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Abstract

It is well-known that every Eulerian orientation of an Eulerian 2k-edge-connected undirected graph is k-arc-
connected. A long-standing goal in the area has been to obtain analogous results for vertex-connectivity.
Levit, Chandran and Cheriyan recently proved in [9] that every Eulerian orientation of a hypercube of
dimension 2k is k-vertex-connected. Here we provide an elementary proof for this result.

We also show other families of 2k-regular graphs for which every Eulerian orientation is k-vertex-
connected, namely the even regular complete bipartite graphs, the incidence graphs of projective planes
of odd order, the line graphs of regular complete bipartite graphs and the line graphs of complete graphs.

Furthermore, we provide a simple graph counterexample for a conjecture of Frank attempting to charac-
terize graphs admitting at least one k-vertex-connected orientation.

1. Introduction

This paper is concerned with ways of orienting undirected graphs so that certain connectivity requirements
are satisfied. The case of edge-connectivity is already well-understood [10, 6, 7]. Here we contribute to the
development of the theory of highly vertex-connected orientations.

Let G = (V,E) be an undirected graph. For X,Y ⊆ V , we use δG(X, Y ) to denote the set of edges
between X \ Y and Y \ X and dG(X,Y ) for |δG(X,Y )|. We use δG(X) for δG(X,V \ X), dG(X) for
|δG(X)| and dG(v) for dG({v}). The subgraph induced by X is denoted by G[X] and the number of edges
of G[X ] is denoted by iG(X). The graph G is called k-regular if dG(v) = k for all v ∈ V. We denote by
NG(X) the set of neighbors of X , that is, the set of vertices in V \X which are adjacent to a vertex in X.

We say that G is k-edge-connected if dG(X) ≥ k for all ∅ 6= X ( V. We call G Eulerian if every vertex of
G is of even degree. An orientation of G is a directed graph obtained from G by replacing each edge uv by
exactly one of the arcs uv or vu. We denote by L(G) the line graph of G.

Let D = (V,A) be a directed graph. For X ⊆ V , we use δ
−

D
(X) for the set of arcs from V \X to X ,

δ
+

D
(X) for δ−D(V \X), d−

D
(X)= |δ−D(X)| for the in-degree of X and d

+

D
(X)= d−D(V \X) for the out-degree

of X . As before, d−

D
(v) and d

+

D
(v) are used for d−D({v}) and d+D({v}), respectively. If uv ∈ A, we say that

u is an in-neighbor of v and v is an out-neighbor of u. The subgraph induced by X is denoted by D[X].
We say that D is k-arc-connected if d+D(X) ≥ k for all ∅ 6= X ( V. We say that D is k-vertex-connected if
|V | ≥ k + 1 and after deleting any vertex set of size k − 1 the remaining graph is 1-arc-connected. We call
D Eulerian if d−D(v) = d+D(v) for all v ∈ V .

It is well-known that if D is Eulerian, then we have d−D(X) = d+D(X) for all X ⊆ V . Therefore, every
Eulerian orientation of a 2k-edge-connected Eulerian graph results in a directed graph that is k-arc-connected.
A fundamental result of Nash-Williams [10] states that a 2k-edge-connected undirected graph can be oriented
such that the resulting directed graph is k-edge-connected. A long-standing goal in the area is to extend this
to obtain an analogous result for vertex-connectivity [7]. Frank [5] conjectured a characterization of graphs
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admitting a k-vertex-connected orientation, see Section 4. For k = 2, the Eulerian case was proved by Berg
and Jordán [1] and the general case was proved by Thomassen [11]. For k ≥ 3, the conjecture was disproved
by Durand de Gevigney [3]. In Section 4 we provide a counterexample to Frank’s conjecture for k = 3 that
is smaller than that in [3]. We also provide a simple graph counterexample for k = 3.

The hypercube Qk of dimension k is the graph whose vertex set is the set of all subsets of {1, . . . , k}
and two vertices are connected by an edge if the two corresponding subsets differ in exactly one element.
It is well-known that Qk+1 can be obtained from two disjoint copies of Qk by adding an edge between the
corresponding vertices of the two copies. Using this construction it is easy to prove that Q2k has an Eulerian
orientation that is k-vertex-connected. Recently, Levit, Chandran and Cheriyan proved in [9] the following
surprising result on hypercubes.

Figure 1: The hypercube Q4.

Theorem 1 ([9]). Every Eulerian orientation of a hypercube Q2k is k-vertex-connected.

One of the contributions of the present paper is to provide a concise proof for Theorem 1, see Subsection
3.5.

Cheriyan [2] posed the question whether there exist other classes of graphs satisfying the following
definition.

Definition 2. A 2k-regular undirected graph G is good if every Eulerian orientation of G is k-vertex-
connected, bad otherwise.

In Section 2 we provide a useful reformulation of the definition of bad graphs and show that almost all
complete graphs are bad. In Section 3 we present some classes of good graphs, namely the even regular
complete bipartite graphs, the incidence graphs of projective planes of odd order, the line graphs of regular
complete bipartite graphs and the line graphs of complete graphs.

2. Bad graphs

As a first example of a bad graph, consider a triangle and double each edge. Another example can be
found in [1].

Proposition 3 contains a reformulation of the definition of bad graphs that will be frequently used and
some simple consequences of it.

