REACHABILITY IN ARBORESCENCE PACKINGS*

FLORIAN HOERSCH ${ }^{\dagger}$ AND ZOLTÁN SZIGETI ${ }^{\ddagger}$

Abstract

Fortier et al. [4] proposed several research problems on packing arborescences. Some of them were settled in that paper and others were solved later by Matsuoka and Tanigawa [11] and Gao and Yang [8]. The last open problem will be settled in this paper. We show how to turn an inductive idea used in the last two articles into a simple proof technique that allows to relate previous results on arborescence packings.

We show how a strong version of Edmonds' theorem [3] on packing spanning arborescences implies Kamiyama, Katoh and Takizawa's result [9] on packing reachability arborescences and how Durand de Gevigney, Nguyen and Szigeti's theorem [2] on matroid-based packing of arborescences implies Király's result [10] on matroid-reachability-based packing of arborescences.

Finally, we deduce a new result on matroid-reachability-based packing of mixed hyperarborescences from a theorem on matroid-based packing of mixed hyperarborescences due to Fortier et al. [4].

All the proofs provide efficient algorithms to find a solution to the corresponding problems.

Key words. arborescence, packing, matroid
AMS subject classifications. $05 \mathrm{C} 70,05 \mathrm{C} 40,05 \mathrm{~B} 35$

1. Introduction. This paper deals with the packing of arborescences. We focus on concluding characterizations of graphs admitting a packing of reachability-based arborescences from the corresponding theorems for spanning arborescences in several settings. We first give an overview of the results in this article. All technical terms which are not defined here will be explained in Section 3.

In 1973, Edmonds [3] characterized digraphs having a packing of k spanning r arborescences for some $k \in \mathbb{Z}_{+}$and for some vertex r. Since then, there have been numerous generalizations of this result. A first attempt is to allow different roots for the arborescences. A version with arbitrary, fixed roots can easily be derived from the theorem of Edmonds. This generalization has a significant deficiency occuring when some vertex is not reachable from some designated root. In this case, the only information it provides is that the desired packing does not exist. A concept to overcome this problem has been developed by Kamiyama, Katoh and Takizawa in [9]. Given a digraph D, can we find a packing of arborescences such that each of them spans all the vertices reachable from the root designated to it? They provide a characterization of these graphs. We reprove their theorem by a reduction from a stronger form of Edmonds' theorem.

Another way of generalizing the requirements on the packing of arborescences was introduced by Durand de Gevigney, Nguyen and Szigeti in [2]. Instead of requiring every vertex to be spanned by all arborescences, it is required to be spanned only by the arborescences which are associated to a basis of an arbitrary matroid where every arborescence is associated to an element of the matroid. Surprisingly, a characterization of graph-matroid pairs admitting such a packing of arborescences in this very general setting was found in [2]. A natural combination of the two aforementioned generalizations was introduced by Király [10]. He requires every vertex only to be spanned by a set of arborescences associated to a matroid basis of the set associated to the arborescences that could potentially reach the vertex. He provided a charac-

[^0]terization of the graph-matroid pairs admitting such a packing of arborescences. We reprove this theorem by concluding it from the theorem in [2].

Finally, there are attempts to also generalize the objects considered from digraphs to more general objects like mixed graphs or dypergraphs. We consider a concept unifying all of these generalizations where we want to find a matroid-reachability based packing of mixed hyperarborescences in a matroid-rooted mixed hypergraph. We derive a characterization of these mixed hypergraph-matroid pairs from a characterization for the existence of a matroid-based packing of mixed hyperarborescences in a matroid-rooted mixed hypergraph by Fortier et al. in [4]. All our proofs are algorithmic.

