MATROID FRAGILITY AND RELAXATIONS OF CIRCUIT HYPERPLANES

JIM GEELEN AND FLORIAN HOERSCH

Abstract

We relate two conjectures that play a central role in the reported proof of Rota's Conjecture. Let \mathbb{F} be a finite field. The first conjecture states that: the branch-width of any \mathbb{F}-representable N-fragile matroid is bounded by a function depending only upon \mathbb{F} and N. The second conjecture states that: if a matroid M_{2} is obtained from a matroid M_{1} by relaxing a circuit-hyperplane and both M_{1} and M_{2} are \mathbb{F}-representable, then the branch-width of M_{1} is bounded by a function depending only upon \mathbb{F}. Our main result is that the second conjecture implies the first.

1. Introduction

The purpose of this paper is to relate two concepts, N-fragile matroids and circuit-hyperplane relaxations, which both play a central role in the reported proof of Rota's Conjecture [1].

A matroid M is N-fragile if N is a minor of M, but there is no element $e \in E(M)$ such that N is a minor of both $M \backslash e$ and M / e or, equivalently, there is a unique partition (C, D) of $E(M)-E(N)$ such that $N=M / C \backslash D$. Note that here we want N, itself, as a minor, not just an isomorphic copy of N.

For a finite field \mathbb{F} of order q, we let \mathbb{F}^{k} denote an extension field of \mathbb{F} of order q^{k}. We prove the following result.
Theorem 1.1. Let \mathbb{F} be a finite field, let N be a matroid with k elements, let B be a basis of N, and let M be an \mathbb{F}-representable N-fragile matroid. Then there exist $\mathbb{F}^{2 k^{2}}$-representable matroids M_{1} and M_{2} on the same ground set and elements $c, d \in E\left(M_{1}\right)$ such that M_{2} is obtained from M_{1} by relaxing a circuit-hyperplane and $M / B \backslash(E(N)-B)=M_{1} / c \backslash d$.

[^0]The proof of Rota's Conjecture relies on the reported proofs of the following two conjectures by Geelen, Gerards, and Whittle.

Conjecture 1.2. Let \mathbb{F} be a finite field and let N be a matroid. Then the branch-width of any \mathbb{F}-representable N-fragile matroid is bounded by a constant depending only upon $|\mathbb{F}|$ and $|N|$.

For the definition of branch-width see Oxley [2]. For this paper it suffices to know that branch-width is a parameter associated with a $\operatorname{matroid} M$, which we denote here by $\operatorname{bw}(M)$, and that for any minor N of M we have

$$
\operatorname{bw}(M)-(|E(M)|-|E(N)|) \leq \mathrm{bw}(N) \leq \mathrm{bw}(M)
$$

Conjecture 1.3. Let H be a circuit-hyperplane in a matroid M_{1} and let M_{2} be the matroid obtained by relaxing H. If M_{1} and M_{2} are both representable over a finite field \mathbb{F}, then the branch-width of M_{1} is bounded by a constant depending only upon $|\mathbb{F}|$.

Theorem 1.1 shows that Conjecture 1.3 implies Conjecture 1.2 ,
Our proof of Theorem 1.1 is via a sequence of results on matrices, but those results have interesting consequences for matroids, which we state below.

We call a matroid isolated if each of its components has only one element. Thus an isolated matroid consists only of loops and coloops; the set of coloops is the unique basis. The isolated matroid on ground set E with basis B is denoted $\operatorname{ISO}(B, E)$. For integers r and n with $0 \leq r \leq n$ we denote $\operatorname{ISO}(\{1, \ldots, r\},\{1, \ldots, n\})$ by $\operatorname{ISO}(r, n)$.

The following result shows that, in order to prove Theorem 1.1, it suffices to consider the case that N is an isolated matroid.

Theorem 1.4. Let \mathbb{F} be a finite field, let B be a basis of a matroid N, and let M be an \mathbb{F}-representable N-fragile matroid. Then there exists an \mathbb{F}-representable $\operatorname{ISO}(B, E(N))$-fragile matroid M^{\prime} such that $E\left(M^{\prime}\right)=E(M)$ and $M^{\prime} / B=M / B$.