Proposition 3. A 2k-regular simple graph G = (V,E) is bad if and only if there exists an orientation D of
G and a partition of V into non-empty sets Z, S and T such that

d−D(v) = d+D(v) = k for all v ∈ V, (1)

|Z| = k − 1, (2)

every edge of δG(S, T ) is oriented from S to T in D. (3)

G[S] contains a cycle. (4)

d−D(S) ≤ kmin{|Z|, |S|}, (5)

dG(S, T ) ≤ k2 − k − iG(Z). (6)
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Moreover, S can be chosen so that

|S| ≤ |T |, (7)

every vertex s of S has an out-neighbor in S in D. (8)

Proof: (1) – (3) are an immediate consequence of the definition of bad graphs. By (1) and (2), for all v ∈ S,
we have d−D(v) = k > |Z| and so, by (3), v has at least one in-neighbor in S. This yields (4). Since, by (1),
d−D(v) = k for all v ∈ S, it follows that d−D(S) ≤ k|S|. Moreover, by (3), all arcs entering S come from Z. As,
by (1), d+D(v) = k for all v ∈ Z, it follows that d−D(S) ≤ d+D(Z) ≤ k|Z|. These inequalities imply (5). By (3),
(1) and (2), we have (6) : dG(S, T ) ≤ d+D(S) = d−D(S) ≤ d+D(Z) =

∑

z∈Z d+D(z) − iG(Z) = k|Z| − iG(Z) =
k2 − k − iG(Z). Also, by definition, (1) – (3) imply that G is bad.

In order to show (7) and (8), let us choose an orientation D of G and a partition Z, S and T of V
satisfying (1) – (3) so that |S| is minimum. Since the orientation of G obtained from D by reversing all arcs
and the partition Z, T and S of V satisfy (1) – (3), the minimality of |S| implies (7). The fact that G is
simple and (4) implies |S| ≥ 2. Suppose that there exists a vertex v in S that has no out-neighbor in S. Let
S′ := S \ {s} and T ′ := T ∪ {s}. By |S| ≥ 2, S′ 6= ∅. Then the orientation D of G and the partition Z, S′

and T ′ of V satisfy (1) – (3), hence |S′| < |S| contradicts the minimality of S, so (8) follows.

It is easy to see that the complete graphs K2k+1 are good for k ≤ 3. We show that these are the only
good complete graphs.

Theorem 4. The complete graphs K2k+1 are bad for all k ≥ 4.

Proof: Let k ≥ 4 be an integer and G = (V,E) the complete graph K2k+1. Let S, T and Z ′ be three disjoint
sets in V such that |S| = ⌊k

2⌋+1 and |T | = |Z ′| = ⌈k
2⌉+1. By k ≥ 4, ⌊k

2 ⌋+1+2(⌈k
2 ⌉+1) ≤ 2k+1, so such

sets exist. Let Z := V \ (S ∪ T ). Note that |Z| = k− 1 and Z ⊇ Z ′. Let M be the empty set if k is even and
a perfect matching of the graph G′ = (T ∪ Z ′, δG(T, Z

′)) if k is odd. Since |T | = |Z ′| and G is a complete
graph, G′ is a regular complete bipartite graph, so M exists. Let us orient all edges in δG(S, T ) from S to
T , all edges in δG(T, Z

′) \ M from T to Z ′ and all edges in δG(Z
′, S) from Z ′ to S. Note that the set of

arcs already defined induces an Eulerian directed graph. Hence the corresponding set F of edges induces an
Eulerian subgraph of G. Since G is Eulerian, G − F is also Eulerian. Combining the orientation of F with
an arbitrary Eulerian orientation of G − F , we have an orientation D of G and a partition {Z, S, T } of V
that satisfy (1), (2) and (3). Thus, by Proposition 3, G = K2k+1 is bad.

3. Good graphs

In this section, we show that the following graph families are good: the complete bipartite graphs K2k,2k,
the incidence graphs of projective planes of even degree, the line graphs of regular complete bipartite graphs,
the line graphs of complete graphs and the hypercubes Q2k.

We will apply the following easy observation: for all triples of reals (a, b, c) with a, b ≥ c, since (a− c)(b−
c) ≥ 0, we have

ab ≥ c(a+ b− c). (9)

Let a be a non-negative integer. We use the notation
(

a
2

)

for a(a−1)
2 and we apply the following inequality:

(

a

2

)

≥ max{a− 1, 2a− 3}. (10)

3.1. Complete bipartite graphs

Let us first consider even regular complete bipartite graphs.

Theorem 5. The complete bipartite graphs K2k,2k are good for all k ≥ 1.
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Proof: We assume for a contradiction that the bipartite graph G = (V1, V2;E) = K2k,2k is bad. By
Proposition 3, there exists an orientation D of G and a partition of V1 ∪ V2 into non-empty sets Z, S and T

such that (1) – (6) are satisfied. For i = 1, 2, let zi:= |Z ∩ Vi|, si:= |S ∩ Vi| and ti:= |T ∩ Vi|. Note that, by
(2), we have z1, z2 ≥ 0, z1 + z2 = |Z| = k − 1.

Claim 6. The following hold:

s1 + s2 + t1 + t2 = 3k + 1, (11)

1 ≤ s1, s2, t1, t2 ≤ k, (12)

s1, s2, t1, t2 ∈ Z. (13)

Proof: By |V (G)| = 4k and |Z| = k − 1, we have s1 + s2 + t1 + t2 = |V (G)| − |Z| = 4k − (k − 1) = 3k + 1,
so (11) holds. By S 6= ∅, without loss of generality we may assume that there exists v ∈ S ∩ V1, so s1 ≥ 1.
Then, by (1) and because G is bipartite, v has k in-neighbors in V2. By (3), z1 + z2 = k − 1 and z1 ≥ 0,
we obtain that at least one of these in-neighbors is in S2. This yields s2 ≥ 1. By similar arguments, we
obtain t1, t2 ≥ 1. Moreover, by (1), (3), v ∈ S ∩ V1 and the fact G is a complete bipartite graph, we have
k = d+D(v) ≥ dG(v, T ∩ V2) = t2 and similarly s1, s2, t1 ≤ k, so (12) holds. By definition, (13) obviously
holds.

Claim 7. The minimum of s1t2 + s2t1 subject to (11), (12) and (13) is k2 + k.