In Section 3, we provide a more technical and detailed overview of the results considered. In Section 4, we give the reductions that yield our new proofs. Section 5 deals with the algorithmic impacts of our results.
2. Definitions. In this section we provide the definitions and notation needed in the paper. For basic notions of matroid theory, we refer to [5], chapter 5.
2.1. Directed graphs. We first provide some basic notation on directed graphs (digraphs). Let $D=(V, A)$ be a digraph. For disjoint $X, Y \subseteq V$, we denote the set of arcs with tail in X and head in Y by $\boldsymbol{\rho}_{\boldsymbol{A}}(\boldsymbol{X}, \boldsymbol{Y})$ and $\left|\rho_{A}(X, Y)\right|$ by $\boldsymbol{d}_{\boldsymbol{A}}(\boldsymbol{X}, \boldsymbol{Y})$. We use $\boldsymbol{\rho}_{\boldsymbol{A}}^{+}(\boldsymbol{X})$ for $\rho_{A}(X, V-X), \boldsymbol{\rho}_{\boldsymbol{A}}^{-}(\boldsymbol{X})$ for $\rho_{A}(V-X, X), \boldsymbol{d}_{\boldsymbol{A}}^{+}(\boldsymbol{X})$ for $\left|\rho_{\boldsymbol{A}}^{+}(X)\right|$ and $\boldsymbol{d}_{\boldsymbol{A}}^{-}(\boldsymbol{X})$ for $\left|\rho_{A}^{-}(X)\right|$. We denote by $\boldsymbol{N}_{\boldsymbol{D}}^{+}(\boldsymbol{X})$ and $\boldsymbol{N}_{\boldsymbol{D}}^{-}(\boldsymbol{X})$ the set of out-neighbors and in-neighbors of X, respectively. For a single vertex v, we abbreviate $\rho_{A}^{+}(\{v\})$ to $\boldsymbol{\rho}_{\boldsymbol{A}}^{+}(\boldsymbol{v})$ etc. We call v a root in D if $d_{A}^{-}(v)=0$ and a simple root if additionally $d_{A}^{+}(v) \leq 1$.

An arborescence is a subgraph of D in which no circuit exists and every vertex except one has in-degree 1 . Observe that every arborescence contains a unique root. An arborescence whose unique root is a vertex r is also called an r-arborescence. An arborescence B is said to span $V(B)$. A subgraph of D is called a spanning arborescence if it is an arborescence and it spans all the vertices of D. By a packing of arborescences or arborescence packing in D, we mean a set of arc-disjoint arborescences in D.

For $u, v \in V$, we say that v is reachable from u in D if there exists a directed path from u to v. For $X \subseteq V$, we denote by $\boldsymbol{U}_{\boldsymbol{X}}^{D}$ the set of vertices which are reachable from at least one vertex in X, by $\boldsymbol{P}_{\boldsymbol{X}}^{D}$ the set of vertices from which X is reachable and by $\boldsymbol{D}[\boldsymbol{X}]$ the subgraph of D induced on X.

We define a (simply) rooted digraph as a digraph $D=(V \cup R, A)$ with \boldsymbol{R} being a set of (simple) roots. A (simply) matroid-rooted digraph is a tuple (D, \mathcal{M}) where $\boldsymbol{D}=(V \cup R, A)$ is a (simply) rooted digraph and $\boldsymbol{\mathcal { M }}=\left(R, r_{\mathcal{M}}\right)$ is a matroid with ground set R and rank function $\boldsymbol{r}_{\mathcal{M}}$. Note that a rooted digraph can be considered as a matroid-rooted digraph for the free matroid on R. Given a matroid-rooted digraph ($D=(V \cup R, A), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)$), we call an arborescence packing $\left\{B_{r}\right\}_{r \in R}$ matroidbased (matroid-reachability-based) if for all $r \in R$, the unique root of B_{r} is r and for all $v \in V,\left\{r \in R: v \in V\left(B_{r}\right)\right\}$ is a basis of $R\left(\right.$ of $\left.P_{v}^{D} \cap R\right)$ in \mathcal{M}. We speak of a spanning arborescence packing and a reachability arborescence packing, respectively, if \mathcal{M} is the free matroid on R.
2.2. Mixed hypergraphs. We now turn our attention to the generalizations of the concept of arborescences from digraphs to more general objects, namely mixed hypergraphs.

A mixed hypergraph is a tuple $\mathcal{H}=(V, \mathcal{A} \cup \mathcal{E})$ where \boldsymbol{V} is a set of vertices, \mathcal{A} is a
set of directed hyperedges (dyperedges) and \mathcal{E} is a set of hyperedges. A dyperedge a is a tuple $(\operatorname{tail}(a), \operatorname{head}(a))$ where head (\boldsymbol{a}) is a single vertex in V and $\boldsymbol{\operatorname { t a i l } (\boldsymbol { a }) \text { is a }}$ nonempty subset of $V-h e a d(a)$ and a hyperedge is a subset of V of size at least two. A mixed hypergraph without hyperedges is called a directed hypergraph (dypergraph). We say that \mathcal{H} is a mixed graph if each dyperedge has a tail of size exactly one and each hyperedge has exactly two vertices.

