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Abstract. Fortier et al. [4] proposed several research problems on packing arborescences. Some3
of them were settled in that paper and others were solved later by Matsuoka and Tanigawa [11] and4
Gao and Yang [8]. The last open problem will be settled in this paper. We show how to turn an5
inductive idea used in the last two articles into a simple proof technique that allows to relate previous6
results on arborescence packings.7

We show how a strong version of Edmonds’ theorem [3] on packing spanning arborescences implies8
Kamiyama, Katoh and Takizawa’s result [9] on packing reachability arborescences and how Durand9
de Gevigney, Nguyen and Szigeti’s theorem [2] on matroid-based packing of arborescences implies10
Király’s result [10] on matroid-reachability-based packing of arborescences.11

Finally, we deduce a new result on matroid-reachability-based packing of mixed hyperarbores-12
cences from a theorem on matroid-based packing of mixed hyperarborescences due to Fortier et al.13
[4].14

All the proofs provide efficient algorithms to find a solution to the corresponding problems.15
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1. Introduction. This paper deals with the packing of arborescences. We focus18

on concluding characterizations of graphs admitting a packing of reachability-based19

arborescences from the corresponding theorems for spanning arborescences in several20

settings. We first give an overview of the results in this article. All technical terms21

which are not defined here will be explained in Section 3.22

In 1973, Edmonds [3] characterized digraphs having a packing of k spanning r-23

arborescences for some k ∈ Z+ and for some vertex r. Since then, there have been24

numerous generalizations of this result. A first attempt is to allow different roots for25

the arborescences. A version with arbitrary, fixed roots can easily be derived from26

the theorem of Edmonds. This generalization has a significant deficiency occuring27

when some vertex is not reachable from some designated root. In this case, the only28

information it provides is that the desired packing does not exist. A concept to29

overcome this problem has been developed by Kamiyama, Katoh and Takizawa in30

[9]. Given a digraph D, can we find a packing of arborescences such that each of31

them spans all the vertices reachable from the root designated to it? They provide32

a characterization of these graphs. We reprove their theorem by a reduction from a33

stronger form of Edmonds’ theorem.34

Another way of generalizing the requirements on the packing of arborescences was35

introduced by Durand de Gevigney, Nguyen and Szigeti in [2]. Instead of requiring36

every vertex to be spanned by all arborescences, it is required to be spanned only by37

the arborescences which are associated to a basis of an arbitrary matroid where every38

arborescence is associated to an element of the matroid. Surprisingly, a characteri-39

zation of graph-matroid pairs admitting such a packing of arborescences in this very40

general setting was found in [2]. A natural combination of the two aforementioned41

generalizations was introduced by Király [10]. He requires every vertex only to be42

spanned by a set of arborescences associated to a matroid basis of the set associated43

to the arborescences that could potentially reach the vertex. He provided a charac-44
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2 F. HOERSCH AND Z. SZIGETI

terization of the graph-matroid pairs admitting such a packing of arborescences. We45

reprove this theorem by concluding it from the theorem in [2].46

Finally, there are attempts to also generalize the objects considered from digraphs47

to more general objects like mixed graphs or dypergraphs. We consider a concept uni-48

fying all of these generalizations where we want to find a matroid-reachability based49

packing of mixed hyperarborescences in a matroid-rooted mixed hypergraph. We50

derive a characterization of these mixed hypergraph-matroid pairs from a charac-51

terization for the existence of a matroid-based packing of mixed hyperarborescences52

in a matroid-rooted mixed hypergraph by Fortier et al. in [4]. All our proofs are53

algorithmic.54

In Section 3, we provide a more technical and detailed overview of the results55

considered. In Section 4, we give the reductions that yield our new proofs. Section 556

deals with the algorithmic impacts of our results.57

2. Definitions. In this section we provide the definitions and notation needed58

in the paper. For basic notions of matroid theory, we refer to [5], chapter 5.59

2.1. Directed graphs. We first provide some basic notation on directed graphs60

(digraphs). Let D = (V,A) be a digraph. For disjoint X,Y ⊆ V , we denote the set of61

arcs with tail in X and head in Y by ρA(X,Y ) and |ρA(X,Y )| by dA(X,Y ). We62

use ρ+A(X) for ρA(X,V − X), ρ−A(X) for ρA(V − X,X), d+A(X) for |ρ+
A(X)| and63

d−A(X) for |ρ−A(X)|. We denote by N+
D (X) and N−D (X) the set of out-neighbors64

and in-neighbors of X, respectively. For a single vertex v, we abbreviate ρ+
A({v}) to65

ρ+A(v) etc.. We call v a root in D if d−A(v) = 0 and a simple root if additionally66

d+
A(v) ≤ 1.67

An arborescence is a subgraph of D in which no circuit exists and every vertex68

except one has in-degree 1. Observe that every arborescence contains a unique root.69

An arborescence whose unique root is a vertex r is also called an r-arborescence.70

An arborescence B is said to span V (B). A subgraph of D is called a spanning71

arborescence if it is an arborescence and it spans all the vertices of D. By a packing of72

arborescences or arborescence packing in D, we mean a set of arc-disjoint arborescences73

in D.74

For u, v ∈ V , we say that v is reachable from u in D if there exists a directed path75

from u to v. For X ⊆ V , we denote by UD
X the set of vertices which are reachable76

from at least one vertex in X, by PD
X the set of vertices from which X is reachable77

and by D[X] the subgraph of D induced on X.78

We define a (simply) rooted digraph as a digraph D = (V ∪ R,A) with R being79

a set of (simple) roots. A (simply) matroid-rooted digraph is a tuple (D,M) where80

D = (V ∪ R,A) is a (simply) rooted digraph and M = (R, rM) is a matroid with81

ground set R and rank function rM. Note that a rooted digraph can be considered as82

a matroid-rooted digraph for the free matroid on R. Given a matroid-rooted digraph83

(D = (V ∪ R,A),M = (R, rM)), we call an arborescence packing {Br}r∈R matroid-84

based (matroid-reachability-based) if for all r ∈ R, the unique root of Br is r and for85

all v ∈ V , {r ∈ R : v ∈ V (Br)} is a basis of R (of PD
v ∩ R) in M. We speak of a86

spanning arborescence packing and a reachability arborescence packing, respectively, if87

M is the free matroid on R.88

2.2. Mixed hypergraphs. We now turn our attention to the generalizations of89

the concept of arborescences from digraphs to more general objects, namely mixed90

hypergraphs.91

A mixed hypergraph is a tuple H = (V,A∪E) where V is a set of vertices, A is a92

This manuscript is for review purposes only.