Proof: Let the minimum be attained at (s1, s2, t1, t2). First suppose that k > s1, t2 > 1. By symmetry,

we may suppose that k > s1 ≥ t2 > 1. It follows from (13) that (s′1, s
′
2, t

′
1, t

′
2) := (s1 + 1, s2, t1, t2 − 1)

satisfies (11), (12) and (13). This and s′1t
′
2 + s′2t

′
1 = s1t2 + t2 − s1 − 1 + s2t1 < s1t2 + s2t1 contradict the

fact that the minimum is attained by (s1, s2, t1, t2). So either max{s1, t2} = k or min{s1, t2} = 1. Similarly,
either max{s2, t1} = k or min{s2, t1} = 1. If one of s1, s2, t1, t2 equals 1, then, by (11) and (12), the others
equal k and we have s1t2 + s2t1 = k2 + k. Otherwise, we have max{s1, t2} = max{s2, t1} = k, so (11) yields
s1t2 + s2t1 = k(min{s1, t2}+min{s2, t1}) = k(3k + 1− 2k) = k2 + k.

By Claims 6 and 7 and (6), we have k2 + k ≤ s1t2 + s2t1 = dG(S, T ) ≤ k2 − k. Then, by k ≥ 1, we have
a contradiction that completes the proof of Theorem 5.

We mention that the previous proof can be easily modified to show that the bipartite graphs obtained
from K2k+1,2k+1 by deleting a perfect matching are good for all k ≥ 1.

3.2. Incidence graphs of projective planes

Let G be the incidence graph of a projective plane of order 2k − 1. It is well-known that G is a simple
connected 2k-regular bipartite graph with unique color classes V1 and V2 both being of size (2k− 1)2+(2k−
1) + 1 = 4k2 − 2k + 1. The main property of G is the following:

any two vertices in Vi have exactly one common neighbor for i ∈ {1, 2}. (14)

Theorem 8. The incidence graph G = (V1, V2;E) of a projective plane of order 2k− 1 is good for all k ≥ 1.

Proof: We assume for a contradiction that G is bad. Then, by Proposition 3, there exists an orientation D

of G and a partition of V1 ∪ V2 into non-empty sets Z, S and T such that (1) – (8) are satisfied.

For i = 1, 2, let Si, Ti, Zi be Vi ∩ S, Vi ∩ T and Vi ∩ Z, respectively, and let si := |Si|, ti := |Ti| and zi
:= |Zi|. By (7), we have either s1 ≤ t1 or s2 ≤ t2, say s1 ≤ t1.

Claim 9. s1t1 ≤ z2k
2 + dG(S, T )(2k − 1).
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Proof: For every pair (s, t) ∈ S1×T1, by (14), exactly one (s, t)-path of length 2 exists, and it traverses either
Z2 or δG(S, T ). For a vertex z ∈ Z2, since dG(z, S1)+dG(z, T1) ≤ dG(z) = 2k, exactly dG(z, S1)dG(z, T1) ≤ k2

such paths traverse z. For an edge uv ∈ δG(S, T ) with u ∈ V1, at most dG(v)−1 = 2k−1 such paths traverse
uv. Then the number s1t1 of pairs (s, t) ∈ S1 × T1 is at most z2k

2 + dG(S, T )(2k − 1).

Since G is bipartite, (4) implies that s2 ≥ 2 and hence, by (1), (3) and (14), S2 has at least k + k − 1
neighbors in S1 ∪ Z1. Then, by z1 ≤ k − 1 and t1 ≥ s1, we have t1 ≥ s1 ≥ 2k − 1 − z1 ≥ k. Hence, by
(9) applied to (s1, t1, k), s1 + t1 + z1 = |V1|, Claim 9, (2), (6), |V1| = 4k2 − 2k + 1 and k ≥ 1, we have
k(|V1|−z1−k) ≤ s1t1 ≤ z2k

2+dG(S, T )(2k−1) ≤ (k−1−z1)k
2+(k2−k)(2k−1) = k(3k2−4k+1−z1k) <

k(|V1| − k − z1), a contradiction that completes the proof of Theorem 8.

3.3. Line graphs of regular complete bipartite graphs

Let us consider the regular complete bipartite graph Kk+1,k+1 and denote its bipartition classes by
{x1, . . . , xk+1} and {y1, . . . , yk+1}. This part deals with its line graph L(Kk+1,k+1): the vertex set of
L(Kk+1,k+1) is the set {(xi, yj) : 1 ≤ i, j ≤ k + 1} and two distinct vertices (xi, yj) and (xi′ , yj′) are
connected by an edge if i = i′ or j = j′. We mention that L(Kk+1,k+1) is also called Rook graph. The graph
L(Kk+1,k+1) for k = 2 is given in Figure 2. Note that L(Kk+1,k+1) is 2k-regular.

✉

✉

✉

✉

✉

✉

✉

✉

✉

C1

R1

Figure 2: fL(K3,3), the row R1 and the column C1.

By a row Ri (resp. column Cj) of L(Kk+1,k+1) we denote the vertex set {(xi, yj) : 1 ≤ j ≤ k + 1} (resp.
{(xi, yj) : 1 ≤ i ≤ k + 1}). The set of rows (resp. columns) is denoted by R (resp. C). By a line we mean
a row or a column. The set of lines is denoted by L. Observe that R contains k + 1 rows, C contains k + 1
columns, L contains 2k+2 lines and every line contains k+1 vertices. Note that, by construction, it follows
that

each line of L(Kk+1,k+1) is a clique of L(Kk+1,k+1), (15)

a line and a stable set of L(Kk+1,k+1) have at most one vertex in common. (16)

It is well-known (and can easily be derived from Kőnig’s theorem [8] on edge-colorings of bipartite graphs)
that L(Kk+1,k+1) is a perfect graph. This means that every induced subgraph H of L(Kk+1,k+1) has a
vertex coloring with ω(H) colors, where ω(H) denotes the size of a maximum clique of H. Our proof will
use the perfectness of L(Kk+1,k+1).