Let $X \subseteq V$. We say that dyperedge $a \in \mathcal{A}$ enters X if head $(a) \in X$ and $\operatorname{tail}(a)-$ $X \neq \emptyset$ and a leaves X if a enters $V-X$. We denote by $\rho_{\mathcal{A}}^{-}(\boldsymbol{X})$ the set of dyperedges entering X and by $\boldsymbol{\rho}_{\mathcal{A}}^{+}(\boldsymbol{X})$ the set of dyperedges leaving X. We use $\boldsymbol{d}_{\mathcal{A}}^{-}(\boldsymbol{X})$ for $\left|\rho_{\mathcal{A}}^{-}(X)\right|$ and $\boldsymbol{d}_{\mathcal{A}}^{+}(\boldsymbol{X})$ for $\left|\rho_{\mathcal{A}}^{+}(X)\right|$. We say that a hyperedge e enters or leaves X if e intersects both X and $V-X$ and denote by $\boldsymbol{d}_{\mathcal{E}}(\boldsymbol{X})$ the number of hyperedges entering X. We call a vertex r a root in \mathcal{H} if $d_{\mathcal{A}}^{-}(r)=d_{\mathcal{E}}(r)=0$ and $\operatorname{tail}(a)=\{r\}$ for all $a \in \rho_{\mathcal{A}}^{+}(r)$ and a simple root if additionally $d_{\mathcal{A}}^{+}(r) \leq 1$. Given a subpartition $\left\{V_{i}\right\}_{1}^{\ell}$ of V, we denote by $\boldsymbol{e}_{\mathcal{E}}\left(\left\{\boldsymbol{V}_{\boldsymbol{i}}\right\}_{1}^{\ell}\right)$ the number of hyperedges in \mathcal{E} entering some V_{i} $(i \in\{1, \ldots, \ell\})$.

Trimming a dyperedge a means that a is replaced by an arc $u v$ with $v=h e a d(a)$ and $u \in \operatorname{tail}(a)$. Trimming a hyperedge e means that e is replaced by an arc $u v$ for some $u \neq v \in e$. The mixed hypergraph \mathcal{H} is called a mixed hyperpath (mixed hyperarborescence) if all the dyperedges and all the hyperedges can be trimmed to get a directed path (an arborescence). A mixed r-hyperarborescence for some $r \in V$ is a mixed hyperarborescence together with a vertex r where that arborescence can be chosen to be an r-arborescence.

For a vertex set $X \subseteq V$, we denote by $\boldsymbol{U}_{\boldsymbol{X}}^{\mathcal{H}}$ the set of vertices which are reachable from the vertices in X by a mixed hyperpath in \mathcal{H}, by $\boldsymbol{P}_{\boldsymbol{X}}^{\mathcal{H}}$ the set of vertices from which X is reachable by a mixed hyperpath in \mathcal{H} and by $\mathcal{H}[\boldsymbol{X}]$ the mixed subhypergraph of \mathcal{H} induced on X. A strongly connected component of a mixed hypergraph is a maximal set of vertices that can be pairwise reached from each other by a mixed hyperpath.

