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REACHABILITY IN ARBORESCENCE PACKINGS*

FLORIAN HOERSCH' AND ZOLTAN SZIGETI}

Abstract. Fortier et al. [4] proposed several research problems on packing arborescences. Some
of them were settled in that paper and others were solved later by Matsuoka and Tanigawa [11] and
Gao and Yang [8]. The last open problem will be settled in this paper. We show how to turn an
inductive idea used in the last two articles into a simple proof technique that allows to relate previous
results on arborescence packings.

We show how a strong version of Edmonds’ theorem [3] on packing spanning arborescences implies
Kamiyama, Katoh and Takizawa’s result [9] on packing reachability arborescences and how Durand
de Gevigney, Nguyen and Szigeti’s theorem [2] on matroid-based packing of arborescences implies
Kirély’s result [10] on matroid-reachability-based packing of arborescences.

Finally, we deduce a new result on matroid-reachability-based packing of mixed hyperarbores-
cences from a theorem on matroid-based packing of mixed hyperarborescences due to Fortier et al.
[4].

All the proofs provide efficient algorithms to find a solution to the corresponding problems.

Key words. arborescence, packing, matroid

AMS subject classifications. 05C70,05C40,05B35

1. Introduction. This paper deals with the packing of arborescences. We focus
on concluding characterizations of graphs admitting a packing of reachability-based
arborescences from the corresponding theorems for spanning arborescences in several
settings. We first give an overview of the results in this article. All technical terms
which are not defined here will be explained in Section 3.

In 1973, Edmonds [3] characterized digraphs having a packing of k spanning r-
arborescences for some k € Z, and for some vertex r. Since then, there have been
numerous generalizations of this result. A first attempt is to allow different roots for
the arborescences. A version with arbitrary, fixed roots can easily be derived from
the theorem of Edmonds. This generalization has a significant deficiency occuring
when some vertex is not reachable from some designated root. In this case, the only
information it provides is that the desired packing does not exist. A concept to
overcome this problem has been developed by Kamiyama, Katoh and Takizawa in
[9]. Given a digraph D, can we find a packing of arborescences such that each of
them spans all the vertices reachable from the root designated to it? They provide
a characterization of these graphs. We reprove their theorem by a reduction from a
stronger form of Edmonds’ theorem.

Another way of generalizing the requirements on the packing of arborescences was
introduced by Durand de Gevigney, Nguyen and Szigeti in [2]. Instead of requiring
every vertex to be spanned by all arborescences, it is required to be spanned only by
the arborescences which are associated to a basis of an arbitrary matroid where every
arborescence is associated to an element of the matroid. Surprisingly, a characteri-
zation of graph-matroid pairs admitting such a packing of arborescences in this very
general setting was found in [2]. A natural combination of the two aforementioned
generalizations was introduced by Kirédly [10]. He requires every vertex only to be
spanned by a set of arborescences associated to a matroid basis of the set associated
to the arborescences that could potentially reach the vertex. He provided a charac-
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2 F. HOERSCH AND Z. SZIGETI

terization of the graph-matroid pairs admitting such a packing of arborescences. We
reprove this theorem by concluding it from the theorem in [2].

Finally, there are attempts to also generalize the objects considered from digraphs
to more general objects like mixed graphs or dypergraphs. We consider a concept uni-
fying all of these generalizations where we want to find a matroid-reachability based
packing of mixed hyperarborescences in a matroid-rooted mixed hypergraph. We
derive a characterization of these mixed hypergraph-matroid pairs from a charac-
terization for the existence of a matroid-based packing of mixed hyperarborescences
in a matroid-rooted mixed hypergraph by Fortier et al. in [4]. All our proofs are
algorithmic.

In Section 3, we provide a more technical and detailed overview of the results
considered. In Section 4, we give the reductions that yield our new proofs. Section 5
deals with the algorithmic impacts of our results.

2. Definitions. In this section we provide the definitions and notation needed
in the paper. For basic notions of matroid theory, we refer to [5], chapter 5.

2.1. Directed graphs. We first provide some basic notation on directed graphs
(digraphs). Let D = (V, A) be a digraph. For disjoint X,Y C V, we denote the set of
arcs with tail in X and head in Y by pa(X,Y) and |pa(X,Y)| by da(X,Y). We
use p"A_(X) for pa(X,V — X), pa(X) for pa(V — X, X), dX(X) for |p%(X)| and
d(X) for |p,(X)|. We denote by N7 (X) and N5 (X) the set of out-neighbors
and in-neighbors of X, respectively. For a single vertex v, we abbreviate p ({v}) to
ph(v) etc.. We call v a root in D if d(v) = 0 and a simple root if additionally
dh(v) < 1.

An arborescence is a subgraph of D in which no circuit exists and every vertex
except one has in-degree 1. Observe that every arborescence contains a unique root.
An arborescence whose unique root is a vertex r is also called an r-arborescence.
An arborescence B is said to span V(B). A subgraph of D is called a spanning
arborescence if it is an arborescence and it spans all the vertices of D. By a packing of
arborescences or arborescence packing in D, we mean a set of arc-disjoint arborescences
in D.