The following result shows that, in order to prove Theorem 1.1, it suffices to consider the case that $N=\operatorname{ISO}(1,2)$.

Theorem 1.5. Let \mathbb{F} be a finite field, let X_{1} and X_{2} be disjoint finite sets with $\left|X_{1} \cup X_{2}\right|=k$, let M be an \mathbb{F}-representable $\operatorname{ISO}\left(X_{1}, X_{1} \cup\right.$ X_{2})-fragile matroid, and let c and d be distinct elements not in M. Then there exists an $\mathbb{F}^{k^{2}}$-representable $\operatorname{ISO}(\{c\},\{c, d\})$-fragile matroid M^{\prime} such that $E\left(M^{\prime}\right)=E(M)-\left(X_{1} \cup X_{2}\right) \cup\{c, d\}$ and $M^{\prime} / c \backslash d=$ $M / X_{1} \backslash X_{2}$.

The final result shows that an \mathbb{F}-representable $\operatorname{ISO}(1,2)$-fragile matroid has a circuit-hyperplane whose relaxation results in an \mathbb{F}^{2} representable matroid.

Theorem 1.6. Let $N=\operatorname{ISO}(\{c\},\{c, d\})$ where $c \neq d$, let M be an N-fragile matroid representable over a finite field \mathbb{F}, and let C and D be disjoint subsets of $E(M)$ such that $N=M / C \backslash D$. Then $C \cup\{d\}$ is a circuit-hyperplane of M and the matroid obtained from M by relaxing $C \cup\{d\}$ is \mathbb{F}^{2}-representable.

Observe that Theorem 1.1 is an immediate consequence of Theorems 1.4, 1.5, and 1.6.

We assume that the reader is familiar with elementary matroid theory; we use the terminology and notation of Oxley [2].

2. Fragile matrices

In this section we will give a matrix interpretation for minor-fragility in representable matroids. Towards this end, we develop convenient terminology for viewing a representable matroid with respect to a fixed basis.

For a basis B of a matroid M and a set $X \subseteq E(M)$ we denote the minor $M /(B-X) \backslash(E(M)-(B \cup X))$ of M by $M[X, B]$. The following result is routine and well-known.

Lemma 2.1. If N is a minor of a matroid M, then there is a basis B of M such that $N=M[E(N), B]$.

If B is a basis of a matroid M and $N=M[E(N), B]$, then we say that B displays N.

When we refer to a matrix $A \in \mathbb{F}^{S_{1} \times S_{2}}$ we are implicitly defining \mathbb{F} to be a field and S_{1} and S_{2} to be finite sets. Let $A \in \mathbb{F}^{S_{1} \times S_{2}}$ be a matrix where S_{1} and S_{2} are disjoint. We let $[I, A]$ denote the matrix obtained from A by appending an $S_{1} \times S_{1}$ identity matrix; thus $[I, A] \in$ $\mathbb{F}^{S_{1} \times\left(S_{1} \cup S_{2}\right)}$. For $X \subseteq S_{1} \cup S_{2}$, we let $A[X]$ denote the submatrix $A[X \cap$ $\left.S_{1}, X \cap S_{2}\right]$.

If B is a basis of an \mathbb{F}-representable matroid M, then there is a matrix $A \in \mathbb{F}^{B \times E(M)-B}$ such that $M=M([I, A])$; we call A a standard representation with respect to B. Note that, if N is a minor of M displayed by B and A is a standard representation of M with respect to B, then $A[E(N)]$ is a standard representation of N with respect to the basis $B \cap E(N)$.

For a finite set X, a matrix $A \in \mathbb{F}^{S_{1} \times S_{2}}$ is called X-fragile if

- S_{1} and S_{2} are disjoint,
- $X \subseteq S_{1} \cup S_{2}$,
- $A[X]=0$, and
- for each nonempty subset Y of $\left(S_{1} \cup S_{2}\right)-X$, we have $\operatorname{rank}(A[X \cup$ $Y])>\operatorname{rank}(A[Y])$.
Note that, if $A \in \mathbb{F}^{S_{1} \times S_{2}}$ is an X-fragile matrix, then $M([I, A[X]])=$ $\operatorname{ISO}\left(X \cap S_{1}, X\right)$.