We define a (simply) rooted mixed hypergraph as a mixed hypergraph $\mathcal{H}=(V \cup$ $R, \mathcal{A} \cup \mathcal{E}$) with \boldsymbol{R} being a set of (simple) roots. A (simply) matroid-rooted mixed hypergraph is a tuple $(\mathcal{H}, \mathcal{M})$ where $\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E})$ is a (simply) rooted mixed hypergraph and $\boldsymbol{\mathcal { M }}=\left(R, r_{\mathcal{M}}\right)$ is a matroid with ground set R and rank function $\boldsymbol{r}_{\mathcal{M}}$. Note that a rooted mixed hypergraph can be considered as a matroid-rooted mixed hypergraph for the free matroid on R. A mixed hyperarborescence packing $\left\{\mathcal{B}_{r}\right\}_{r \in R}$ is called matroid-based if every \mathcal{B}_{r} can be trimmed to an r-arborescence B_{r} such that $\left\{B_{r}\right\}_{r \in R}$ is a matroid-based arborescence packing. A mixed hyperarborescence packing $\left\{\mathcal{B}_{r}\right\}_{r \in R}$ is called matroid-reachability-based if every \mathcal{B}_{r} can be trimmed to an r-arborescence B_{r} such that for all $v \in V,\left\{r \in R: v \in V\left(B_{r}\right)\right\}$ is a basis of $P_{v}^{\mathcal{H}} \cap R$ in \mathcal{M}. We speak of a spanning mixed hyperarborescence packing and a reachability mixed hyperarborescence packing, respectively, if \mathcal{M} is the free matroid on R.
2.3. Bisets. Finally, we need to introduce some notation on bisets. Given some ground set V, a biset X consists of an outer set $X_{O} \subseteq V$ and an inner set $X_{I} \subseteq X_{O}$. We denote $X_{O}-X_{I}$ by $\boldsymbol{w}(\mathbf{X})$. For a vertex set $C \subseteq V$, a collection of bisets $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ is called a biset subpartition of C if $\left\{X_{I}^{i}\right\}_{1}^{\ell}$ is a subpartition of C and $w\left(\mathrm{X}^{i}\right) \subseteq V-C$ for $i=1, \ldots, \ell$. In a mixed hypergraph $\mathcal{H}=(V, \mathcal{A} \cup \mathcal{E})$, we say that a dyperedge $a \in \mathcal{A}$ enters $\mathrm{X}\left(\right.$ or $\left.a \in \rho_{\mathcal{A}}^{-}(\mathrm{X})\right)$ if $\operatorname{tail}(a)-X_{O} \neq \emptyset$ and head $(a) \in X_{I}$.
3. Results. This section introduces all the results considered and shows how our contributions relate to the previous results.
3.1. Reachability in digraphs. The starting point of all studies on packing arborescences is the following theorem of Edmonds [3] mentioned in a simpler form in the introduction.

ThEOREM 3.1. ([3]) Let $D=(V \cup R, A)$ be a simply rooted digraph. Then there exists a spanning arborescence packing $\left\{B_{r}\right\}_{r \in R}$ in D if and only if for all $X \subseteq V \cup R$ with $X-R \neq \emptyset$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq|R-X| \tag{3.1}
\end{equation*}
$$

We first mention a generalization of Theorem 3.1 omitting the simplicity condition that was found by Edmonds himself in [3]. Its proof is significantly more complicated than the one of Theorem 3.1.

Theorem 3.2. ([3]) Let $D=(V \cup R, A)$ be a rooted digraph. Then there exists a spanning arborescence packing $\left\{B_{r}\right\}_{r \in R}$ in D if and only if for all $X \subseteq V \cup R$ with $X-R \neq \emptyset$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq|R-X| \tag{3.2}
\end{equation*}
$$

We now turn our attention to packing reachability arborescences. The following result of Kamiyama, Katoh and Takizawa [9] generalizes Theorem 3.2.

Theorem 3.3. ([9]) Let $D=(V \cup R, A)$ be a rooted digraph. Then there exists a reachability arborescence packing $\left\{B_{r}\right\}_{r \in R}$ in D if and only if for all $X \subseteq V \cup R$ with $X-R \neq \emptyset$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq\left|P_{X}^{D} \cap R\right|-|X \cap R| \tag{3.3}
\end{equation*}
$$

Our first contribution is to show that surprisingly Theorem 3.2 implies Theorem 3.3. The very simple inductive proof can be found in Section 4.
3.2. Reachability and matroids. We now present another way of generalizing the concepts above, namely matroid-based packings and matroid-reachability-based packings.

The following result on matroid-based arborescence packing is due to Durand de Gevigney, Nguyen and Szigeti [2].

Theorem 3.4. ([2]) Let $\left(D=(V \cup R, A), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a simply matroidrooted digraph. Then there exists a matroid-based arborescence packing in (D, \mathcal{M}) if and only if for all nonempty $X \subseteq V \cup R$ with $X \cap R=\operatorname{span}_{\mathcal{M}}\left(N_{D}^{-}(X \cap V)\right)$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq r_{\mathcal{M}}(R)-r_{\mathcal{M}}(X \cap R) \tag{3.4}
\end{equation*}
$$

We now consider a reachability extension of Theorem 3.4. We first show that the simplicity condition in Theorem 3.4 can be omitted. This result might also be interesting for itself. It plays the same role for matroid-based packings as Theorem 3.2 played for basic packings. Interestingly, while the proof of Theorem 3.2 is selfcontained and rather technical, the stronger matroid setting allows to directly derive Theorem 3.5 from Theorem 3.4.