Theorem 10. L(Kk+1,k+1) is good for all k ≥ 1.
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Proof: Let G = L(Kk+1,k+1) for some k ≥ 1 and assume for a contradiction that G is bad. Then, by
Proposition 3, there exists an orientation D of G and a partition of V (G) into non-empty sets Z, S and T

such that (1) – (6) are satisfied. For a line Li ∈ L, let si, ti and zi denote |Li ∩ S|, |Li ∩ T | and |Li ∩ Z|,
respectively. Since |Li| = k + 1, the following holds:

si + ti + zi = k + 1. (17)

Let RS (resp. RT ) be the set of rows that are disjoint from T (resp. S). The column classes CS and CT

are similarly defined. Let LS := RS ∪ CS , LT := RT ∪ CT and L′ the rest of the lines.

Note that, by definition, we have

the intersection of a line of LS and a line of LT is in Z. (18)

In the first part of the proof we show that LS or LT contains at least half of the lines. We first provide a
lower bound on the number of lines in LS ∪ LT .

Claim 11. LS ∪ LT contains at least k + 2 lines.

Proof: Since each line Li in L′ intersects both S and T , we may apply (9) to (si, ti, 1) and we get, by
(15) and (17), that Li contains at least si + ti − 1 = k − zi edges between S and T . Then, by (6),
since the G[Li]’s are edge-disjoint, since a vertex belongs to two lines and by (2), we have (k − 1)k ≥
dG(S, T ) ≥

∑

Li∈L′(k − zi) ≥ |L′|k − 2|Z| > (|L′| − 2)k, thus |L′| ≤ k. Hence, by |L| = 2k + 2, we have
|LS |+ |LT | = |L| − |L′| ≥ (2k + 2)− k = k + 2.

Now we show in several steps that one of LS and LT is almost empty.

Claim 12. One of RS ,RT , CS and CT is empty.

Proof: Suppose for a contradiction that none of RS ,RT , CS and CT are empty. Then, by (9) applied to
(|RS |, |CT |, 1) and to (|RT |, |CS |, 1), Claim 11, (2) and (18), we have |RS ||CT | + |RT ||CS | ≥ (|RS | + |CT | −
1) + (|RT |+ |CS | − 1) = |LS |+ |LT | − 2 ≥ (k + 2)− 2 > |Z| ≥ |RS ||CT |+ |RT ||CS |, a contradiction.

By Claim 12, we may suppose that CS is empty. Indeed, by symmetry of G, we can exchange the rows
and columns of G if needed, we may hence suppose that one of CS and CT is empty. Observe that in the
digraph obtained from D by reversing all arcs the partition of V (G) into Z, T and S satifies (1), (2) and (3).
Therefore, eventually exchanging the role of S and T and reversing the arcs of D, we may suppose that CS
is empty.

Claim 13. At most one column contains at least k vertices of S.

Proof: Suppose there exist two columns Ci and Cj such that si, sj ≥ k. By CS = ∅, we have ti, tj ≥ 1.
Then, by (17) and zi ≥ 0, we have si, sj = k and ti, tj = 1. Let X := T ∩ (Ci ∪ Cj). Note that |X | = 2,
X ⊆ T and (Ci ∪ Cj) \ X ⊆ S. So, by (3), all the neighbors of X in Ci and Cj are in-neighbors of X,

and hence all the arcs leaving X enter columns different from Ci and Cj . Then, by si = sj = k, (15), (1),
|C| = k + 1 and since there exists exactly one edge between any vertex u and any column not containing u,
we have 2k ≤ d−D(X) = d+D(X) ≤ 2(k − 1), a contradiction.

Claim 14. LS contains at most one line.

Proof: Suppose for a contradiction that |LS | ≥ 2. Since CS is empty, we have |RS | ≥ 2. Then, for every
column Cj , we have sj + zj ≥ |RS | ≥ 2. By Claim 13, at most one column Ci satisfies si ≥ k. Thus, by
(17), we have tj + zj = (k + 1) − sj ≥ (k + 1) − (k − 1) = 2 for every column Cj 6= Ci. So we may apply
(9) to (sj , tj , 2 − zj) and, by (15) and (17), we get that every column Cj ∈ C′ := C \ (CT ∪ {Ci}) contains
at least (2 − zj)(k − 1) edges between S and T . By (18), the columns in CT contain at least |RS ||CT |
vertices of Z. Then, by (6), since the G[Cj ]’s are edge-disjoint, |C| = k + 1, by (2) and |RS | ≥ 2, we have
(k − 1)k ≥ dG(S, T ) ≥

∑

Cj∈C′ dG[Cj ](S, T ) ≥
∑

Cj∈C′(2 − zj)(k − 1) ≥ (k − 1)
(

2(k − |CT |) − ((k − 1) −

|RS ||CT |)
)

> (k − 1)(k + (|RS | − 2)|CT |) ≥ (k − 1)k, a contradiction.

We can now see that LT contains at least half of the lines. Indeed, Claims 11 and 14 imply that
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Claim 15. LT contains at least k + 1 lines.

In the second part of the proof our goal is to give an upper bound on the size of S. In order to do that we
consider a particular vertex-coloring of H := G[S]. Since G is a perfect graph, there exists a vertex-coloring
I of H by ω(H) colors.

Claim 16. S contains at most 2ω(H)− 1 vertices.

Proof: Let U be the set of vertices in the lines of LT , Z
′ = Z ∩ U and Z′′= Z \ Z ′. Let I be a color class

in I. Since I is a stable set in S, by (16), each vertex in U has at most one neighbor in I and each vertex
of Z ′′ has at most two neighbors in I. Hence

d−D(S) =
∑

I∈I

|δ−D(S) ∩ δ−D(I)| ≤
∑

I∈I

(|Z ′|+ 2|Z ′′|) = ω(H)(|Z ′|+ 2|Z ′′|). (19)

Let v be a vertex in I ⊆ S ⊆ V \ U . It follows, by (15) and Claim 15, that v has at least |LT | ≥ k + 1
neighbors in U . So I has at least |I|(k + 1) neighbors in U , each being, by (3), either a vertex in Z ′ or an
out-neighbor of v in D. Hence

d+D(S) =
∑

I∈I

|δ+D(S) ∩ δ+D(I)| ≥
∑

I∈I

(|I|(k + 1)− |Z ′|) = |S|(k + 1)− ω(H)|Z ′|. (20)

Then, (1), (19), (20), Z ′ ∪ Z ′′ = Z and (2) yield that

|S| ≤ ⌊
2ω(H)(k − 1)

k + 1
⌋ ≤ 2ω(H)− 1.