For u,v € V', we say that v is reachable from w in D if there exists a directed path
from u to v. For X C V, we denote by U)[(_’ the set of vertices which are reachable
from at least one vertex in X, by P)? the set of vertices from which X is reachable
and by D[X] the subgraph of D induced on X.

We define a (simply) rooted digraph as a digraph D = (V U R, A) with R being
a set of (simple) roots. A (simply) matroid-rooted digraph is a tuple (D, M) where
D = (VUR,A) is a (simply) rooted digraph and M = (R,r ) is a matroid with
ground set R and rank function 7. Note that a rooted digraph can be considered as
a matroid-rooted digraph for the free matroid on R. Given a matroid-rooted digraph
(D=(VUR,A),M = (R,rnm)), we call an arborescence packing {B, },cr matroid-
based (matroid-reachability-based) if for all r € R, the unique root of B, is r and for
allv eV, {r e R:v € V(B,)} is a basis of R (of PP N R) in M. We speak of a
spanning arborescence packing and a reachability arborescence packing, respectively, if
M is the free matroid on R.

2.2. Mixed hypergraphs. We now turn our attention to the generalizations of
the concept of arborescences from digraphs to more general objects, namely mixed
hypergraphs.

A mized hypergraph is a tuple H = (V, AUE) where V is a set of vertices, A is a
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REACHABILITY IN ARBORESCENCE PACKINGS 3

set of directed hyperedges (dyperedges) and € is a set of hyperedges. A dyperedge a
is a tuple (tail(a), head(a)) where head(a) is a single vertex in V' and tail(a) is a
nonempty subset of V' — head(a) and a hyperedge is a subset of V' of size at least two.
A mixed hypergraph without hyperedges is called a directed hypergraph (dypergraph,).
We say that H is a mixed graph if each dyperedge has a tail of size exactly one and
each hyperedge has exactly two vertices.

Let X C V. We say that dyperedge a € A enters X if head(a) € X and tail(a) —
X # 0 and a leaves X if a enters V — X. We denote by p_4(X) the set of dyperedges
entering X and by p:'[‘(X ) the set of dyperedges leaving X. We use d4(X) for
lpA(X)| and dji(X) for [pf(X)|. We say that a hyperedge e enters or leaves X if
e intersects both X and V — X and denote by dg(X) the number of hyperedges
entering X. We call a vertex r a root in H if d,(r) = de(r) = 0 and tail(a) = {r}
for all a € p’(r) and a simple root if additionally dy(r) < 1. Given a subpartition
{Vi}{ of V, we denote by eg({V;}4) the number of hyperedges in £ entering some V;
(ie{l,...,0}).

Trimming a dyperedge a means that a is replaced by an arc uv with v = head(a)
and u € tail(a). Trimming a hyperedge e means that e is replaced by an arc uv
for some u # v € e. The mixed hypergraph H is called a mized hyperpath (mized
hyperarborescence) if all the dyperedges and all the hyperedges can be trimmed to get
a directed path (an arborescence). A mized r-hyperarborescence for some r € V is
a mixed hyperarborescence together with a vertex r where that arborescence can be
chosen to be an r-arborescence.

For a vertex set X C V', we denote by U;’(" the set of vertices which are reachable
from the vertices in X by a mixed hyperpath in H, by P;('L the set of vertices from
which X is reachable by a mixed hyperpath in H and by H[X] the mixed subhyper-
graph of ‘H induced on X. A strongly connected component of a mixed hypergraph is
a maximal set of vertices that can be pairwise reached from each other by a mixed
hyperpath.

We define a (simply) rooted mized hypergraph as a mixed hypergraph H = (V' U
R, AU ¢E) with R being a set of (simple) roots. A (simply) matroid-rooted mixed
hypergraph is a tuple (H, M) where H = (VU R, AUE) is a (simply) rooted mixed
hypergraph and M = (R, r ) is a matroid with ground set R and rank function ra4.
Note that a rooted mixed hypergraph can be considered as a matroid-rooted mixed
hypergraph for the free matroid on R. A mixed hyperarborescence packing {B;}rcr
is called matroid-based if every B, can be trimmed to an r-arborescence B, such
that {B,},cr is a matroid-based arborescence packing. A mixed hyperarborescence
packing {B, }rcr is called matroid-reachability-based if every B, can be trimmed to an
r-arborescence B, such that for allv € V, {r € R: v € V(B,)} is a basis of P/* N R
in M. We speak of a spanning mized hyperarborescence packing and a reachability
mized hyperarborescence packing, respectively, if M is the free matroid on R.

2.3. Bisets. Finally, we need to introduce some notation on bisets. Given some
ground set V| a biset X consists of an outer set Xo C V and an inner set X; C Xo.
We denote Xo — X7 by w(X). For a vertex set C C V, a collection of bisets {X'}{ is
called a biset subpartition of C if {X1}{ is a subpartition of C' and w(X*) C V —C for
i=1,...,£. In a mixed hypergraph H = (V, AU E), we say that a dyperedge a € A
enters X (or a € p,(X)) if tail(a) — Xo # 0 and head(a) € X;.