The following result provides us with a matrix interpretation of minor-fragility for representable matroids.

Lemma 2.2. Let N be a matroid, let M be an \mathbb{F}-representable N fragile matroid, let B be a basis of M that displays N, and let A be a standard representation of M with respect to B. If A^{\prime} is the matrix obtained from A by replacing each entry in the submatrix $A[E(N)]$ with 0 , then A^{\prime} is $E(N)$-fragile.

Proof. Let $X=E(N)$. Suppose that A^{\prime} is not X-fragile. Then there is a non-empty set $Y \subseteq E(M)-X$ such that $\operatorname{rank}\left(A^{\prime}[X \cup Y]\right)=$ $\operatorname{rank}\left(A^{\prime}[Y]\right)$. By removing the other elements, we may assume that $E(M)=X \cup Y$. Let $C=B \cap Y, D=Y-B$, and let $B_{N}=B \cap E(N)$. Observe that $\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}(A[C, D])$ by the choice of Y. We will obtain a contradiction to the fact that M is N-fragile by showing that $N=M / D \backslash C$.

We start by constructing an isomorphic copy A_{0} of $A^{\prime}[B, X-B]$ by relabelling the columns so that the indices form a set Z disjoint from $E(N)$. Now let $A_{1}=\left[A, A_{0}\right]$ and $M_{1}=M\left(\left[I, A_{1}\right]\right)$.

We claim that:
(i) $N=\left(M_{1} / Z\right) \mid X$, and
(ii) B_{N} is independent in $M_{1} /(D \cup Z)$, and
(iii) Z is a set of loops in M_{1} / D.

Note that Z is a set of loops in M_{1} / C and N is a minor of M_{1} / C, so M_{1} / Z contains N as a minor. To show that N is a restriction of M_{1} / Z it suffices to show that B_{N} spans $E(N)$ in M_{1} / Z, or, equivalently, that $B_{N} \cup Z$ spans $E(N)$ in M_{1}, which is clear from the construction. This proves (i).

Note that $r_{M_{1}}\left(B_{N} \cup D \cup Z\right)=\left|B_{N}\right|+\operatorname{rank}\left(A_{1}[C, D \cup Z]\right)=\left|B_{N}\right|+$ $\operatorname{rank}\left(A^{\prime}[C, D \cup X]\right)=\left|B_{N}\right|+\operatorname{rank}(A[C, D])=\left|B_{N}\right|+\operatorname{rank}(A[B, D])$, since $\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}(A[C, D])$. Therefore B_{N} is independent in in $M_{1} /(D \cup Z)$, proving (ii).

Now (iii) follows directly from the fact that $\operatorname{rank}\left(A^{\prime}\right)=$ $\operatorname{rank}(A[C, D])$.

By (iii), we have $M / D=\left(M_{1} / D\right) \backslash Z=\left(M_{1} / D\right) / Z$. By $(i), N$ is a restriction of M_{1} / Z. By $(i i)$, the sets B_{N} and D are skew in M_{1} / Z
(that is, $\left.r_{M_{1} / Z}\left(B_{N} \cup D\right)=r_{M_{1} / Z}\left(B_{N}\right)+r_{M_{1} / Z}(D)\right)$, and hence N is a restriction of $M_{1} /(D \cup Z)$. However $M / D=M_{1} /(D \cup Z)$, contradicting the fact that M is N-fragile.

The converse of Lemma 2.2 is not true in general, but the following result is a weak converse, and it implies Theorem 1.4.

Lemma 2.3. If $A \in \mathbb{F}^{S_{1} \times S_{2}}$ is an X-fragile matrix, where $X \subseteq S_{1} \cup S_{2}$, then $M([I, A])$ is $\operatorname{ISO}\left(X \cap S_{1}, X\right)$-fragile.
Proof. Let $M=M([I, A])$. Note that $M\left[X, S_{1}\right]=\operatorname{ISO}\left(X \cap S_{1}, X\right)$. Let C and D be a partition of $E(M)-X$ such that $C \neq S_{1}-X$. We will prove that $M / C \backslash D \neq \operatorname{ISO}\left(X \cap S_{1}, X\right)$. By contracting $C \cap S_{1}$ and deleting $D-S_{1}$ we may assume that $D=S_{1}-X$ and that $C=S_{2}-X$.