Since each clique of G is contained in a line, we can choose a line Li that contains ω(H) vertices of S.
Note that si ≥ 1. Let Si := Li ∩ S and S′

i
:= S \ Si.

Finally, in order to derive a contradiction, we provide bounds for dG(S, T ) and dG(S,Z).

Claim 17. siti + ksi − (|Z| − zi) + |S′
i| ≤ dG(S, T ).

Proof: By (15), we have siti = dG(Si, T ∩ Li). Next observe that every element of Si has k neighbors
which are not in Li and these neighborhoods are disjoint. As at most |Z \ Li| + |S′

i| of these vertices
are in Z ∪ S, we obtain that at least ksi − (|Z \ Li| + |S′

i|) of them are in T . By (15), this yields that
ksi − (|Z| − zi) − |S′

i| ≤ dG(Si, T \ Li). Now consider a vertex v ∈ S′
i. By (15), Claim 15 and (2), v at

least |LT | − |Z| ≥ (k + 1)− (k − 1) = 2 neighbors in T . This yields 2|S′
i| ≤ dG(S

′
i, T ). By dG(Si, T ∩ Li) +

dG(Si, T \ Li) + dG(S
′
i, T ) = dG(S, T ), the claim follows.

Claim 18. dG(S,Z) ≤ si|Z|+ |S′
i|.

Proof: By (15), we have sizi = dG(Si, Z ∩ Li). Every element of Z \ Li has, by Si ⊆ Li, at most one
neighbor in Si and clearly at most |S′

i| in S′
i. This gives, by Claim 16 and ω(H) = si, that dG(Z \ Li, S) ≤

(|S′
i|+ 1)(|Z| − zi) ≤ si(|Z| − zi). Since S′

i ∩ Li = ∅, every element of S′
i has at most one neighbor in Li ∩Z

and hence dG(Z ∩ Li, S
′
i) ≤ S′

i. By dG(Si, Z ∩ Li) + dG(S,Z \ Li) + dG(S
′
i, Z ∩ Li) = dG(S,Z), the claim

follows.

Now we are ready to conclude. Claims 17 and 18, (3) and (1) yield that siti + ksi − (|Z| − zi) + |S′
i| ≤

dG(S, T ) ≤ d+D(S) = d−D(S) ≤ dG(S,Z) ≤ si|Z| + |S′
i|. Then, by (17), (2), ti ≥ 0 and si ≥ 1, we have

0 ≥ siti + si(k − |Z|) − (|Z| − zi) = siti + si − (si + ti − 2) = ti(si − 1) + 2 ≥ 2, a contradiction. This
completes the proof of Theorem 10.
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3.4. Line graphs of complete graphs

Let us consider the complete graph Kk+2 and denote its vertex set by U . This part deals with its line
graph L(Kk+2). Note that a pair of adjacent (resp. non-adjacent) edges in Kk+2 corresponds to a pair of
adjacent (resp. non-adjacent) vertices in L(Kk+2). Since each edge of Kk+2 is adjacent to exactly 2k other
edges, L(Kk+2) is 2k-regular.

Theorem 19. L(Kk+2) is good for all k ≥ 1.

Proof: Let G = L(Kk+2) for some k ≥ 1 and assume for a contradiction that G is bad. Clearly, k ≥ 2.
Then, by Proposition 3, there exists an orientation D of G and a partition of V (G) into non-empty sets Z, S
and T such that (1) – (8) are satisfied.

For a vertex set X of G, we denote by EX the corresponding edge set of Kk+2. For a vertex v ∈ U , let sv,
tv and zv be the number of edges incident to v that are in ES , ET and EZ , respectively. We call an ordered
pair (e, f) of edges of Kk+2 an (S, T )-pair if e ∈ ES and f ∈ ET . The sets of adjacent and non-adjacent
(S, T )-pairs are denoted by P1 and P2, respectively. Observe that |P1| = dG(S, T ) and |S||T | = |P1|+ |P2|.

First we provide an upper bound on |P1|.

Claim 20. |P1| ≤ k2 − k −max{0, k − 4}.

Proof: Note that every pair of edges in EZ which shares a vertex v in Kk+2 provides an edge in G[Z]. It
follows that a vertex v ∈ U provides exactly

(

zv
2

)

edges in G[Z]. Then, as every such pair shares exactly

one vertex in Kk+2, by (10) and (2), we have iG(Z) =
∑

v∈U

(

zv
2

)

≥
∑

v∈U (zv − 1) = 2|EZ | − |U | =
2(k− 1)− (k+2) = k− 4. Thus, by (6), we have |P1| = dG(S, T ) ≤ k2 − k− iG(Z) ≤ k2 − k−max{0, k− 4}.

We next prove an upper bound on |P2|.

Claim 21. 2|P2| ≤ (k − 1)|P1|+ k2 − 3k + 2.

Proof: A 4-cycle of Kk+2 is called special if it contains a non-adjacent (S, T )-pair. Let C be the set of special
cycles. A special cycle is said to be of type i if it contains i edges of EZ for i = 0, 1, 2. Let ni denote the
number of special cycles of type i for i = 0, 1, 2.