REACHABILITY IN ARBORESCENCE PACKINGS 3

set of directed hyperedges (dyperedges) and E is a set of hyperedges. A dyperedge a93

is a tuple (tail(a), head(a)) where head(a) is a single vertex in V and tail(a) is a94

nonempty subset of V − head(a) and a hyperedge is a subset of V of size at least two.95

A mixed hypergraph without hyperedges is called a directed hypergraph (dypergraph).96

We say that H is a mixed graph if each dyperedge has a tail of size exactly one and97

each hyperedge has exactly two vertices.98

Let X ⊆ V. We say that dyperedge a ∈ A enters X if head(a) ∈ X and tail(a)−99

X 6= ∅ and a leaves X if a enters V −X. We denote by ρ−A(X) the set of dyperedges100

entering X and by ρ+A(X) the set of dyperedges leaving X. We use d−A(X) for101

|ρ−A(X)| and d+A(X) for |ρ+
A(X)|. We say that a hyperedge e enters or leaves X if102

e intersects both X and V − X and denote by dE(X) the number of hyperedges103

entering X. We call a vertex r a root in H if d−A(r) = dE(r) = 0 and tail(a) = {r}104

for all a ∈ ρ+
A(r) and a simple root if additionally d+

A(r) ≤ 1. Given a subpartition105

{Vi}`1 of V , we denote by eE({Vi}`
1) the number of hyperedges in E entering some Vi106

(i ∈ {1, . . . , `}).107

Trimming a dyperedge a means that a is replaced by an arc uv with v = head(a)108

and u ∈ tail(a). Trimming a hyperedge e means that e is replaced by an arc uv109

for some u 6= v ∈ e. The mixed hypergraph H is called a mixed hyperpath (mixed110

hyperarborescence) if all the dyperedges and all the hyperedges can be trimmed to get111

a directed path (an arborescence). A mixed r-hyperarborescence for some r ∈ V is112

a mixed hyperarborescence together with a vertex r where that arborescence can be113

chosen to be an r-arborescence.114

For a vertex set X ⊆ V , we denote by UHX the set of vertices which are reachable115

from the vertices in X by a mixed hyperpath in H, by PHX the set of vertices from116

which X is reachable by a mixed hyperpath in H and by H[X] the mixed subhyper-117

graph of H induced on X. A strongly connected component of a mixed hypergraph is118

a maximal set of vertices that can be pairwise reached from each other by a mixed119

hyperpath.120

We define a (simply) rooted mixed hypergraph as a mixed hypergraph H = (V ∪121

R,A ∪ E) with R being a set of (simple) roots. A (simply) matroid-rooted mixed122

hypergraph is a tuple (H,M) where H = (V ∪ R,A ∪ E) is a (simply) rooted mixed123

hypergraph and M = (R, rM) is a matroid with ground set R and rank function rM.124

Note that a rooted mixed hypergraph can be considered as a matroid-rooted mixed125

hypergraph for the free matroid on R. A mixed hyperarborescence packing {Br}r∈R126

is called matroid-based if every Br can be trimmed to an r-arborescence Br such127

that {Br}r∈R is a matroid-based arborescence packing. A mixed hyperarborescence128

packing {Br}r∈R is called matroid-reachability-based if every Br can be trimmed to an129

r-arborescence Br such that for all v ∈ V , {r ∈ R : v ∈ V (Br)} is a basis of PHv ∩ R130

in M. We speak of a spanning mixed hyperarborescence packing and a reachability131

mixed hyperarborescence packing, respectively, if M is the free matroid on R.132

2.3. Bisets. Finally, we need to introduce some notation on bisets. Given some133

ground set V , a biset X consists of an outer set XO ⊆ V and an inner set XI ⊆ XO.134

We denote XO −XI by w(X). For a vertex set C ⊆ V , a collection of bisets {Xi}`1 is135

called a biset subpartition of C if {Xi
I}`1 is a subpartition of C and w(Xi) ⊆ V −C for136

i = 1, . . . , `. In a mixed hypergraph H = (V,A ∪ E), we say that a dyperedge a ∈ A137

enters X (or a ∈ ρ−A(X)) if tail(a)−XO 6= ∅ and head(a) ∈ XI .138

3. Results. This section introduces all the results considered and shows how139

our contributions relate to the previous results.140
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4 F. HOERSCH AND Z. SZIGETI

3.1. Reachability in digraphs. The starting point of all studies on packing141

arborescences is the following theorem of Edmonds [3] mentioned in a simpler form142

in the introduction.143

Theorem 3.1. ([3]) Let D = (V ∪ R,A) be a simply rooted digraph. Then there144

exists a spanning arborescence packing {Br}r∈R in D if and only if for all X ⊆ V ∪R145

with X −R 6= ∅,146

(3.1) d−A(X) ≥ |R−X|.147

We first mention a generalization of Theorem 3.1 omitting the simplicity condition148

that was found by Edmonds himself in [3]. Its proof is significantly more complicated149

than the one of Theorem 3.1.150

Theorem 3.2. ([3]) Let D = (V ∪ R,A) be a rooted digraph. Then there exists151

a spanning arborescence packing {Br}r∈R in D if and only if for all X ⊆ V ∪R with152