Since A is X-fragile, $\operatorname{rank}(A[D, C])<\operatorname{rank}(A)$. Now either
(i) $\operatorname{rank}(A[D, C])<\operatorname{rank}\left(A\left[S_{1}, C\right]\right)$, or
(ii) $\operatorname{rank}\left(A\left[S_{1}, C\right]\right)<\operatorname{rank}(A)$.

In case (i), we have $r_{M / C}\left(S_{1} \cap X\right)=r_{M}\left(C \cup\left(S_{1} \cap X\right)\right)-r_{M}(C)=$ $\left|S_{1} \cap X\right|+\operatorname{rank}(A[D, C])-\operatorname{rank}\left(A\left[S_{1}, C\right]\right)<\left|S_{1} \cap X\right|$. So $S_{1} \cap X$ is dependent in M / C and hence $M / C \backslash D \neq \operatorname{ISO}\left(X \cap S_{1}, X\right)$, as required.

In case (ii), we have $r_{M / C}\left(X-S_{1}\right)=r_{M}\left(\left(X-S_{1}\right) \cup C\right)-r_{M}(C)=$ $\operatorname{rank}(A)-\operatorname{rank}\left(A\left[S_{1}, C\right]\right)>0$, so $M / C \backslash D \neq \operatorname{ISO}\left(X \cap S_{1}, X\right)$, as required.

3. Reduction to $\operatorname{ISO}(1,2)$-fragility

The results in this section prove Theorem [1.5.
Let F be a flat of a matroid M. We say that a matroid M^{\prime} is obtained by adding an element e freely to F in M if M^{\prime} is a singleelement extension by a new element e in such a way that F spans e and that each flat of $M^{\prime} \backslash e$ that spans e contains F.

Lemma 3.1. Let M be an $\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2}\right)$-fragile matroid, where X_{1} and X_{2} are disjoint finite sets, and let M^{\prime} be obtained from M by adding a new element d freely into the flat spanned by X_{2}. Then $M^{\prime} \backslash X_{2}$ is $\operatorname{ISO}\left(X_{1}, X_{1} \cup\{d\}\right)$-fragile.
Proof. Let (C, D) be a partition of $E(M)-\left(X_{1} \cup X_{2}\right)$. It suffices to show that $M / C \backslash D=\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2}\right)$ if and only if $\left(M^{\prime} \backslash X_{2}\right) / C \backslash D=$ $\operatorname{ISO}\left(X_{1}, X_{1} \cup\{d\}\right)$. Note that $M^{\prime} / C \backslash D$ is obtained from $M / C \backslash D$ by adding d freely to the flat spanned by X_{2}. If $M / C \backslash D=$ $\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2}\right)$, then $M^{\prime} / C \backslash D=\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2} \cup\{d\}\right)$ and hence $\left(M^{\prime} \backslash X_{2}\right) / C \backslash D=\operatorname{ISO}\left(X_{1}, X_{1} \cup\{d\}\right)$. Conversely, if $\left(M^{\prime} \backslash X_{2}\right) / C \backslash D=$ $\operatorname{ISO}\left(X_{1}, X_{1} \cup\{d\}\right)$, then $M^{\prime} / C \backslash D=\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2} \cup\{d\}\right)$ and hence $\left(M^{\prime} \backslash\{d\}\right) / C \backslash D=\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2}\right)$, as required.

Note that, by Lemma 3.1, we can reduce an $\operatorname{ISO}\left(X_{1}, X_{1} \cup X_{2}\right)$-fragile matroid to an $\operatorname{ISO}\left(X_{1}, X_{1} \cup\{d\}\right)$-fragile matroid. Repeating this in the dual we can further reduce to an $\operatorname{ISO}(\{c\},\{c, d\})$-fragile matroid.