ThEOREM 3.5. Let $\left(D=(V \cup R, A), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a matroid-rooted digraph. Then there exists a matroid-based arborescence packing in (D, \mathcal{M}) if and only if for all nonempty $X \subseteq V \cup R$ with $X \cap R=\operatorname{span}_{\mathcal{M}}\left(N_{D}^{-}(X \cap V) \cap R\right)$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq r_{\mathcal{M}}(R)-r_{\mathcal{M}}(X \cap R) \tag{3.5}
\end{equation*}
$$

A reachability extension of Theorem 3.4 was obtained by Király [10]. We deduce the following stronger version of it from Theorem 3.5 in Section 4.

Theorem 3.6. ([10]) $\operatorname{Let}\left(D=(V \cup R, A), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a matroid-rooted digraph. Then there exists a matroid-reachability-based arborescence packing in (D, \mathcal{M}) if and only if for all $X \subseteq V \cup R$ with $X-R \neq \emptyset$,

$$
\begin{equation*}
d_{A}^{-}(X) \geq r_{\mathcal{M}}\left(P_{X}^{D} \cap R\right)-r_{\mathcal{M}}(X \cap R) . \tag{3.6}
\end{equation*}
$$

3.3. Generalizations. This part deals with another way of generalizing Theorem 3.1: rather than changing the requirements on the packing, one can consider changing the basic objects of consideration from digraphs to more general objects. One such generalization was suggested by Frank, Király and Király [7]. They considered dypergraphs instead of digraphs and they generalized Theorem 3.1 to dypergraphs. A result where the concepts of reachability and dypergraphs were combined was obtained by Bérczi and Frank in [1]. Yet another class Theorem 3.1 can be generalized to was considered by Frank in [6]: mixed graphs. He gave a characterization of mixed graphs admitting a mixed spanning arborescence packing.

A natural question now is whether several of the aforementioned generalizations can be combined into a single one. In [4], the authors surveyed all possible combinations of these generalizations and gave an overview of all existing results. A significant amount of cases was covered by Fortier et al [4]. They first prove a characterization combining the concepts of dypergraphs, matroids and reachability. They further prove a theorem that combines the concepts of matroids, hypergraphs and mixed graphs. We make use of the following characterization for the last result in this article.

Theorem 3.7. ([4]) Let $\left(\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E}), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a simply matroidrooted mixed hypergraph. Then there exists a matroid-based mixed hyperarborescence packing in $(\mathcal{H}, \mathcal{M})$ if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of V with $w\left(\mathrm{X}^{i}\right)=$ $\operatorname{span}_{\mathcal{M}}\left(\left\{r \in R: N_{\mathcal{H}}^{+}(r) \cap X_{I}^{i} \neq \emptyset\right\}\right)$ for $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{\mathcal{A}}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}}(R)-r_{\mathcal{M}}\left(w\left(\mathrm{X}^{i}\right)\right)\right) \tag{3.7}
\end{equation*}
$$

3.4. Reachability and mixed graphs. Theorem 3.7 had a lot of corollaries generalizing Theorem 3.1, however, the cases of combinations including both reachability and mixed graphs remained open. They seemed hard to deal with as all natural generalizations failed. Indeed, it turned out that the remaining cases required a deeper concept, namely the use of bisets. While the use of bisets in our statement of Theorem 3.7 is only for convenience, it is essential in the following theorems.

The following theorem is equivalent to the result of Matsuoka and Tanigawa [11] on reachability mixed arborescence packing, as it was shown in [8].

Theorem 3.8. ([11]) Let $F=(V \cup R, A \cup E)$ be a rooted mixed graph. Then there exists a reachability mixed arborescence packing $\left\{B_{r}\right\}_{r \in R}$ in F if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of a strongly connected component C of F such that $w\left(\mathrm{X}^{i}\right)=P_{w\left(\mathrm{X}^{i}\right)}^{F}$ for all $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{E}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{A}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left(\left|P_{C}^{F} \cap R\right|-\left|X_{O}^{i} \cap R\right|\right) \tag{3.8}
\end{equation*}
$$

The next step was made by Gao and Yang who managed to generalize Theorem 3.8 to the matroidal case by proving the following result [8].