X −R 6= ∅,153

(3.2) d−A(X) ≥ |R−X|.154

We now turn our attention to packing reachability arborescences. The following result155

of Kamiyama, Katoh and Takizawa [9] generalizes Theorem 3.2.156

Theorem 3.3. ([9]) Let D = (V ∪R,A) be a rooted digraph. Then there exists a157

reachability arborescence packing {Br}r∈R in D if and only if for all X ⊆ V ∪R with158

X −R 6= ∅,159

(3.3) d−A(X) ≥ |PD
X ∩R| − |X ∩R|.160

Our first contribution is to show that surprisingly Theorem 3.2 implies Theorem 3.3.161

The very simple inductive proof can be found in Section 4.162

3.2. Reachability and matroids. We now present another way of generalizing163

the concepts above, namely matroid-based packings and matroid-reachability-based164

packings.165

The following result on matroid-based arborescence packing is due to Durand de166

Gevigney, Nguyen and Szigeti [2].167

Theorem 3.4. ([2]) Let (D = (V ∪ R,A),M = (R, rM)) be a simply matroid-168

rooted digraph. Then there exists a matroid-based arborescence packing in (D,M) if169

and only if for all nonempty X ⊆ V ∪R with X ∩R = spanM(N−D (X ∩ V )),170

(3.4) d−A(X) ≥ rM(R)− rM(X ∩R).171

We now consider a reachability extension of Theorem 3.4. We first show that172

the simplicity condition in Theorem 3.4 can be omitted. This result might also be173

interesting for itself. It plays the same role for matroid-based packings as Theorem174

3.2 played for basic packings. Interestingly, while the proof of Theorem 3.2 is self-175

contained and rather technical, the stronger matroid setting allows to directly derive176

Theorem 3.5 from Theorem 3.4.177

Theorem 3.5. Let (D = (V ∪R,A),M = (R, rM)) be a matroid-rooted digraph.178

Then there exists a matroid-based arborescence packing in (D,M) if and only if for179

all nonempty X ⊆ V ∪R with X ∩R = spanM(N−D (X ∩ V ) ∩R),180

(3.5) d−A(X) ≥ rM(R)− rM(X ∩R).181
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REACHABILITY IN ARBORESCENCE PACKINGS 5

A reachability extension of Theorem 3.4 was obtained by Király [10]. We deduce182

the following stronger version of it from Theorem 3.5 in Section 4.183

Theorem 3.6. ([10]) Let (D = (V ∪R,A),M = (R, rM)) be a matroid-rooted di-184

graph. Then there exists a matroid-reachability-based arborescence packing in (D,M)185

if and only if for all X ⊆ V ∪R with X −R 6= ∅,186

(3.6) d−A(X) ≥ rM(PD
X ∩R)− rM(X ∩R).187

3.3. Generalizations. This part deals with another way of generalizing The-188

orem 3.1: rather than changing the requirements on the packing, one can consider189

changing the basic objects of consideration from digraphs to more general objects. One190

such generalization was suggested by Frank, Király and Király [7]. They considered191

dypergraphs instead of digraphs and they generalized Theorem 3.1 to dypergraphs.192

A result where the concepts of reachability and dypergraphs were combined was ob-193

tained by Bérczi and Frank in [1]. Yet another class Theorem 3.1 can be generalized194

to was considered by Frank in [6]: mixed graphs. He gave a characterization of mixed195

graphs admitting a mixed spanning arborescence packing.196

A natural question now is whether several of the aforementioned generalizations197

can be combined into a single one. In [4], the authors surveyed all possible combina-198

tions of these generalizations and gave an overview of all existing results. A significant199

amount of cases was covered by Fortier et al [4]. They first prove a characterization200

combining the concepts of dypergraphs, matroids and reachability. They further prove201

a theorem that combines the concepts of matroids, hypergraphs and mixed graphs.202

We make use of the following characterization for the last result in this article.203

Theorem 3.7. ([4]) Let (H = (V ∪R,A∪E),M = (R, rM)) be a simply matroid-204

rooted mixed hypergraph. Then there exists a matroid-based mixed hyperarborescence205

packing in (H,M) if and only if for every biset subpartition {Xi}`1 of V with w(Xi) =206

spanM({r ∈ R : N+
H(r) ∩Xi

I 6= ∅}) for i = 1, . . . , `,207

(3.7) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(rM(R)− rM(w(Xi))).208

3.4. Reachability and mixed graphs. Theorem 3.7 had a lot of corollaries209

generalizing Theorem 3.1, however, the cases of combinations including both reacha-210

bility and mixed graphs remained open. They seemed hard to deal with as all natural211

generalizations failed. Indeed, it turned out that the remaining cases required a deeper212

concept, namely the use of bisets. While the use of bisets in our statement of Theorem213

3.7 is only for convenience, it is essential in the following theorems.214

The following theorem is equivalent to the result of Matsuoka and Tanigawa [11]215

on reachability mixed arborescence packing, as it was shown in [8].216

Theorem 3.8. ([11]) Let F = (V ∪ R,A ∪ E) be a rooted mixed graph. Then217

there exists a reachability mixed arborescence packing {Br}r∈R in F if and only if for218

every biset subpartition {Xi}`1 of a strongly connected component C of F such that219

w(Xi) = PF
w(Xi) for all i = 1, . . . , `,220

(3.8) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(|PF
C ∩R| − |Xi

O ∩R|).221

The next step was made by Gao and Yang who managed to generalize Theorem222

3.8 to the matroidal case by proving the following result [8].223
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6 F. HOERSCH AND Z. SZIGETI