Note that every special cycle of type 1 or 2 contains exactly one non-adjacent (S, T )-pair and every
special cycle of type 0 contains at most 2 non-adjacent (S, T )-pairs. Further, every non-adjacent (S, T )-pair
can be completed to a 4-cycle in two different ways, so every non-adjacent (S, T )-pair is part of exactly 2
special cycles. It follows that

2|P2| =
∑

p∈P2

∑

C∈C
p(E(C)

1 =
∑

C∈C

∑

p∈P2

p(E(C)

1 ≤ 2n0 + n1 + n2. (21)

Observe that every special cycle of type i contains 2 − i adjacent (S, T )-pairs for i = 0, 1, 2. Also every

adjacent (S, T )-pair can be completed to a 4-cycle by adding one of k − 1 vertices, so every adjacent (S, T )-
pair is contained in exactly (k − 1) 4-cycles. This yields

2n0 + n1 =
∑

C∈C

∑

p∈P1

p(E(C)

1 =
∑

p∈P1

∑

C∈C
p(E(C)

1 ≤
∑

p∈P1

(k − 1) = (k − 1)|P1|. (22)

Observe that every special cycle of type 2 contains 2 non-adjacent edges of EZ , every pair of non-adjacent

edges is contained in exactly two 4-cycles and there are at most
(

k−1
2

)

pairs of non-adjacent edges of EZ .
This implies that

n2 ≤ 2

(

k − 1

2

)

= k2 − 3k + 2. (23)
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The inequalities (21), (22) and (23) imply the claim.

We use the previous results to show an upper bound on |S|.

Claim 22. |S| ≤ k.

Proof: Otherwise, by (7), we have |T | ≥ |S| ≥ k+1. By (2), we have |S|+|T | =
(

k+2
2

)

−(k−1). Then, by (9)

applied to (|S|, |T |, k+1), we have |S||T | ≥ (k+1)(
(

k+2
2

)

−2k) = k3+k+2
2 . Then Claims 21 and 20 and k ≥ 1

yield k3+k ≤ 2|S||T |−2 = 2|P2|+2|P1|−2 ≤ (k+1)|P1|+k2−3k ≤ (k+1)(k2−k−max{0, k−4})+k2−3k =
k3 + k − (5k − k2)−max{0, k2 − 3k − 4} = k3 + k −max{k(5− k), 2(k − 2)} < k3 + k, a contradiction.

The following result shows that the edges of ES are adjacent to many edges of ES∪Z .

Claim 23. For every uv ∈ ES, su + zu + sv + zv ≥ k + 3.

Proof: By (1), (3) and (8), the vertex of D that corresponds to uv has k in-neighbors in S ∪Z and at least
one out-neighbor in S in D and their corresponding edges in Kk+2 are incident to u or v. As uv is counted
in su and sv, we obtain that su + zu + sv + zv ≥ k + 3.

The next result shows that S forms a clique in G.

Claim 24. The edges of ES are pairwise adjacent.

Proof: Suppose that ES contains two non-adjacent edges v1v2 and v3v4. Note that Kk+2 has 6 edges having
both ends in {v1, v2, v3, v4}. Applying Claim 23 to both v1v2 and v3v4 and using Claim 22 and (2), we obtain

2(k + 3) ≤
∑4

i=1(svi + zvi) ≤ |ES |+ |EZ |+ 6 ≤ 2k + 5, a contradiction.

Claim 25. The edges of ES do not form a triangle in Kk+2.

Proof: Suppose that ES forms a triangle on v1, v2, v3 in Kk+2. Observe that every edge in EZ is incident to
at most one of v1, v2, v3 and every edge in ES is incident to exactly two of v1, v2, v3. Applying Claim 23 to all 3
edges of ES , we get 3(k+3) ≤

∑

uv∈ES
(su+zu+sv+zv) = 2

∑3
i=1(svi+zvi) ≤ 2(2|ES|+|EZ |) ≤ 2(6+(k−1)),

that contradicts k ≥ 2.

By Claims 24 and 25, the edges of ES are all incident to a vertex v inKk+2. LetQ be the clique of size k+1
in G that corresponds to the set of edges incident to v in Kk+2. Note that |S| = |Q ∩ S| = sv, |Q ∩ T | = tv
and |Q ∩ Z| = zv. Since every edge of EZ that is not incident to v is adjacent to at most 2 edges of
ES in Kk+2, each vertex of Z \ Q is adjacent to at most 2 vertices of S in G. This implies, by (3), that
d−D(S) ≤ 2|Z\Q|+svzv. By (4), we have |S| ≥ 2. Then, by (1), sv = |S| ≥ 2, (2), G[S] is a clique, |Q| = k+1

and (10), we have 0 =
∑

u∈S(d
−
D(u)−k) = d−D(S)+

(

|S|
2

)

−|S|k ≤ 2|Z \Q|+svzv+
(

sv
2

)

−sv(sv−1+tv+zv) ≤

2(k− 1− zv)− 2tv −
(

sv
2

)

= 2(sv − 2)−
(

sv
2

)

< 0, a contradiction. This completes the proof of Theorem 19.

3.5. Hypercubes

In this subsection we provide a short self-contained proof for Theorem 1 that is restated below. Let us
recall that Qk has 2k vertices and Qk is k-regular.

Theorem 26. The hypercube Q2k is good for all k ≥ 1.

The key ingredient of the proof of Theorem 26 in [9] is a lemma proved by the authors of [9] stating that
|NQ2k

(X)| ≥ kmin{k, |X |+ 1} for all X ⊆ V (Q2k) with 1 ≤ |X | ≤ 22k−1. The following lemma extends this
for dimension of arbitrary parity. Our contribution is an elementary proof of Lemma 27.

Lemma 27. For all X ⊆ V (Qk),
(a) |NQk

(X)| ≥ ⌊k
2⌋(|X |+ 1) if 1 ≤ |X | ≤ ⌊k

2 ⌋,

(b) |NQk
(X)| ≥ ⌊k

2 ⌋⌈
k
2⌉ if ⌊k

2 ⌋ ≤ |X | ≤ 2k−1.
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First we show how to prove Theorem 26 using Lemma 27 as pointed out in [9].