Theorem 3.9. ([8]) Let $\left(F=(V \cup R, A \cup E), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a matroid-rooted mixed graph. Then there exists a matroid-reachability-based mixed arborescence packing in (F, \mathcal{M}) if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of a strongly connected component C of $F-R$ such that $w\left(X^{i}\right)=P_{w\left(X^{i}\right)}^{F}$ for all $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{E}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{A}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}}\left(P_{C}^{F} \cap R\right)-r_{\mathcal{M}}\left(X_{O}^{i} \cap R\right)\right) . \tag{3.9}
\end{equation*}
$$

3.5. New results. The remaining open problems were the generalizations of Theorems 3.8 and 3.9 to mixed hypergraphs. Proving such generalizations is the last contribution of this article. While such a result can be obtained by the proof technique used by Gao and Yang for Theorem 3.9, we follow a different approach: we derive such a characterization from Theorem 3.7. Again, we first show that the simplicity condition in Theorem 3.7 can be omitted.

ThEOREM 3.10. Let $\left(\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E}), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a matroid-rooted mixed hypergraph. Then there exists a matroid-based mixed hyperarborescence packing in $(\mathcal{H}, \mathcal{M})$ if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of V with $w\left(\mathrm{X}^{i}\right)=\operatorname{span}_{\mathcal{M}}(\{r \in$ $\left.R: N_{\mathcal{H}}^{+}(r) \cap X_{I}^{i} \neq \emptyset\right\}$) for $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{\mathcal{A}}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}}(R)-r_{\mathcal{M}}\left(w\left(\mathrm{X}^{i}\right)\right)\right) \tag{3.10}
\end{equation*}
$$

Theorem 3.10 allows us to derive the following new theorem. Observe that this is a common generalization of all the theorems mentioned before in this article. It includes all the theorems surveyed in [4].

Theorem 3.11. Let $\left(\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E}), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a matroid-rooted mixed hypergraph. Then there exists a matroid-reachability-based mixed hyperarborescence packing in $(\mathcal{H}, \mathcal{M})$ if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of a strongly connected component C of $\mathcal{H}-R$ such that $w\left(\mathrm{X}^{i}\right)=P_{w\left(\mathrm{X}^{i}\right)}^{\mathcal{H}}$ for all $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{\mathcal{A}}^{-}\left(X^{i}\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}}\left(P_{C}^{\mathcal{H}} \cap R\right)-r_{\mathcal{M}}\left(X_{O}^{i} \cap R\right)\right) \tag{3.11}
\end{equation*}
$$

We obtain the only remaining case, a generalization of Theorem 3.8 to mixed hypergraphs as a corollary by applying Theorem 3.11 to the free matroid.

Corollary 3.12. Let $\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E})$ be a rooted mixed hypergraph. Then there exists a reachability mixed hyperarborescence packing $\left\{\mathcal{B}_{r}\right\}_{r \in R}$ in \mathcal{H} if and only if for every biset subpartition $\left\{\mathrm{X}^{i}\right\}_{1}^{\ell}$ of a strongly connected component C of $\mathcal{H}-R$ such that $w\left(\mathrm{X}^{i}\right)=P_{w\left(\mathrm{X}^{i}\right)}^{\mathcal{H}}$ for all $i=1, \ldots, \ell$,

$$
\begin{equation*}
e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{\mathcal{A}}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left(\left|P_{C}^{\mathcal{H}} \cap R\right|-\left|X_{O}^{i} \cap R\right|\right) . \tag{3.12}
\end{equation*}
$$

4. Reductions. This section contains the proofs of the old and new theorems that we mentioned before. All the proofs work by reductions from the spanning versions to the reachability versions.
4.1. Proof of Theorem 3.3. The proof uses Theorem 3.2 and is self-contained otherwise.

Proof. (of Theorem 3.3) Necessity is evident.
For sufficiency, let $\boldsymbol{D}=(V \cup R, A)$ be a minimum counterexample. Obviously, $V \neq \emptyset$.