Theorem 3.9. ([8]) Let (F = (V ∪R,A∪E),M = (R, rM)) be a matroid-rooted224

mixed graph. Then there exists a matroid-reachability-based mixed arborescence pack-225

ing in (F,M) if and only if for every biset subpartition {Xi}`1 of a strongly connected226

component C of F −R such that w(Xi) = PF
w(Xi) for all i = 1, . . . , `,227

(3.9) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(rM(PF
C ∩R)− rM(Xi

O ∩R)).228

3.5. New results. The remaining open problems were the generalizations of229

Theorems 3.8 and 3.9 to mixed hypergraphs. Proving such generalizations is the last230

contribution of this article. While such a result can be obtained by the proof technique231

used by Gao and Yang for Theorem 3.9, we follow a different approach: we derive232

such a characterization from Theorem 3.7. Again, we first show that the simplicity233

condition in Theorem 3.7 can be omitted.234

Theorem 3.10. Let (H = (V ∪R,A∪E),M = (R, rM)) be a matroid-rooted mixed235

hypergraph. Then there exists a matroid-based mixed hyperarborescence packing in236

(H,M) if and only if for every biset subpartition {Xi}`1 of V with w(Xi) = spanM({r ∈237

R : N+
H(r) ∩Xi

I 6= ∅}) for i = 1, . . . , `,238

(3.10) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(rM(R)− rM(w(Xi))).239

Theorem 3.10 allows us to derive the following new theorem. Observe that this240

is a common generalization of all the theorems mentioned before in this article. It241

includes all the theorems surveyed in [4].242

Theorem 3.11. Let (H = (V ∪ R,A ∪ E),M = (R, rM)) be a matroid-rooted243

mixed hypergraph. Then there exists a matroid-reachability-based mixed hyperarbores-244

cence packing in (H,M) if and only if for every biset subpartition {Xi}`1 of a strongly245

connected component C of H−R such that w(Xi) = PHw(Xi) for all i = 1, . . . , `,246

(3.11) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(rM(PHC ∩R)− rM(Xi
O ∩R)).247

We obtain the only remaining case, a generalization of Theorem 3.8 to mixed248

hypergraphs as a corollary by applying Theorem 3.11 to the free matroid.249

Corollary 3.12. Let H = (V ∪ R,A ∪ E) be a rooted mixed hypergraph. Then250

there exists a reachability mixed hyperarborescence packing {Br}r∈R in H if and only251

if for every biset subpartition {Xi}`1 of a strongly connected component C of H − R252

such that w(Xi) = PHw(Xi) for all i = 1, . . . , `,253

(3.12) eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

(|PHC ∩R| − |Xi
O ∩R|).254

4. Reductions. This section contains the proofs of the old and new theorems255

that we mentioned before. All the proofs work by reductions from the spanning256

versions to the reachability versions.257
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4.1. Proof of Theorem 3.3. The proof uses Theorem 3.2 and is self-contained258

otherwise.259

Proof. (of Theorem 3.3) Necessity is evident.260

For sufficiency, let D = (V ∪ R,A) be a minimum counterexample. Obviously,261

V 6= ∅.262

Let C ⊆ V be the vertex set of a strongly connected component of D that has263

no arc leaving. Since each r ∈ R is a root, C exists. Note that each vertex of C264

is reachable in D from the same set of roots since D[C] is strongly connected. We265

can hence divide the problem into two subproblems, a smaller one on reachability266

arborescence packing and one on spanning arborescence packing.267

Let D1 = (V1∪R,A1) = D − C. Note that D1 is a rooted digraph.268

Lemma 4.1. D1 has a reachability arborescence packing {B1
r}r∈R.269

Proof. By d+
A(C) = 0, we have d−A1

(X) = d−A(X) and PD1

X = PD
X for all X ⊆270

V1 ∪R. Then, since D satisfies (3.3), so does D1. Hence, by the minimality of D, the271

desired packing exists in D1.272

Let D2 = (V2 ∪ R2, A2) be the rooted digraph where V2= C ∪ T , T = {new273

vertices tuv: uv ∈ ρ−A(C)}, R2 = PD
C ∩ R and A2 = A(D[C]) ∪ {rtuv : r ∈ R2, u ∈274

UD
r , tuv ∈ T} ∪ {tuvv, |R2| ∗ vtuv : tuv ∈ T}.275

Lemma 4.2. D2 has a spanning arborescence packing {B2
r}r∈R.276

Proof. We show in the following claim that D2 satisfies (3.2).277

Claim 4.3. d−A2
(X) ≥ |R2 −X| for all X ⊆ V2 ∪R2 with X −R2 6= ∅.278

Proof. If X ∩ C = ∅, then d−A2
(X) ≥ dA2(v, tuv) = |R2| ≥ |R2 − X| for some279

tuv ∈ X −R2. If X ∩C 6= ∅, then, since D[C] is strongly connected, R2 = PD
C ∩R =280

PD
X∩C ∩ R. Let Y = (V ∪ R) − UD

R2−X , Z = (X ∩ C) ∪ Y and uv ∈ ρ−A(Z). Since281

ρ−A(Y ) = ∅, v ∈ X ∩ C. If u ∈ C, then uv ∈ ρ−A2
(X). If u /∈ C, then u ∈ UD

r for282

some r ∈ R2 −X and tuv ∈ T, so rtuv, tuvv ∈ A2. Since v ∈ X and r /∈ X, rtuv or283

tuvv ∈ ρ−A2
(X). Thus, by (3.3), d−A2

(X) ≥ d−A(Z) ≥ |(PD
Z − Z) ∩R| = |R2 −X|.284

By Claim 4.3 and Theorem 3.2, the desired packing exists in D2. This completes285

the proof of Lemma 4.2.286

With the help of the packings {B1
r}r∈R in D1 and {B2

r}r∈R2
in D2 obtained in287

Lemmas 4.1 and 4.2, a packing in D can be constructed yielding a contradiction.288