3. Results. This section introduces all the results considered and shows how
our contributions relate to the previous results.

This manuscript is for review purposes only.
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4 F. HOERSCH AND Z. SZIGETI

3.1. Reachability in digraphs. The starting point of all studies on packing
arborescences is the following theorem of Edmonds [3] mentioned in a simpler form
in the introduction.

THEOREM 3.1. ([3]) Let D = (V U R, A) be a simply rooted digraph. Then there
exists a spanning arborescence packing {B,},cr in D if and only if for all X CVUR
with X — R # 0,

(3.1) d7(X) > |R - X|.

We first mention a generalization of Theorem 3.1 omitting the simplicity condition
that was found by Edmonds himself in [3]. Its proof is significantly more complicated
than the one of Theorem 3.1.

THEOREM 3.2. ([3]) Let D = (VU R, A) be a rooted digraph. Then there exists

a spanning arborescence packing {By}rer in D if and only if for all X CV U R with
X—R#0,

(3.2) d5(X) > |R— X|.

We now turn our attention to packing reachability arborescences. The following result
of Kamiyama, Katoh and Takizawa [9] generalizes Theorem 3.2.

THEOREM 3.3. ([9]) Let D = (V UR, A) be a rooted digraph. Then there ezists a
reachability arborescence packing { By }rer in D if and only if for all X CV UR with
X—-R+#0,

(3.3) dy(X)>|PZNR| - |XNR|

Our first contribution is to show that surprisingly Theorem 3.2 implies Theorem 3.3.
The very simple inductive proof can be found in Section 4.

3.2. Reachability and matroids. We now present another way of generalizing
the concepts above, namely matroid-based packings and matroid-reachability-based
packings.

The following result on matroid-based arborescence packing is due to Durand de
Gevigney, Nguyen and Szigeti [2].

THEOREM 3.4. ([2]) Let (D = (VUR,A),M = (R,rnm)) be a simply matroid-

rooted digraph. Then there exists a matroid-based arborescence packing in (D, M) if
and only if for all nonempty X CV U R with X N R = spanm(Np (X NV)),

(3.4) dx(X) = rm(R) = raq(X N R).

We now consider a reachability extension of Theorem 3.4. We first show that
the simplicity condition in Theorem 3.4 can be omitted. This result might also be
interesting for itself. It plays the same role for matroid-based packings as Theorem
3.2 played for basic packings. Interestingly, while the proof of Theorem 3.2 is self-
contained and rather technical, the stronger matroid setting allows to directly derive
Theorem 3.5 from Theorem 3.4.

THEOREM 3.5. Let (D =(VUR,A), M = (R,rr)) be a matroid-rooted digraph.
Then there exists a matroid-based arborescence packing in (D, M) if and only if for
all nonempty X CV UR with X N R = spany(Np (X NV)NR),

(3.5) A (X) = rm(R) = rm(X N R).

This manuscript is for review purposes only.
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REACHABILITY IN ARBORESCENCE PACKINGS 5

A reachability extension of Theorem 3.4 was obtained by Kiraly [10]. We deduce
the following stronger version of it from Theorem 3.5 in Section 4.

THEOREM 3.6. ([10]) Let (D = (VUR, A), M = (R, rnm)) be a matroid-rooted di-
graph. Then there exists a matroid-reachability-based arborescence packing in (D, M)
if and only if for all X CV UR with X — R # (),

(3.6) dy(X)>rm(PENR) —rm(XNR).

3.3. Generalizations. This part deals with another way of generalizing The-
orem 3.1: rather than changing the requirements on the packing, one can consider
changing the basic objects of consideration from digraphs to more general objects. One
such generalization was suggested by Frank, Kirdly and Kirdly [7]. They considered
dypergraphs instead of digraphs and they generalized Theorem 3.1 to dypergraphs.
A result where the concepts of reachability and dypergraphs were combined was ob-
tained by Bérezi and Frank in [1]. Yet another class Theorem 3.1 can be generalized
to was considered by Frank in [6]: mixed graphs. He gave a characterization of mixed
graphs admitting a mixed spanning arborescence packing.

A natural question now is whether several of the aforementioned generalizations
can be combined into a single one. In [4], the authors surveyed all possible combina-
tions of these generalizations and gave an overview of all existing results. A significant
amount of cases was covered by Fortier et al [4]. They first prove a characterization
combining the concepts of dypergraphs, matroids and reachability. They further prove
a theorem that combines the concepts of matroids, hypergraphs and mixed graphs.
We make use of the following characterization for the last result in this article.

THEOREM 3.7. ([4]) Let (H = (VUR, AUE), M = (R,7m)) be a simply matroid-
rooted mixed hypergraph. Then there exists a matroid-based mized hyperarborescence
packing in (H, M) if and only if for every biset subpartition {X'}{ of V' with w(X?) =
spanp({r € R: NJi(r)N X} #0}) fori=1,....¢,

¢ ‘
(3.7) ee({XH) + Y da(X) = Y (rm(R) — ram(w(X")).
i=1 i=1

3.4. Reachability and mixed graphs. Theorem 3.7 had a lot of corollaries
generalizing Theorem 3.1, however, the cases of combinations including both reacha-
bility and mixed graphs remained open. They seemed hard to deal with as all natural
generalizations failed. Indeed, it turned out that the remaining cases required a deeper
concept, namely the use of bisets. While the use of bisets in our statement of Theorem
3.7 is only for convenience, it is essential in the following theorems.