Proof: (of Theorem 26) We assume for a contradiction that Q2k is bad. Then, by Proposition 3, there
exists an orientation D of Q2k and a partition of V (Q2k) into non-empty sets Z, S and T such that (1) –
(6) are satisfied. Then, by (5), (1), (3), Lemma 27 and (2), we have kmin{|Z|, |S|} ≥ d−D(S) = d+D(S) ≥
|N2k(S)| − |Z| ≥ kmin{k, |S|+ 1} − k + 1 = kmin{|Z|, |S|}+ 1, a contradiction.

It is easy to verify that for all positive integers k, the following holds:

⌊
k

2
⌋⌈

k

2
⌉+ ⌊

k + 1

2
⌋ = ⌊

k + 1

2
⌋⌈

k + 1

2
⌉. (24)

We introduce two functions f, g : Z+ → Z+: let f(k) := ⌊k
2 ⌋(⌈

k
2 ⌉+ 1)− 1 and g(k) := 2k − f(k). We need

the following inequality for g(k).

Proposition 28. For k ≥ 1, 2g(k) + 2− 2k ≥ ⌊k+1
2 ⌋⌈k+1

2 ⌉.

Proof: We first show by induction that 2k ≥ 4⌈k
2 ⌉ − ⌊k

2 ⌋+ 1 for all k ≥ 2. For k = 2 it is true. If it is true

for some k ≥ 2, then, by the induction hypothesis, it is true for k+1 : 2k+1 = 2k+2k ≥ 4+4⌈k
2 ⌉−⌊k

2 ⌋+1 ≥

4⌈k+1
2 ⌉ − ⌊k+1

2 ⌋+ 1.

By (24), the inequality of the claim is equivalent to 2k+4 ≥ 3⌊k
2 ⌋⌈

k
2⌉+2⌊k

2⌋+⌈k
2 ⌉ for k ≥ 1. For k = 1, 2 it

is true. If it is true for some k ≥ 2, then, by the above inequality, the induction hypothesis and (24), it is true
for k+1 : 2k+1+4 = 2k+2k+4 ≥ 4⌈k

2 ⌉−⌊k
2 ⌋+1+3⌊k

2 ⌋⌈
k
2 ⌉+2⌊k

2 ⌋+ ⌈k
2 ⌉ = 3⌊k+1

2 ⌋⌈k+1
2 ⌉+2⌊k+1

2 ⌋+ ⌈k+1
2 ⌉.

Proof: (of Lemma 27) (a) First we prove a lower bound on the number of neighbors of an arbitrary vertex
set X of Qk and then we show how this yields (a).

Claim 29. |NQk
(X)| ≥

∑

v∈X dQk
(v)− 2

(

|X|
2

)

for all X ⊆ V (Qk).

Proof: LetH := Qk[X ] andAv := NQk
(v)\X for all v ∈ X. It is known by the sieve formula that |∪v∈XAv|−

∑

v∈X |Av|+
∑

u,v∈X |Au∩Av| ≥ 0. Note that |∪v∈XAv| = |NQk
(X)|,

∑

v∈X |Av| =
∑

v∈X(dQk
(v)−dH(v)) =

∑

v∈X dQk
(v)− 2|E(H)|. Since |NQk

({u}) ∩NQk
({v})| = 0 if uv ∈ E(Qk) and ≤ 2 if uv ∈ E(Qk), we have

∑

u,v∈X |Au ∩ Av| ≤
∑

uv∈E(H) 0 +
∑

uv∈E(H) 2 = 2|E(H)|. By |E(H)| + |E(H)| =
(

|X|
2

)

, the claim follows.

Let X ⊆ V (Qk) with 1 ≤ |X | ≤ ⌊k
2 ⌋. By Claim 29 and the k-regularity of Qk, we have |NQk

(X)| ≥
∑

v∈X dQk
(v)− 2

(

|X|
2

)

= |X |(k + 1− |X |) ≥ ⌊k
2⌋(|X |+ 1) + (⌊k

2 ⌋ − |X |)(|X | − 1) ≥ ⌊k
2 ⌋(|X |+ 1).

(b) We prove this case by induction on k. For k = 1, it is trivial. For k = 2, it follows since Q2 is
connected. Suppose that the lemma is true for some k ≥ 2. We use that Qk+1 can be obtained from two
disjoint copies Q1 and Q2 of Qk by adding an edge between the corresponding vertices of Q1 and Q2. Let
X ( V (Qk+1) with ⌊k+1

2 ⌋ ≤ |X | ≤ 2k, Xi := X ∩ V (Qi), Xc

i
:= V (Qi) \Xi, X

∗

i
:= Xc

i \NQi(Xi). By the
construction of Qk+1 from Q1 and Q2, we have, for i ∈ {1, 2},

|NQk+1
(X) ∩ V (Qi)| ≥ max{|X3−i| − |Xi|, |NQi(Xi)|}. (25)

The following claim strengthens the induction hypothesis by relaxing the condition on the size of Xi.

Claim 30. |NQi(Xi)| ≥ ⌊k
2 ⌋⌈

k
2⌉ if ⌊k

2⌋ ≤ |Xi| ≤ g(k).

Proof: For |Xi| ≤ 2k−1, by the induction hypothesis, we are done. Otherwise, |X∗
i | ≤ |Xc

i | < 2k−1. For
|X∗

i | ≥ ⌊k
2 ⌋, by NQi(Xi) ⊇ NQi(X∗

i ) and the induction hypothesis, we have |NQi(Xi)| ≥ |NQi(X∗
i )| ≥

⌊k
2 ⌋⌈

k
2 ⌉. For |X∗

i | ≤ ⌊k
2⌋ − 1, by 2k − |Xc

i | = |Xi| ≤ g(k) = 2k − f(k), we have |NQi(Xi)| = |Xc
i | − |X∗

i | ≥

f(k)− (⌊k
2⌋ − 1) = ⌊k

2 ⌋⌈
k
2 ⌉.
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We finish the proof by distinguishing several cases.