Lemma 4.4. D has a reachability arborescence packing.289

Proof. For all r ∈ R − R2, let Br = B1
r and for all r ∈ R2, let Br be obtained290

from the union of B1
r and B2

r − (R2 ∪ T ) by adding the arc uv for all tuvv ∈ A(B2
r ).291

Since {B1
r}r∈R and {B2

r}r∈R2
are packings, so is {Br}r∈R. For r ∈ R−R2, Br = B1

r292

is an r-arborescence and it spans UD1
r = UD

r . Let now r ∈ R2. Since B1
r and B2

r do293

not contain circuits, neither does Br. Since for all v ∈ V (B1
r )−r, d−A(B1

r)(v) = 1, for all294

v ∈ C, d−A(B2
r)(v) = 1 and when tuvv ∈ A(B2

r ) is replaced by uv ∈ A(Br) then u ∈ UD
r ,295

we have for all v ∈ V (Br)− r, d−A(Br)(v) = 1. It follows that Br is an r-arborescence.296

Since B1
r spans UD1

r and B2
r spans V2 ∪ r, Br spans UD1

r ∪ C = UD
r . It follows that297

{Br}r∈R has the desired properties. This completes the proof of Lemma 4.4.298

Lemma 4.4 contradicts the fact that D is a counterexample and hence the proof299

of Theorem 3.3 is complete.300
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4.2. Proof of Theorems 3.5 and 3.6. In this section, the generalization to301

matroids is considered.302

We first derive Theorem 3.5 from Theorem 3.4. The strong matroid setting allows303

for a rather simple proof.304

Proof. (of Theorem 3.5) Necessity is evident.305

For sufficiency, let (D′ = (V ∪ R′, A′),M′ = (R′, rM′)) be the simply306

matroid-rooted digraph obtained from (D,M) by replacing every root r ∈ R by a307

set Qr of |N+
D (r)| simple roots in the digraph such that N+

D′(Qr) = N+
D (r) and by308

|Qr| parallel copies of r in the matroid.309

Now let X′ ⊆ V ∪R′ with X ′∩R′ = spanM′(N−D′(X ′∩V )∩R′). Observe that for310

every r ∈ R, either Qr ⊆ X ′ or Qr ∩X ′ = ∅. Let X = (X ′ ∩ V )∪{r ∈ R : Qr ⊆ X ′}.311

Observe that X ∩R = spanM(N−D (X ∩ V )∩R). Further, we have d−A(X) = d−A′(X ′),312

rM(R) = rM′(R′) and rM(X ∩ R) = rM′(X ′ ∩ R′). Then, by (3.5), we obtain313

d−A′(X ′) = d−A(X) ≥ rM(R)− rM(X ∩R) = rM′(R′)− rM′(X ′∩R′), that is (D′,M′)314

satisfies (3.4). We can now apply Theorem 3.4 to obtain in (D′,M′) a matroid-based315

arborescence packing {B′r′}r′∈R′ .316

For all r ∈ R, let Br be obtained from {B′r′}r′∈Qr by contracting Qr into r. Since317

{B′r′}r′∈R′ is a packing, so is {Br}r∈R. Let r ∈ R. Since {r′ ∈ R′ : v ∈ V (B′r′)} is318

independent inM′ for all v ∈ V and Qr is a set of parallel elements inM′, {B′r′}r′∈Qr
319

is a set of vertex-disjoint r′-arborescences in D′ and hence Br is an r-arborescence320

in D. Moreover, for all v ∈ V , rM({r ∈ R : v ∈ V (Br)}) = rM′({r′ ∈ R′ : v ∈321

V (B′r′)}) = rM′(R′) = rM(R). Thus the packing {Br}r∈R of arborescences has the322

desired properties.323

We are now ready to derive Theorem 3.6 from Theorem 3.5. The role of Theorem324

3.5 in the proof is similar to the role of Theorem 3.2 in the proof of Theorem 3.3.325

While the proof contains similar ideas to the ones in the proof of Theorem 3.3, it is326

somewhat more technical.327

Proof. (of Theorem 3.6) Necessity is evident.328

For sufficiency, let (D = (V ∪ R,A), M = (R, rM)) be a minimum counterex-329

ample. Obviously V 6= ∅. Let C ⊆ V be the vertex set of a strongly connected330

component of D that has no arc leaving. Since each r ∈ R is a root, C exists.331

Let D1 = (V1∪R,A1) = D−C. Note that (D1,M) is a matroid-rooted digraph.332

Lemma 4.5. (D1,M) contains a matroid-reachability-based arborescence packing333

{B1
r}r∈R and PD1

v = PD
v for all v ∈ V1.334

Proof. By d+
A(C) = 0, we have d−A1

(X) = d−A(X) and PD1

X = PD
X for all X ⊆335

V1 ∪R. Then, since D satisfies (3.6), so does D1. Hence, by the minimality of D and336

PD1
v = PD

v for all v ∈ V1, the desired packing exists in D1.337

By Lemma 4.5, (D1,M) has a matroid-reachability-based arborescence packing338

{B1
r}r∈R. We now define a matroid-rooted digraph (D2,M2) which depends on the339

arborescences. Let R2 = PD
C ∩ R, M2 the restriction of M to R2 and D2 = (V2 ∪340

R2, A2) with V2= C∪T , T = {new vertices tuv : uv ∈ ρ−A(C)},A2 = A(D[C])∪{rtuv :341

r ∈ R2, u ∈ V (B1
r ), tuv ∈ T} ∪ {tuvv, rM2

(R2) ∗ vtuv : tuv ∈ T}.342

Lemma 4.6. (D2,M2) has a matroid-based arborescence packing {B2
r}r∈R2 .343

Proof. We show in the following claim that (D2,M2) satisfies (3.5). Let X ⊆344

V2 ∪R2 with X ∩R2 = spanM2(N−D2
(X ∩ V ) ∩R2).345

Claim 4.7. d−A2
(X) ≥ rM2

(R2)− rM2
(X ∩R2).346
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Proof. If X∩C = ∅, then d−A2
(X) ≥ dA2