The following theorem is equivalent to the result of Matsuoka and Tanigawa [11]
on reachability mixed arborescence packing, as it was shown in [8].

THEOREM 3.8. ([11]) Let F = (VU R, AU E) be a rooted mized graph. Then
there exists a reachability mized arborescence packing { B, }rcr in F if and only if for
every biset subpartition {X'}{ of a strongly connected component C' of F such that
w(X?) = Pf(xi) foralli=1,...,4,

y4 14
(3-8) ep({XPH) + ) _dz(X') =) (IPE N R~ X5 N RI).
i=1

i=1
The next step was made by Gao and Yang who managed to generalize Theorem
3.8 to the matroidal case by proving the following result [8].

This manuscript is for review purposes only.
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6 F. HOERSCH AND Z. SZIGETI

THEOREM 3.9. (/8]) Let (F = (VUR,AUE),M = (R,rn)) be a matroid-rooted
mized graph. Then there exists a matroid-reachability-based mized arborescence pack-
ing in (F, M) if and only if for every biset subpartition {X'} of a strongly connected
component C of F — R such that w(X?) = Pf(xi) foralli=1,...,¢,

14
(3.9) p({X1) ZdA X% Z (rm(PENR) —rm (X5 NR)).

3.5. New results. The remaining open problems were the generalizations of
Theorems 3.8 and 3.9 to mixed hypergraphs. Proving such generalizations is the last
contribution of this article. While such a result can be obtained by the proof technique
used by Gao and Yang for Theorem 3.9, we follow a different approach: we derive
such a characterization from Theorem 3.7. Again, we first show that the simplicity
condition in Theorem 3.7 can be omitted.

THEOREM 3.10. Let (H = (VUR, AUE), M = (R,7r)) be a matroid-rooted mized
hypergraph. Then there exists a matroid-based mized hyperarborescence packing in
(H, M) if and only if for every biset subpartition {X'}{ of V with w(X?) = spany ({r €
R:Nj(r)NX;#0}) fori=1,...,¢,

~

)4
(3.10) ee({XPH) + ) da(X) 2 Y (rm(R) = raa(w(X))).
i=1

Theorem 3.10 allows us to derive the following new theorem. Observe that this
is a common generalization of all the theorems mentioned before in this article. It
includes all the theorems surveyed in [4].

THEOREM 3.11. Let (H = (VUR,AUE),M = (R,rm)) be a matroid-rooted
mized hypergraph. Then there exists a matroid-reachability-based mixed hyperarbores-
cence packing in (H, M) if and only if for every biset subpartition {Xi}¢ of a strongly
connected component C' of H — R such that w(X*) = X,) foralli=1,...,¢,

¢ ¢
(3.11) es({XT}) + D da(X) 2> (rm(PH N R) = rm(Xh5 N R)).

=1 i=1

We obtain the only remaining case, a generalization of Theorem 3.8 to mixed
hypergraphs as a corollary by applying Theorem 3.11 to the free matroid.

COROLLARY 3.12. Let H = (VUR, AUE) be a rooted mized hypergraph. Then
there exists a reachability mized hyperarborescence packing {B;}rcr in H if and only
if for every biset subpartition {X'}{ of a strongly connected component C of H — R
such that w(X*) = Pf(xi) foralli=1,...,¢,

L 4
(3.12) 65({X}}f)+zd2(xi) > Z(IPE‘HRI — X5 N RY).

4. Reductions. This section contains the proofs of the old and new theorems
that we mentioned before. All the proofs work by reductions from the spanning
versions to the reachability versions.

This manuscript is for review purposes only.
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REACHABILITY IN ARBORESCENCE PACKINGS 7

4.1. Proof of Theorem 3.3. The proof uses Theorem 3.2 and is self-contained
otherwise.

Proof. (of Theorem 3.3) Necessity is evident.

For sufficiency, let D = (V U R, A) be a minimum counterexample. Obviously,
V # 0.

Let C C V be the vertex set of a strongly connected component of D that has
no arc leaving. Since each r € R is a root, C' exists. Note that each vertex of C
is reachable in D from the same set of roots since D[C] is strongly connected. We
can hence divide the problem into two subproblems, a smaller one on reachability
arborescence packing and one on spanning arborescence packing.

Let D; = (VAUR,A1) = D — C. Note that D; is a rooted digraph.