Let $\boldsymbol{C} \subseteq V$ be the vertex set of a strongly connected component of D that has no arc leaving. Since each $r \in R$ is a root, C exists. Note that each vertex of C is reachable in D from the same set of roots since $D[C]$ is strongly connected. We can hence divide the problem into two subproblems, a smaller one on reachability arborescence packing and one on spanning arborescence packing.

Let $\boldsymbol{D}_{\mathbf{1}}=\left(\boldsymbol{V}_{\mathbf{1}} \cup R, \boldsymbol{A}_{\mathbf{1}}\right)=D-C$. Note that D_{1} is a rooted digraph.
Lemma 4.1. D_{1} has a reachability arborescence packing $\left\{\boldsymbol{B}_{r}^{\mathbf{1}}\right\}_{r \in R}$.
Proof. By $d_{A}^{+}(C)=0$, we have $d_{A_{1}}^{-}(X)=d_{A}^{-}(X)$ and $P_{X}^{D_{1}}=P_{X}^{D}$ for all $X \subseteq$ $V_{1} \cup R$. Then, since D satisfies (3.3), so does D_{1}. Hence, by the minimality of D, the desired packing exists in D_{1}.

Let $\boldsymbol{D}_{\mathbf{2}}=\left(V_{2} \cup R_{2}, A_{2}\right)$ be the rooted digraph where $\boldsymbol{V}_{\mathbf{2}}=C \cup T, \boldsymbol{T}=$ nnew vertices $\left.\boldsymbol{t}_{\boldsymbol{u v}}: u v \in \rho_{A}^{-}(C)\right\}, \boldsymbol{R}_{\mathbf{2}}=P_{C}^{D} \cap R$ and $\boldsymbol{A}_{\mathbf{2}}=A(D[C]) \cup\left\{r t_{u v}: r \in R_{2}, u \in\right.$ $\left.U_{r}^{D}, t_{u v} \in T\right\} \cup\left\{t_{u v} v,\left|R_{2}\right| * v t_{u v}: t_{u v} \in T\right\}$.

Lemma 4.2. D_{2} has a spanning arborescence packing $\left\{\boldsymbol{B}_{\boldsymbol{r}}^{\mathbf{2}}\right\}_{r \in R}$.
Proof. We show in the following claim that D_{2} satisfies (3.2).
CLAIM 4.3. $d_{A_{2}}^{-}(X) \geq\left|R_{2}-X\right|$ for all $X \subseteq V_{2} \cup R_{2}$ with $X-R_{2} \neq \emptyset$.
Proof. If $X \cap C=\emptyset$, then $d_{A_{2}}^{-}(X) \geq d_{A_{2}}\left(v, t_{u v}\right)=\left|R_{2}\right| \geq\left|R_{2}-X\right|$ for some $t_{u v} \in X-R_{2}$. If $X \cap C \neq \emptyset$, then, since $D[C]$ is strongly connected, $R_{2}=P_{C}^{D} \cap R=$ $P_{X \cap C}^{D} \cap R$. Let $\boldsymbol{Y}=(V \cup R)-U_{R_{2}-X}^{D}, \boldsymbol{Z}=(X \cap C) \cup Y$ and $\boldsymbol{u} \boldsymbol{v} \in \rho_{A}^{-}(Z)$. Since $\rho_{A}^{-}(Y)=\emptyset, v \in X \cap C$. If $u \in C$, then $u v \in \rho_{A_{2}}^{-}(X)$. If $u \notin C$, then $u \in U_{r}^{D}$ for some $\boldsymbol{r} \in R_{2}-X$ and $t_{u v} \in T$, so $r t_{u v}, t_{u v} v \in A_{2}$. Since $v \in X$ and $r \notin X, r t_{u v}$ or $t_{u v} v \in \rho_{A_{2}}^{-}(X)$. Thus, by (3.3), $d_{A_{2}}^{-}(X) \geq d_{A}^{-}(Z) \geq\left|\left(P_{Z}^{D}-Z\right) \cap R\right|=\left|R_{2}-X\right|$.

By Claim 4.3 and Theorem 3.2, the desired packing exists in D_{2}. This completes the proof of Lemma 4.2.

With the help of the packings $\left\{B_{r}^{1}\right\}_{r \in R}$ in D_{1} and $\left\{B_{r}^{2}\right\}_{r \in R_{2}}$ in D_{2} obtained in Lemmas 4.1 and 4.2, a packing in D can be constructed yielding a contradiction.