(v, tuv) = rM2
(R2) ≥ rM2

(R2)−rM2
(X∩347

R2) for some tuv ∈ X −R2. If X ∩C 6= ∅, then, since D[C] is strongly connected, we348

have R2 = PD
C ∩ R = PD

X∩C ∩ R. Let Y = (V ∪ R) − UD
R−X and Z = (X ∩ C) ∪ Y .349

Then PD
Z ∩R = R2 and Z ∩R = X ∩R2.350

Proposition 4.8. d−A2
(X) ≥ d−A(Z).351

Proof. Let uv ∈ ρ−A(Z). Since ρ−A(Y ) = ∅, v ∈ X∩C. If u ∈ C, then uv ∈ ρ−A2
(X).352

Otherwise, u ∈ UD
r̄ for some r̄ ∈ R − X and tuv ∈ T . Then, by uv ∈ A, we have353

r̄ ∈ PD
u ∩ R ⊆ PD

X∩C ∩ R = R2. Note that {r ∈ R : r̄ ∈ V (B1
r )} = {r̄} = PD

r̄ . If354

tuv ∈ X, then, since {r ∈ R : u ∈ V (B1
r )} is a basis of PD

u ∩R in M, we have355

r̄ /∈ X ∩R2 = spanM2(N−D2
(X −R2) ∩R2) ⊇ spanM2(N−D2

(tuv) ∩R2)356

= spanM2({r ∈ R2 : u ∈ V (B1
r )}) = spanM({r ∈ R : u ∈ V (B1

r )}) ∩R2357

⊇ PD
u ∩R2 ⊇ {r̄},358359

a contradiction. Thus tuv /∈ X and so tuvv ∈ ρ−A2
(X).360

By Proposition 4.8 and (3.6), we have d−A2
(X) ≥ d−A(Z) ≥ rM(PD

Z ∩R)− rM(Z ∩361

R) = rM2
(R2)− rM2

(X ∩R2) and the proof of Claim 4.7 is complete.362

By Claim 4.7 and Theorem 3.5, the desired packing exists in D2. This completes363

the proof of Lemma 4.6.364

By Lemma 4.6, (D2,M2) has a matroid-based arborescence packing {B2
r}r∈R2 .365

With the help of the packings {B1
r}r∈R and {B2

r}r∈R2 , a packing in (D,M) can be366

constructed yielding a contradiction.367

Lemma 4.9. (D,M) has a matroid-reachability-based arborescence packing.368

Proof. For all r ∈ R − R2, let Br = B1
r and for all r ∈ R2, let Br be obtained369

from the union of B1
r and B2

r − (R2 ∪ T ) by adding the arc uv for all tuvv ∈ A(B2
r ).370

Since {B1
r}r∈R and {B2

r}r∈R2
are packings, so is {Br}r∈R. Since B1

r and B2
r are371

arborescences, for all r ∈ R and v ∈ V , we have d−A(Br)(v) ≤ 1 and d+
A(Br)(v) ≥ 1372

implies d−A(Br)(v) = 1 or v = r. It follows that Br is an r-arborescence indeed. For373

v ∈ V − C, we have {r ∈ R : v ∈ V (Br)} = {r ∈ R : v ∈ V (B1
r )} which is a basis of374

PD
v ∩ R in M by Lemma 4.5. For v ∈ C, we have {r ∈ R : v ∈ V (Br)} = {r ∈ R2 :375

v ∈ V (B2
r )} which is a basis of M2, so a basis of R2 = PD

v ∩R in M. It follows that376

{Br}r∈R has indeed the desired properties.377

Lemma 4.9 contradicts the fact that (D,M) is a counterexample and hence com-378

pletes the proof of Theorem 3.6.379

4.3. Proof of Theorems 3.10 and 3.11. In an analogous structure as before,380

we first derive Theorem 3.10 from Theorem 3.7.381

Proof. (of Theorem 3.10) Necessity is evident.382

For sufficiency, we define a simply matroid-rooted mixed hypergraph (H′ =383

(V ∪ R′,A′ ∪ E ′),M′ = (R′, rM′)) obtained from (H,M) by replacing every384

root r ∈ R by a set Qr of |N+
H(r)| simple roots such that N+

H′(Qr) = N+
H(r) in the385

mixed hypergraph and by |Qr| parallel copies of r in the matroid.386

Now let {Xi}`
1 be a biset subpartition of V with w(Xi) = spanM′({r ∈ R′ :387

N+
H′(r) ∩Xi

I 6= ∅}) for i = 1, . . . , `. Let i ∈ {1, . . . , `}. Note that for all r ∈ R, either388

Qr ⊆ w(Xi) or Qr ∩ w(Xi) = ∅. Let Yi = (Xi
I ∪ {r ∈ R : Qr ⊆ w(Xi)}, Xi

I). Observe389
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that w(Yi) = spanM({r ∈ R : N+
H(r) ∩ Xi

I 6= ∅}), d
−
A(Yi) = d−A′(Xi), rM(R) =390

rM′(R′) and rM(w(Yi)) = rM′(w(Xi)). Then, by (3.10), we obtain eE({Xi
I}`1) ≥391 ∑`

i=1(rM(R)− rM(w(Yi))− d−A(Yi)) =
∑`

i=1(rM′(R′)− rM′(w(Xi))− d−A′(Xi)), that392

is (H′,M′) satisfies (3.7).393

We now apply Theorem 3.7 to obtain in (H′,M′) a matroid-based mixed hyper-394

arborescences packing {B′r′}r′∈R′ with arborescences {B′r′}r′∈R′ as trimmings. For395

all r ∈ R, let Br be obtained from {B′r′}r′∈Qr
by contracting Qr into r. As in396

the proof of Theorem 3.5, we can see that {Br}r∈R is a matroid-based arborescence397

packing. Finally, for all r ∈ R, let Br be obtained from {B′r′}r′∈Qr by contracting398