LEMMA 4.1. Dy has a reachability arborescence packing {B}}rcr-

Proof. By d}(C) = 0, we have dy (X) = d4(X) and PPT = PP for all X C
V1 U R. Then, since D satisfies (3.3), so does D;. Hence, by the minimality of D, the
desired packing exists in D;. 0

Let Dy = (Vo U Ra, As) be the rooted digraph where Vo= C UT, T = {new
vertices tyy: uv € p4(C)}, Ry = PE N R and Ay = A(D[C]) U {rty, : r € Ra,u €
UP tuy € T} U {tuwv,|Ra| * vtuy : tuy € T}

o

LEMMA 4.2. Dy has a spanning arborescence packing {Bf},«eR,
Proof. We show in the following claim that Dy satisfies (3.2).
Cramv 4.3. dy (X) > |Ry — X| for all X € Vo U Ry with X — Ry # 0.

Proof. f X N C = 0, then d (X) > da,(v,tuw) = |Ra| > |Ry — X| for some
tuw € X — Ro. If X N C # 0, then, since D[C] is strongly connected, Ry = PPN R =
P2 ocNR. Let Y = (VUR) —UR _x, Z =(XNC)UY and uv € p,(Z). Since
paY)=0,ve XNC. Ifuc C, then uv € py (X). If u ¢ C, then u € UP for
some r € Ry — X and ty,, € T, S0 rtyy, tyyv € Ag. Since v € X and r ¢ X, rty, or
fuot € pry, (X). Thus, by (3.3), dy, (X) > d4(2) > |(P? — Z)\R| = |Ry — X|. D

By Claim 4.3 and Theorem 3.2, the desired packing exists in Dsy. This completes
the proof of Lemma 4.2. ]

With the help of the packings {B}},cr in D; and {B?},cr, in Dy obtained in
Lemmas 4.1 and 4.2, a packing in D can be constructed yielding a contradiction.

LEMMA 4.4. D has a reachability arborescence packing.

Proof. For all 7 € R — Ry, let B,, = B} and for all » € Ry, let B, be obtained
from the union of B} and B2 — (R, UT) by adding the arc uv for all t,,v € A(B2).
Since {B}},er and {B2},cr, are packings, so is {B,},cr. For r € R — Ra, B, = B}
is an r-arborescence and it spans UPt = UP. Let now r € Ry. Since B} and B2 do
not contain circuits, neither does B,.. Since for allv € V(B}) —r, d4(p1y (v) =1, for all

vedl, d;‘(B%)(v) = 1 and when t,,,v € A(B2) is replaced by uv € A(B,) then u € UP,
we have for all v € V(B,) —r, dz(Br)(v) = 1. It follows that B, is an r-arborescence.
Since B! spans UP* and B2 spans V, U7, B, spans UP1 UC = UP. Tt follows that
{B,}rer has the desired properties. This completes the proof of Lemma 4.4. d

Lemma 4.4 contradicts the fact that D is a counterexample and hence the proof
of Theorem 3.3 is complete. O
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8 F. HOERSCH AND Z. SZIGETI

4.2. Proof of Theorems 3.5 and 3.6. In this section, the generalization to
matroids is considered.

We first derive Theorem 3.5 from Theorem 3.4. The strong matroid setting allows
for a rather simple proof.

Proof. (of Theorem 3.5) Necessity is evident.

For sufficiency, let (D’ = (VU R/, A"), M’ = (R',ra)) be the simply
matroid-rooted digraph obtained from (D, M) by replacing every root r € R by a
set @y of [N/ (r)| simple roots in the digraph such that N}, (Q,) = N (r) and by
|Q.| parallel copies of r in the matroid.

Now let X’ C VUR' with X'NR' = spany (Np, (X’NV)NR’). Observe that for
every r € R, either Q. C X' or Q,NX' =0. Let X = (X'NV)U{re R: Q, C X'}.
Observe that X N R = spany(Np (X NV)NR). Further, we have d, (X) = d, (X'),
rm(R) = rayp(R) and rypq (X N R) = ryp (X' N R'Y). Then, by (3.5), we obtain
Ay (X)) =d (X)) > rm(R)—rm(XNR) = rpp(R) —rape (X' NR'), that is (D', M)
satisfies (3.4). We can now apply Theorem 3.4 to obtain in (D', M’) a matroid-based
arborescence packing {B.,},cr.

For all r € R, let B, be obtained from {B], }, ¢q, by contracting Q, into r. Since
{Bl.};7er is a packing, so is {B,}rer. Let r € R. Since {r' € R’ : v € V(BL,)} is
independent in M’ for all v € V and @, is a set of parallel elements in M', {B., },/¢q,
is a set of vertex-disjoint r’-arborescences in D’ and hence B, is an r-arborescence
in D. Moreover, for all v € V, rpq({r € R : v € V(B,)}) =rm({r' € R v €
V(B.)}) = rame(R') = rpmq(R). Thus the packing { B, }rer of arborescences has the
desired properties. ]

We are now ready to derive Theorem 3.6 from Theorem 3.5. The role of Theorem
3.5 in the proof is similar to the role of Theorem 3.2 in the proof of Theorem 3.3.
While the proof contains similar ideas to the ones in the proof of Theorem 3.3, it is
somewhat more technical.

Proof. (of Theorem 3.6) Necessity is evident.

For sufficiency, let (D = (V UR,A), M = (R,rxr)) be a minimum counterex-
ample. Obviously V # . Let C C V be the vertex set of a strongly connected
component of D that has no arc leaving. Since each r € R is a root, C exists.