Case 1. 1 ≤ |Xi| ≤ ⌊k
2 ⌋ for i = 1, 2. By (25), Lemma 27(a), |Xi| ≤ ⌊k

2 ⌋ and |X | ≥ ⌊k+1
2 ⌋, we have

|NQk+1
(X)| ≥

∑2
i=1 |NQi(Xi)| ≥

∑2
i=1⌊

k
2 ⌋(|Xi|+1) ≥

∑2
i=1 |Xi|(⌊

k
2 ⌋+1) = |X |(⌊k

2⌋+1) ≥ ⌊k+1
2 ⌋⌈k+1

2 ⌉.

Case 2. |X1| ≥ g(k) + 1. By (25), |X | ≤ 2k and Proposition 28, we have
|NQk+1

(X)| ≥ |NQk+1
(X) ∩ V (Q2)| ≥ |X1| − |X2| = 2|X1| − |X | ≥ 2g(k) + 2− 2k ≥ ⌊k+1

2 ⌋⌈k+1
2 ⌉.

Case 3. ⌊k
2⌋ ≤ |X2| ≤ |X1| ≤ g(k). By (25), Claim 30 and k ≥ 2, we have

|NQk+1
(X)| ≥

∑2
i=1 |NQi(Xi)| ≥ 2⌊k

2 ⌋⌈
k
2⌉ ≥ ⌊k+1

2 ⌋⌈k+1
2 ⌉.

Case 4. 1 ≤ |X2| ≤ ⌊k
2⌋ ≤ |X1| ≤ g(k). By (25), Claim 30, Lemma 27(a), k ≥ 2 and (24), we have

|NQk+1
(X)| ≥

∑2
i=1 |NQi(Xi)| ≥ ⌊k

2 ⌋⌈
k
2 ⌉+ ⌊k

2 ⌋(|X2|+ 1) ≥ ⌊k
2 ⌋⌈

k
2 ⌉+ ⌊k+1

2 ⌋ = ⌊k+1
2 ⌋⌈k+1

2 ⌉.

Case 5. X2 = ∅ and ⌊k
2 ⌋ ≤ |X1| ≤ g(k). By (25), Claim 30, |X | ≥ ⌊k+1

2 ⌋ and (24), we have

|NQk+1
(X)| ≥ |NQ1(X)|+ |NQk+1

(X) ∩ V (Q2)| = |NQ1(X)|+ |X | ≥ ⌊k
2 ⌋⌈

k
2⌉+ ⌊k+1

2 ⌋ = ⌊k+1
2 ⌋⌈k+1

2 ⌉.

Up to symmetry of X1 and X2, this case distinction is complete. Thus Lemma 27(b) is true for k + 1.

4. Counterexamples for Frank’s conjecture

We now come back to the question of characterizing graphs admitting at least one k-vertex-connected
orientation. Frank [5] conjectured that an undirected graph G = (V,E) with |V | > k has a k-vertex-
connected orientation if and only if for all X ⊆ V with |X | < k, G − X is (2k − 2|X |)-edge-connected.
Durand de Gevigney [3] provided a counterexample to this conjecture for k = 3 on 10 vertices. Here we
present a counterexample for k = 3 on 6 vertices. Starting from our example we also present a simple graph
counterexample for k = 3. The idea of the constructions comes from [3, 4].

LetG1 be the first graph in Figure 3. It is easy to check that for k = 3, G1 satisfies the condition of Frank’s
conjecture. Suppose now that G1 has a 3-vertex-connected orientation D1. Then for any i, D1 − vi − vi+2 is
1-arc-connected, so vi+1 has one grey arc entering and one grey arc leaving. Hence, the grey cycle is oriented
as a circuit in D1. It follows that in D1 − v1 − v4 the two arcs between {v2, v3} and {v5, v6} form a directed
cut and hence D1 is not 3-vertex-connected. Thus G1 is a counterexample to Frank’s conjecture for k = 3.
Note that since G1 is 6-regular and has no 3-vertex-connected orientation, G1 is bad.

v1

v2v3

G1 G2

v4

v5 v6

v4 v1

L2L3

L5 L6

a
bc

d

f e g
h

Figure 3: Counterexamples to Frank’s conjecture.

We now construct a simple graph G2 which is a counterexample to Frank’s conjecture for k = 3. We
replace the vertices v2, v3, v5 and v6 in G1 by appropriate cliques, see Figure 3. Note that G2 is a simple
graph. It is easy to check that for k = 3, G2 satisfies the condition of Frank’s conjecture. Suppose now that
G2 has a 3-vertex-connected orientation D2 = (V,A). By reversing all arcs if necessary, we may suppose that
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gd ∈ A. Since D2− b− v4 is 1-arc-connected, cv1 ∈ A. Since D2−a− b (resp. D2− g−h) is 1-arc-connected,
one of the two arcs between v1 and L2 (resp. L6) goes from v1 to L2 (resp. L6) and the other one goes
from L2 (resp. L6) to v1. Then, since d−D2

(v1) = 3 = d+D2
(v1), v1e ∈ A. Finally, since D2 − h − v4 is

1-arc-connected, fa ∈ A. It follows that in D2− v1− v4 the two arcs gd and fa between L2∪L3 and L5∪L6

form a directed cut and hence D2 is not 3-vertex-connected. Thus the simple graph G2 is a counterexample
to Frank’s conjecture for k = 3.

5. Conclusion

We provided five classes of good graphs in this paper. Further investigations could allow the identification
of more classes of good graphs. We are particularly interested in the graph class described below which
extends two of the classes of good graphs dealt with in this paper.

Let W be a set of size w. The Hamming graph H(d, w) is the graph with vertex set W d, where two
vertices are adjacent if they differ in exactly one coordinate. Note that H(1, w) is the complete graph Kw,

H(d, 2) is the hypercube of dimension d and H(2, w) is the line graph of Kw,w. It is easy to see that H(d, w)
is d(w − 1)-regular. We conjecture that H(d, w) is a good graph whenever d(w − 1) is even and d ≥ 2. This
would generalize Theorems 10 and 26.
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