Qr into r. As Br is a trimming of Br for all r ∈ R, {Br}r∈R is a packing of mixed399

hyperarborescences with the desired properties.400

We are now ready to derive Theorem 3.11 from Theorem 3.10. Again, the proof401

has certain similarities to the previous ones.402

Proof. (of Theorem 3.11) We first prove necessity. Suppose that there exists a403

matroid-reachability-based mixed hyperarborescence packing {Br}r∈R. By definition,404

for every r ∈ R, there is an r-arborescence Br that is a trimming of Br with {r ∈405

R : v ∈ V (Br)} being a basis of PHv ∩ R in M for all v ∈ V . Let {Xi}`
1 be a biset406

subpartition of a strongly connected component C of H−R such that w(Xi) = PHw(Xi)407

for all i = 1, . . . , `.408

Let i ∈ {1, . . . , `}, Ri = {r ∈ R −Xi
O : V (Br) ∩Xi

I 6= ∅} and v ∈ Xi
I . Then we

have

rM(Ri ∪ (Xi
O ∩R)) ≥ rM({r ∈ R : v ∈ V (Br)}) = rM(PHv ∩R) = rM(PHC ∩R).

Thus, by the subcardinality and the submodularity of rM, we have

|Ri| ≥ rM(Ri) ≥ rM(Ri ∪ (Xi
O ∩R))− rM(Xi

O ∩R) ≥ rM(PHC ∩R)− rM(Xi
O ∩R).

Since w(Xi) = PHw(Xi), no dyperedge and no hyperedge enters w(Xi) in H. Then, by

v ∈ Xi
I , every Br with r ∈ Ri has an arc that enters Xi, that is Br contains either a

dyperedge in A entering Xi or a hyperedge in E entering Xi
I . Thus, since {Br}r∈R is

a packing, we have

eE({Xi
I}`1) +

∑̀
i=1

d−A(Xi) ≥
∑̀
i=1

|Ri| ≥
∑̀
i=1

(rM(PHC ∩R)− rM(Xi
O ∩R)).

For sufficiency, let (H = (V ∪R,A∪E),M = (R, rM)) be a minimum counterexample.409

Obviously, V 6= ∅. Let C ⊆ V be the vertex set of a strongly connected component of410

H that has no dyperedge and hyperedge leaving. Since each r ∈ R is a root, C exists.411

Let H1 = (V1∪R,A1∪E1) = H−C. Note that (H1,M) is a matroid-rooted mixed412

hypergraph.413

Lemma 4.10. (H1,M) has a matroid-reachability-based mixed hyperarborescence414

packing {B1
r}r∈R and PH1

v = PHv for all v ∈ V1.415

Proof. The fact that d+
A(C) = dE(C) = 0 implies that for all X ⊆ V1 ∪ R, we416

have PH1

X = PHX , for every subpartition P of V ∪ R1, we have eE(P) = eE1(P), and417

for every biset X, d−A1
(X) = d−A(X). Then, since H satisfies (3.11), so does H1. Hence,418

by the minimality of H and PH1
v = PHv for all v ∈ V1, the desired packing exists.419

By Lemma 4.10, (H1,M) has a matroid-reachability-based mixed hyperarbores-420

cence packing {B1
r}r∈R. By definition, B1

r can be trimmed to an r-arborescence B1
r421
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for all r ∈ R such that {r ∈ R : v ∈ V (B1
r )} is a basis of PH1

v = PHv in M for all422

v ∈ V1. We now define a matroid-rooted mixed hypergraph (H2,M2) which depends423

on the arborescences {B1
r}r∈R. Let R2 = PHC ∩ R, M2 the restriction of M to R2424

and let H2 = (V2 ∪ R2,A2 ∪ E2) be obtained from H[C] by adding a set T of new425

vertices ta for all a ∈ ρ−A(C) and the vertex set R2 and by adding dyperedges a′426

= ((tail(a) ∩ C) ∪ ta, head(a)) for all ta ∈ T, the arcs rta for all r ∈ R2, ta ∈ T with427

tail(a) ∩ V (B1
r ) 6= ∅ and rM2

(R2) parallel arcs head(a)ta for all ta ∈ T .428

Lemma 4.11. (H2,M2) contains a matroid-based mixed hyperarborescence pack-429

ing {B2
r}r∈R2

.430

Proof. We show in the following claim that (H2,M2) satisfies (3.10). Let {Xi}`
1431

be a biset subpartition of V2 = C ∪T with w(Xi) = spanM2
({r ∈ R2 : N+

H2
(r)∩Xi

I 6=432

∅}) for all i = 1, . . . , `.433

Claim 4.12. eE2({Xi
I}`1) ≥

∑`
i=1(rM2

(R2)− rM2
(w(Xi))− d−A2

(Xi)).434

Proof. Suppose that Xi
I ∩ C 6= ∅ for all i ∈ {1, . . . , j} and Xi

I ∩ C = ∅ for all435

i ∈ {j + 1, . . . , `}. For i ∈ {j + 1, . . . , `}, d−A2
(Xi) ≥ d−A2

(head(a), ta) ≥ rM2
(R2) for436

some ta ∈ Xi
I , thus 0 ≥ rM2

(R2)− rM2
(w(Xi))− d−A2

(Xi).437

Let now i ∈ {1, . . . , j}. Since H[C] is strongly connected, we have R2 = PHC ∩R =438