Let Dy = (V1UR,A1) = D — C. Note that (D;, M) is a matroid-rooted digraph.

LEMMA 4.5. (D1, M) contains a matroid-reachability-based arborescence packing
{B!},er and PP = PP for allv € V;.

Proof. By df{(C) = 0, we have d (X) = d;(X) and P2Y = PR for all X C
V1 U R. Then, since D satisfies (3.6), so does D;. Hence, by the minimality of D and
PP = PP for all v € Vi, the desired packing exists in Dj. 0

By Lemma 4.5, (D1, M) has a matroid-reachability-based arborescence packing
{B}},cr. We now define a matroid-rooted digraph (D, M5) which depends on the
arborescences. Let Ry = Pg N R, Mg the restriction of M to Ry and Dy = (Vo U
Ry, As) with Vo= CUT, T' = {new vertices t,,, : uwv € p,(C)}, Az = A(D[C])U{rtys :
7 € Ro,u € V(BL), tuy € T} U {tuyv, ra, (Ra) * Uty @ tyw € T

LEMMA 4.6. (D2, M3) has a matroid-based arborescence packing {B?},cr,-

Proof. We show in the following claim that (D3, Ms) satisfies (3.5). Let X C
Vo U Ry with X N Ry = spaan(N52(X NV)N Ry).

Cramm 4.7. dy (X) > 7m,(R2) — 7a1,(X N Ry).

This manuscript is for review purposes only.
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Proof. T XNC = 0, then d_(X) > da, (v, tuy) = ra, (R2) = 7, (R2) =70, (XN
Ry) for some t,,,, € X — Ry. If X NC # (), then, since D[C] is strongly connected, we
have Ry = PPNR=PE . NR. Let Y =(VUR)—UR yand Z = (X NC)UY.
Then PgﬂR:Rg and ZNR=XnNRs.

PROPOSITION 4.8. d (X) > d(Z).

Proof. Let uv € p,(Z). Since p,(Y) =0,v € XNC. Ifu € C, then uv € p_(X).
Otherwise, u € UP for some # € R — X and t,, € T. Then, by uv € A, we have
Fe PPNRC PP .NR=R, Notethat {r € R:7 € V(B.)} = {r} = PP. If
tuw € X, then, since {r € R:u € V(B})} is a basis of PP N R in M, we have

7 ¢ X N Ry = spanp,(Np, (X — Ra) N R2) 2 span,(Np, (tus) N Rz)
= spanp,({r € Ry :u € V(B})}) = spanp({r € R:u € V(B!)}) N Ry
D PPN Ry 2{r},

a contradiction. Thus t,, ¢ X and so t,,v € Pa, (X). 0

By Proposition 4.8 and (3.6), we have d; (X) > d(Z) > rm(PZNR) —rm(Z0
R) =7, (R2) — a1, (X N R2) and the proof of Claim 4.7 is complete. d

By Claim 4.7 and Theorem 3.5, the desired packing exists in Ds. This completes
the proof of Lemma 4.6. ]

By Lemma 4.6, (D2, M3) has a matroid-based arborescence packing {B2},cg,.
With the help of the packings {B}},cr and {B?},¢r,, a packing in (D, M) can be
constructed yielding a contradiction.

LEMMA 4.9. (D, M) has a matroid-reachability-based arborescence packing.

Proof. For all 7 € R — Ry, let B,, = B} and for all » € Ry, let B, be obtained
from the union of B} and B2 — (R, UT) by adding the arc uv for all t,,v € A(B2).
Since {B!},cr and {B2%},cr, are packings, so is {B,},er. Since B} and B? are
arborescences, for all r € R and v € V, we have d 5 ,(v) < 1 and dX(BT)(v) >1
implies d;‘( BT')(U) =1 or v = r. It follows that B, is an r-arborescence indeed. For
veEV -C,wehave {r e R:v e V(B,)}={r € R:v e V(B!)} which is a basis of
PP N R in M by Lemma 4.5. For v € C, we have {r € R:v € V(B,)} = {r € Ry :
v € V(B2)} which is a basis of My, so a basis of Ry = PP N R in M. It follows that
{B;}rer has indeed the desired properties. O

Lemma 4.9 contradicts the fact that (D, M) is a counterexample and hence com-
pletes the proof of Theorem 3.6. O

4.3. Proof of Theorems 3.10 and 3.11. In an analogous structure as before,
we first derive Theorem 3.10 from Theorem 3.7.

Proof. (of Theorem 3.10) Necessity is evident.

For sufficiency, we define a simply matroid-rooted mixed hypergraph (H’' =
(VUR, A UE), M = (R',raq)) obtained from (H, M) by replacing every
root r € R by a set @, of [N;/(r)| simple roots such that N;,(Q,) = N;{(r) in the
mixed hypergraph and by |Q,| parallel copies of r in the matroid.

