4 Local arc-connectivity orientation

This section is dedicated to proving Theorem 4. We need to consider the
following algorithmic problem.

Bounded well-balanced orientation (BWBO)

Instance A graph G = (V,E) and two functions l+, l− : V → Z≥0.
Question Is there a well-balanced orientation ~G of G such that d+~G(v) ≥

l+(v) and d−~G(v) ≥ l−(v) for all v ∈ V ?

The following result is proven in [1].

Lemma 9. BWBO is NP-hard.

We are now ready to give the reduction for Theorem 4.

Proof. (of Theorem 4)
We prove this by a reduction from BWBO. Let (G = (V,E), l+, l−) be

an instance of BWBO. We add two vertices x and y and for every v ∈ V , we
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add dG(v) edges between v and each of x and y. We denote this graph by
G′ = (V ′, E′). Observe that |V ′| = |V | + 2 and |E ′| = 5|E|, so the size of
G′ is polynomial in the size of G. We now define r: (V ′)2 → Z≥0 by r(u, v) =

bλG(u,v)
2
c for all u, v ∈ V 2, r(x, v) = dG(v) + l−(v), r(v, x) = 0, r(y, v) = 0 and

r(v, y) = dG(v) + l+(v) for all v ∈ V and r(x, y) = 2|E|.
We prove that (G′, r) is a positive instance of LACO if and only if

(G, l+, l−) is a positive instance of BWBO. First suppose that (G′, r) is a

positive instance of LACO, so there is an orientation ~G′ of G′ such that
λ ~G′(u, v) ≥ r(u, v) for all u, v ∈ (V ′)2. Observe that dG′(x) = r(x, y) =

dG′(y), so x is a source and y is a sink in ~G′. We show that ~G, the restriction

of ~G′ to G is a well-balanced orientation ~G of G such that d+~G(v) ≥ l+(v)

and d−~G(v) ≥ l−(v) for all v ∈ V . As x is a source and y is a sink in ~G′, for

any u, v ∈ V 2, we have λ ~G(u, v) = λ ~G′(u, v) ≥ r(u, v) = bλG(u,v)
2
c, so ~G is

well-balanced. Further, for any v ∈ V , we have d−~G(v) = d−~G′(v)− d ~G′(x, v) ≥
λ ~G′(x, v) − d ~G′(x, v) ≥ r(x, v) − d ~G′(x, v) = dG(v) + l−(v) − dG(v) = l−(v).
Similarly, d+~G(v) ≥ l+(v), so (G, l+, l−) is a positive instance of BWBO.

Now suppose that (G, l+, l−) is a positive instance of BWBO, so there is a

well-balanced orientation ~G of G such that d+~G(v) ≥ l+(v) and d−~G(v) ≥ l−(v)

for all v ∈ V . We complete this to an orientation ~G′ of G′ by orienting all
edges incident to x away from x and all edges incident to y toward y. As ~G is
well-balanced, we have λ ~G′(u, v) = λ ~G(u, v) ≥ bλG(u,v)

2
c = r(u, v) for all u, v ∈

V 2. By construction, we have λ ~G′(x, y) =
∑

v∈V dG(V ) = 2|E| = r(x, y). For
any v ∈ V , we have dG(v) arc-disjoint xv-paths of length 1. Further, for

every arc uv entering v in ~G, we have a path xuv. As all these paths can
be chosen to be arc-disjoint, we obtain that λ ~G′(x, v) ≥ d ~G′(x, v) + d−~G(v) ≥
dG(v) + l−(v) = r(x, v). Similarly, λ ~G′(v, y) ≥ r(v, y), so (G′, r) is a positive
instance of LACO.
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