We can add an element freely into a flat in a represented matroid by going to a sufficiently large extension field; this is both routine and well-known.

Lemma 3.2. Let $A \in \mathbb{F}^{S_{1} \times S_{2}}$, let $M=M(A)$, let X be a k-element subset of S_{2}, and let M^{\prime} be the matroid obtained from M by adding a new element e freely into the flat spanned by X. Then there is a vector $b \in\left(\mathbb{F}^{k}\right)^{S_{1}}$ such that $[A, b]$ is a representation of M^{\prime} over \mathbb{F}^{k}.

Proof. Let A_{v} denote the column of A that is indexed by v. The elements of the field \mathbb{F}^{k} form a vectorspace of dimension k over \mathbb{F}; let $\left(\alpha_{v}: v \in X\right)$ be a basis of this vectorspace. Now let $b=\sum_{v \in X} \alpha_{v} A_{v}$ and let $M^{\prime}=M([A, b])$. By construction, the new element e of M^{\prime} is spanned by X. It remains to show that each flat of $M^{\prime} \backslash e$ that spans e also spans X. Consider an independent set $I \subseteq E(M)$ that does not span X in M. We may apply elementary row-operations over \mathbb{F} so that each column of I contains exacly one non-zero entry. Let $R \subseteq S_{1}$ denote the set of rows containing non-zero entries in $A\left[S_{1}, I\right]$. Since I does not span X, there exists $i \in S_{1}-R$ such that $A[\{i\}, X]$ is not identically zero. However the entries of $A[\{i\}, X]$ are all in \mathbb{F} and the values $\left(\alpha_{v}: v \in X\right)$ are linearly independent over \mathbb{F}, so $b_{i}=\sum_{v \in X} \alpha_{v} A_{i, v} \neq 0$. Hence I does not span e in M^{\prime}, as required.

4. Relaxing a circuit-hyperplane

The following result implies Theorem 1.6.
Lemma 4.1. Let \mathbb{F} be a field and \mathbb{F}^{\prime} be a field extension. Now let $A_{1} \in \mathbb{F}^{S_{1} \times S_{2}}$ be a $\{c, d\}$-fragile matrix where $c \in S_{1}$ and $d \in S_{2}$ and let A_{2} be obtained from A_{1} by replacing the (c, d)-entry with an element in $\mathbb{F}^{\prime}-\mathbb{F}$. Then $\left(S_{1}-\{c\}\right) \cup\{d\}$ is a circuit-hyperplane in $M\left(\left[I, A_{1}\right]\right)$ and $M\left(\left[I, A_{2}\right]\right)$ is the matroid obtained from $M\left(\left[I, A_{1}\right]\right)$ by relaxing $\left(S_{1}-\right.$ $\{c\}) \cup\{d\}$.
Proof. Let $M_{1}=M\left(\left[I, A_{1}\right]\right), M_{2}=M\left(\left[I, A_{2}\right]\right)$, and $H=\left(S_{1}-\{c\}\right) \cup$ $\{d\}$. We claim that H is a circuit of M_{1}; suppose otherwise. Note that S_{1} is a basis, so $S_{1} \cup\{d\}$ contains a unique circuit C. Since A_{1} is $\{c, d\}$-fragile, we have $A[\{c\},\{d\}]=0$, and hence $c \notin C$. Since H is not a circuit, there exists $e \in S_{1}-\{c\}$ such that e is a coloop of $M_{1} \mid\left(S_{1} \cup\{d\}\right)$. Then $\left(M_{1} \mid\left(S_{1} \cup\{d\}\right)\right) \backslash e=\left(M_{1} \mid\left(S_{1} \cup\{d\}\right)\right) / e$. But then M_{1} is not $\operatorname{ISO}(\{c\},\{c, d\})$-fragile, contrary to Lemma 2.3. Thus H is a circuit as claimed.

Note that $M_{1}^{*}=M\left(\left[A_{1}^{T}, I\right]\right)$ and that A_{1}^{T} is $\{c, d\}$-fragile. Then, by duality, $E\left(M_{1}\right)-H$ is a cocircuit and, hence, H is a circuit-hyperplane.