Now let {X*}¢ be a biset subpartition of V' with w(X?) = spanae({r € R :
N, (r)NnXi#0}) fori=1,...,0 Let i € {1,...,¢}. Note that for all 7 € R, either
Qr Cw(X) or Q. Nw(X?) =0. Let Y = (XiU{r € R:Q, Cw(X")}, Xi). Observe
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that w(Y?) = spanp({r € R : Nji(r) N X} # 0}), d3(Y") = d 3 (X)), rm(R)
rae (R and 7 (w(Y?) = rae(w(X?)). Then, by (3.10), we obtain eg({X?}{)
Y (P (R) = raa(w(Y9) = d (Y1) = iy (rae (RY) = ranr (w(X7)) = dp, (X)), that
is (H', M) satisfies (3.7).

We now apply Theorem 3.7 to obtain in (H’, M’) a matroid-based mixed hyper-
arborescences packing {B.,}, cr’ with arborescences {B],}, cr as trimmings. For
all » € R, let B, be obtained from {B] },/cq, by contracting @, into r. As in
the proof of Theorem 3.5, we can see that {B,},cr is a matroid-based arborescence
packing. Finally, for all r € R, let B, be obtained from {B., },cq, by contracting
Q. into r. As B, is a trimming of B, for all r € R, {B,},cr is a packing of mixed
hyperarborescences with the desired properties. 0

IVl

We are now ready to derive Theorem 3.11 from Theorem 3.10. Again, the proof
has certain similarities to the previous ones.

Proof. (of Theorem 3.11) We first prove necessity. Suppose that there exists a
matroid-reachability-based mixed hyperarborescence packing {8, },.cr. By definition,
for every r € R, there is an r-arborescence B, that is a trimming of B, with {r €
R :v € V(B,)} being a basis of P* N R in M for all v € V. Let {X*}¢ be a biset
subpartltlon of a strongly connected component C of H — R such that w(X?) = Pff(xl)
forallt=1,..., 7%

Leti e {l,....0}, R, ={r e R— X}, : V(B,) N X} # 0} and v € X}. Then we
have

rm(RiU(X5NR) >rp({r e RiveV(B)}) =rm(PENR) =rm(PENR).
Thus, by the subcardinality and the submodularity of 7, we have
[Ri| > rm(Ri) > raq(Ri U (X5 N R)) = rp(X5 N R) > rp(PE N R) — (X5 N R).

Since w(X?) = sz(xi), no dyperedge and no hyperedge enters w(X?) in H. Then, by
v € Xt every B, with r € R; has an arc that enters X?, that is B, contains either a
dyperedge in A entering X! or a hyperedge in & entering X:. Thus, since {8, },cr is

a packing, we have

4 14 4
ee({Xi}) + D da(X) ZZ Z (rm(PHE O R) — rpq (X5 N R)).

i=1

For sufficiency, let (H = (VUR, AUE), M = (R, r()) be a minimum counterexample.
Obviously, V # (. Let C C V be the vertex set of a strongly connected component of
‘H that has no dyperedge and hyperedge leaving. Since each r € R is a root, C' exists.

Let H1 = (V1UR,A1UE;) = H—C. Note that (H1, M) is a matroid-rooted mixed
hypergraph.

LEMMA 4.10. (H1, M) has a matroid-reachability-based mized hyperarborescence
packing {B},cr and P** = PM for allv € V;.

Proof. The fact that d}{(C) = dg(C) = 0 implies that for all X C V; U R, we
have P}' = P¥, for every subpartition P of V U Ry, we have eg(P) = eg, (P), and
for every biset X, d; (X) = d;(X). Then, since H satisfies (3.11), so does H;. Hence,
by the minimality of H and P}t = PX for all v € Vi, the desired packing exists. O

By Lemma 4.10, (1, M) has a matroid-reachability-based mixed hyperarbores-
cence packing {Bi}re r. By definition, B! can be trimmed to an r-arborescence B}
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for all » € R such that {r € R: v € V(B})} is a basis of P*1 = P! in M for all
v € V1. We now define a matroid-rooted mixed hypergraph (Hz, Ms) which depends
on the arborescences {B}},cr. Let Ra = P} N R, My the restriction of M to Ry
and let Ha = (Vo U R, A2 U &) be obtained from H[C] by adding a set T of new
vertices tq for all a € p,(C) and the vertex set Ry and by adding dyperedges a’
= ((tail(a) N C) Utgy, head(a)) for all t, € T, the arcs rt, for all r € Ry,t, € T with
tail(a) NV (B}) # 0 and 7, (R2) parallel arcs head(a)t, for all ¢, € T.

LEMMA 4.11. (Ha, M2) contains a matroid-based mized hyperarborescence pack-
ing {Bg}’I‘ERz'

Proof. We show in the following claim that (Ha, My) satisfies (3.10). Let {X*}%
be a biset subpartition of Vo = CUT with w(X?) = span, ({r € Rz : N;Q (rynXt=£
P}) foralle =1,...,¢.

CLAIM 4.12. eg,({Xi}4) > Zle(rMQ(Rg) — Ty (w(XY)) — dg, (XD)).

Proof. Suppose that X N C # () for all i € {1,...,5} and X} N C = ( for all
ie{j+1,...,0}. Forie {j+1,...,0}, dy, (X) > dy (head(a),ts) > 7r1,(Rz) for
some t, € X7, thus 0 > 7, (R2) — 7, (w(X)) — d g (X).