PH
Xi

I∩C
∩ R. Let Y i = (V ∪ R)− (UHR−w(Xi) ∪ C) and Zi = ((Xi

I ∩ C) ∪ Y i, Xi
I ∩ C).439

Note that Zi
I = Xi

I ∩ C and Zi
O ∩ R = Y i ∩ R = R − (R − w(Xi)) = w(Xi), so440

rM(Zi
O ∩R) = rM2

(w(Xi)).441

Proposition 4.13. d−A2
(Xi) ≥ d−A(Zi).442

Proof. Let a ∈ ρ−A(Zi). If a /∈ ρ−A(C), then a ∈ ρ−A2
(Xi). Otherwise, let u443

∈ tail(a)−Zi
O−C. Then u ∈ UHr̄ for some r̄ ∈ R−w(Xi) and ta ∈ T . Thus, by a ∈ A,444

we have r̄ ∈ PHu ∩R ⊆ PHXi
I∩C
∩R = R2. Note that {r ∈ R : r̄ ∈ V (B1

r )} = {r̄} = PHr̄ .445

If ta ∈ Xi
I , then, since {r ∈ R : u ∈ V (B1

r )} is a basis of PHu ∩R in M, we obtain446

r̄ /∈ w(Xi) = spanM2({r ∈ R2 : N+
H2

(r) ∩Xi
I 6= ∅})447

⊇ spanM2
({r ∈ R2 : ta ∈ N+

H2
(r)})448

= spanM2
({r ∈ R2 : tail(a) ∩ V (B1

r ) 6= ∅})449

⊇ spanM({r ∈ R : u ∈ V (B1
r )}) ∩R2450

⊇ PHu ∩R2 ⊇ {r̄},451452

a contradiction. It follows that a′ ∈ ρ−A2
(Xi).453

Since w(Zi) ∩ C = ∅, {Zi
I}

j
1 is a biset subpartition of C. Moreover, no dyperedge454

and no hyperedge leaves UHR−w(Xi) ∪ C, so w(Zi) = Y i = PHY i = PHw(Zi). Then,455

by (3.11) and Proposition 4.13, we have eE2({Xi
I}`1) = eE2({Xi

I}
j
1) = eE({Zi

I}
j
1) ≥456 ∑j

i=1(rM(PHC ∩ R) − rM(Zi
O ∩ R) − d−A(Zi)) ≥

∑j
i=1(rM2

(R2) − rM2
(w(Xi)) −457

d−A2
(Xi)) ≥

∑`
i=1(rM2

(R2) − rM2
(w(Xi)) − d−A2

(Xi)), that completes the proof of458

Claim 4.12.459

By Claim 4.12 and Theorem 3.10, the desired packing exists in H2.460

By Lemma 4.11, (H2,M2) has a matroid-reachability-based mixed hyperarbores-461

cence packing {B2
r}r∈R2

with r-arborescences {B2
r}r∈R2

as trimmings. With the462

help of the packings {B1
r}r∈R and {B2

r}r∈R2
, a packing of (H,M) can be constructed463

yielding a contradiction.464
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Lemma 4.14. (H,M) has a matroid-reachability-based mixed hyperarborescence465

packing.466

Proof. For r ∈ R − R2, let Br = B1
r and for r ∈ R2, let Br be obtained from467

the union of B1
r and B2

r − R2 − T by adding an arc uv for all tav ∈ A(B2
r ) for some468

u ∈ tail(a) ∩ V (B1
r ). As in the proof of Theorem 3.6, we can see that {Br}r∈R is a469

packing of arborescences such that the root of Br is r for all r ∈ R and {r ∈ R : v ∈470

V (Br)} is a basis of PHv ∩R in M for all v ∈ V .471

Finally, for r ∈ R−R2, let Br = B1
r and for r ∈ R2, let Br be obtained from B1

r and472

B2
r −R2 − T by adding the dyperedge a ∈ A for all a′ ∈ A(B2

r). The above argument473

shows that this is a packing of mixed hyperarborescences in H (with arborescences474

{Br}r∈R as trimmings) with the desired properties.475

Lemma 4.14 contradicts the fact that (H,M) is a counterexample and hence the476

proof of Theorem 3.11 is complete.477

5. Algorithmic aspects. This section deals with the algorithmic consequences478

of our proofs.479

For the basic case, we show that our proof of Theorem 3.3 yields a polynomial480

time algorithm. We acknowledge that so is the original proof in [9]. We first mention481

that the packings in Theorem 3.2 can be found in polynomial time, following either482

the proof of Edmonds in [3] or the proof of Frank (Theorem 10.2.1 in [5]). Using this,483

we can turn our proof of Theorem 3.3 into a polynomial time algorithm for finding the484

desired packing of arborescences. We first find the arborescences B1
r in the smaller485

instance D − C. As the size of D2 is polynomial in the size of D, we can apply the486

algorithm mentioned above to obtain the arborescences B2
r in polynomial time. The487

obtained arborescences can be merged efficiently to obtain the Br.488

For the matroidal case, we show that our proof of Theorem 3.6 is algorithmic if an489

independence oracle for M is given. We acknowledge that so is the original proof in490

[10]. We first recall that the packings in Theorem 3.4 can be found in polynomial time491

as mentioned in [2]. It is easy to see that the proof of Theorem 3.5 yields a polynomial492

time algorithm if a matroid oracle is given. By similar arguments as before and the493

fact that an independence oracle for M yields independence oracles for all matroids494

considered, we obtain that the proof of Theorem 3.6 can be turned into a polynomial495

time algorithm if an independence oracle for M is given.496

For the more general case, using the fact that the proof of Theorem 3.7 is al-497

gorithmic if a matroid oracle is given ([4]), we obtain that also Theorems 3.10 and498

3.11 yield polynomial time algorithms given independence oracles. In particular, the499

arborescences in Corollary 3.12 can be found in polynomial time.500
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[7] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discrete Appl.514
Math., 131(2), 385-400, 2003.515

[8] H. Gao, D. Yang, Packing of maximal independent mixed arborescences,516
arxiv.org/abs/2003.04062517

[9] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-tress in digraphs, Combinatorica, 29(2),518
197-214, 2009.519
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