To prove that M_{2} is obtained from M_{1} by relaxing H it suffices to show, for each set $Z \subseteq S_{1} \cup S_{2}$, that $\operatorname{rank} A_{1}[Z] \neq \operatorname{rank} A_{2}[Z]$ if and only if $Z=\{c, d\}$. Note that $\operatorname{rank} A_{1}[\{c, d\}] \neq \operatorname{rank} A_{2}[\{c, d\}]$. Consider a set $Z \subseteq S_{1} \cup S_{2}$ such that $\operatorname{rank} A_{1}[Z] \neq \operatorname{rank} A_{2}[Z]$.

Claim: We have $\operatorname{rank} A_{1}[Z]<\operatorname{rank} A_{2}[Z]$.
Proof of claim. Suppose for a contradiction that $\operatorname{rank} A_{1}[Z]>$ rank $A_{2}[Z]$ and consider a minimal subset $X \subseteq Z$ such that $\operatorname{rank} A_{1}[X]>\operatorname{rank} A_{2}[X]$. Thus $A_{1}[X]$ is square and non-singular, $A_{2}[X]$ is singular, and $c, d \in X$. Let $B(x)$ denote the matrix obtained from $A_{1}[X]$ by replacing the (c, d)-entry with a variable x and let $p(x)=\operatorname{det}(B(x))$. Note that $p(x)=\alpha x+\beta$ where $\alpha, \beta \in \mathbb{F}$. Since $A_{1}[X]$ is non-singular, we have $p(0) \neq 0$. Therefore $p(x)$ has at most one root and, since $\alpha, \beta \in \mathbb{F}$, if $p(x)$ has a root, that root is in \mathbb{F}. However, this contradicts the fact that $A_{2}[X]$ is singular.

By construction, $c, d \in Z$ and we may assume that $Z \neq\{c, d\}$. Then, since A_{1} is $\{c, d\}$-fragile,

$$
\begin{aligned}
\operatorname{rank} A_{1}[Z-\{c, d\}] & \leq \operatorname{rank} A_{1}[Z]-1 \\
& \leq \operatorname{rank} A_{2}[Z]-2 \\
& \leq \operatorname{rank} A_{2}[Z-\{c, d\}] \\
& =\operatorname{rank} A_{1}[Z-\{c, d\}] .
\end{aligned}
$$

Hence $\operatorname{rank} A_{1}[Z]=\operatorname{rank} A_{1}[Z-\{c, d\}]+1$ and $\operatorname{rank} A_{2}[Z]=$ $\operatorname{rank} A_{2}[Z-\{c, d\}]+2$. This second equation implies that $\operatorname{rank} A_{2}[Z-$ $\{c\}]=\operatorname{rank} A_{2}[Z-\{c, d\}]+$ 1. Therefore $\operatorname{rank} A_{1}[Z-\{c\}]=$ $\operatorname{rank} A_{1}[Z-\{c, d\}]+1$ and hence $\operatorname{rank} A_{1}[Z-\{c\}]=\operatorname{rank} A_{1}[Z]$. Thus the row c of $A_{1}[Z]$ is a linear combination of the other rows. But then the row c of $A_{1}[Z-\{d\}]$ is a linear combination of the other rows. So $\operatorname{rank} A_{1}[Z-\{d\}]=\operatorname{rank} A_{1}[Z-\{c, d\}]$ and, hence, $\operatorname{rank} A_{2}[Z-\{d\}]=\operatorname{rank} A_{2}[Z-\{c, d\}]$. However, this contradicts the fact that $\operatorname{rank} A_{2}[Z]=\operatorname{rank} A_{2}[Z-\{c, d\}]+2$.

References

[1] J. Geelen, B. Gerards, G. Whittle, Solving Rota's Conjecture, Notices of the AMS 61 (2014), 736-743.
[2] J. Oxley, Matroid Theory, second edition, Oxford University Press, New York, (2011).

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

[^0]: Date: September 9, 2019.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. Rota's Conjecture, matroid fragility, circuit-hyperplane relaxation.

 This research was partially supported by grants from the Office of Naval Research [N00014-10-1-0851] and NSERC [203110-2011].