Let now ¢ € {1,...,5}. Since H[C] is strongly connected, we have Ry = P¥NR =
ij}ﬂc NR.Let Y* = (VUR) — (U} ,xiy UCO) and Z* = (X; N C) UY", X7 N O).
Note that Zi = XiNC and ZLNR =Y 'NR = R— (R — w(X")) = w(X), so
rm(Z5 N R) =1, (w(X7)).

PROPOSITION 4.13. d_(X*) > d4(Z°).

Proof. Let a € p4(Z). If a ¢ px(C), then a € p (X'). Otherwise, let u
€ tail(a)— Z5—C. Then u € U for some # € R—w(X*) and t, € T. Thus, by a € A,
we have 7 € PI*NR C P¥, . NR = Ry. Note that {r € R:7 € V(B})} = {r} = P}*.
I
If t, € X¢, then, since {r € R:u € V(B})} is a basis of P* N R in M, we obtain

P ¢ w(X') = spanp, ({r € Ry : Nj (r) N X} # 0})
D spanp, ({r € Ry : ta € N (1)})
= span, ({r € Ry : tail(a) NV (B}) # 0})
D spanm({r € R:u € V(BHY) N R,
> PN R, D {F},

a contradiction. Tt follows that a’ € p_(X"). ad

Since w(ZY) N C = 0, {Z¢ { is a biset subpartition of C. Moreover, no dyperedge
and no hyperedge leaves Uz?fw(xi) UC, so w(Zl) =Y = P;‘ﬁ = PZJ{(ZZ-). Then,
by (3.11) and Proposition 4.13, we have es, ({X119) = ee, {Xi}) = ec({Zi}) >

i (rm(PE VR) = rm(Z5 N R) — dy(27) = 320 (s (Ra) = mav, (w(XT)) —
dy,(XY)) > Zle(T‘MQ(RQ) — Ty (w(XY)) — dy (XY)), that completes the proof of
Claim 4.12. ]

By Claim 4.12 and Theorem 3.10, the desired packing exists in Hs. ]

By Lemma 4.11, (H2, Ms) has a matroid-reachability-based mixed hyperarbores-
cence packing {B2},cp, with r-arborescences {B2},cg, as trimmings. With the
help of the packings {B}},cr and {B%},cr,, a packing of (H, M) can be constructed
yielding a contradiction.
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LEMMA 4.14. (H, M) has a matroid-reachability-based mized hyperarborescence
packing.

Proof. For r € R — Ry, let B, = Bﬁ and for r € Ry, let B, be obtained from
the union of B} and B? — Ry — T by adding an arc uv for all t,v € A(B?) for some
u € tail(a) N V(B}). As in the proof of Theorem 3.6, we can see that {B,},cr is a
packing of arborescences such that the root of B, is r for allr € Rand {r e R:v €
V(B,)} is a basis of PN Rin M for all v € V.

Finally, for r € R— Ry, let B, = B! and for r € Ry, let B,. be obtained from B} and
B? — Ry — T by adding the dyperedge a € A for all a’ € A(B?). The above argument
shows that this is a packing of mixed hyperarborescences in H (with arborescences
{B;}recr as trimmings) with the desired properties. 0

Lemma 4.14 contradicts the fact that (%, M) is a counterexample and hence the
proof of Theorem 3.11 is complete. 0

5. Algorithmic aspects. This section deals with the algorithmic consequences
of our proofs.

For the basic case, we show that our proof of Theorem 3.3 yields a polynomial
time algorithm. We acknowledge that so is the original proof in [9]. We first mention
that the packings in Theorem 3.2 can be found in polynomial time, following either
the proof of Edmonds in [3] or the proof of Frank (Theorem 10.2.1 in [5]). Using this,
we can turn our proof of Theorem 3.3 into a polynomial time algorithm for finding the
desired packing of arborescences. We first find the arborescences B} in the smaller
instance D — C. As the size of Dy is polynomial in the size of D, we can apply the
algorithm mentioned above to obtain the arborescences B2 in polynomial time. The
obtained arborescences can be merged efficiently to obtain the B,.

For the matroidal case, we show that our proof of Theorem 3.6 is algorithmic if an
independence oracle for M is given. We acknowledge that so is the original proof in
[10]. We first recall that the packings in Theorem 3.4 can be found in polynomial time
as mentioned in [2]. It is easy to see that the proof of Theorem 3.5 yields a polynomial
time algorithm if a matroid oracle is given. By similar arguments as before and the
fact that an independence oracle for M yields independence oracles for all matroids
considered, we obtain that the proof of Theorem 3.6 can be turned into a polynomial
time algorithm if an independence oracle for M is given.

For the more general case, using the fact that the proof of Theorem 3.7 is al-
gorithmic if a matroid oracle is given ([4]), we obtain that also Theorems 3.10 and
3.11 yield polynomial time algorithms given independence oracles. In particular, the
arborescences in Corollary 3.12 can be found in polynomial time.
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