Lemma 4.4. D has a reachability arborescence packing.

Proof. For all $r \in R-R_{2}$, let $\boldsymbol{B}_{r}=B_{r}^{1}$ and for all $r \in R_{2}$, let \boldsymbol{B}_{r} be obtained from the union of B_{r}^{1} and $B_{r}^{2}-\left(R_{2} \cup T\right)$ by adding the arc $u v$ for all $t_{u v} v \in A\left(B_{r}^{2}\right)$. Since $\left\{B_{r}^{1}\right\}_{r \in R}$ and $\left\{B_{r}^{2}\right\}_{r \in R_{2}}$ are packings, so is $\left\{B_{r}\right\}_{r \in R}$. For $r \in R-R_{2}, B_{r}=B_{r}^{1}$ is an r-arborescence and it spans $U_{r}^{D_{1}}=U_{r}^{D}$. Let now $r \in R_{2}$. Since B_{r}^{1} and B_{r}^{2} do not contain circuits, neither does B_{r}. Since for all $v \in V\left(B_{r}^{1}\right)-r, d_{A\left(B_{r}^{1}\right)}^{-}(v)=1$, for all $v \in C, d_{A\left(B_{r}^{2}\right)}^{-}(v)=1$ and when $t_{u v} v \in A\left(B_{r}^{2}\right)$ is replaced by $u v \in A\left(B_{r}\right)$ then $u \in U_{r}^{D}$, we have for all $v \in V\left(B_{r}\right)-r, d_{A\left(B_{r}\right)}^{-}(v)=1$. It follows that B_{r} is an r-arborescence. Since B_{r}^{1} spans $U_{r}^{D_{1}}$ and B_{r}^{2} spans $V_{2} \cup r, B_{r}$ spans $U_{r}^{D_{1}} \cup C=U_{r}^{D}$. It follows that $\left\{B_{r}\right\}_{r \in R}$ has the desired properties. This completes the proof of Lemma 4.4.

Lemma 4.4 contradicts the fact that D is a counterexample and hence the proof of Theorem 3.3 is complete.
4.2. Proof of Theorems 3.5 and 3.6. In this section, the generalization to matroids is considered.

We first derive Theorem 3.5 from Theorem 3.4. The strong matroid setting allows for a rather simple proof.

Proof. (of Theorem 3.5) Necessity is evident.
For sufficiency, let $\left(\boldsymbol{D}^{\prime}=\left(\boldsymbol{V} \cup \boldsymbol{R}^{\prime}, \boldsymbol{A}^{\prime}\right), \boldsymbol{\mathcal { M }}^{\prime}=\left(\boldsymbol{R}^{\prime}, \boldsymbol{r}_{\mathcal{M}^{\prime}}\right)\right)$ be the simply matroid-rooted digraph obtained from (D, \mathcal{M}) by replacing every root $r \in R$ by a set \boldsymbol{Q}_{r} of $\left|N_{D}^{+}(r)\right|$ simple roots in the digraph such that $N_{D^{\prime}}^{+}\left(Q_{r}\right)=N_{D}^{+}(r)$ and by $\left|Q_{r}\right|$ parallel copies of r in the matroid.

Now let $\boldsymbol{X}^{\prime} \subseteq V \cup R^{\prime}$ with $X^{\prime} \cap R^{\prime}=\operatorname{span}_{\mathcal{M}^{\prime}}\left(N_{D^{\prime}}^{-}\left(X^{\prime} \cap V\right) \cap R^{\prime}\right)$. Observe that for every $r \in R$, either $Q_{r} \subseteq X^{\prime}$ or $Q_{r} \cap X^{\prime}=\emptyset$. Let $\boldsymbol{X}=\left(X^{\prime} \cap V\right) \cup\left\{r \in R: Q_{r} \subseteq X^{\prime}\right\}$. Observe that $X \cap R=\operatorname{span}_{\mathcal{M}}\left(N_{D}^{-}(X \cap V) \cap R\right)$. Further, we have $d_{A}^{-}(X)=d_{A^{\prime}}^{-}\left(X^{\prime}\right)$, $r_{\mathcal{M}}(R)=r_{\mathcal{M}^{\prime}}\left(R^{\prime}\right)$ and $r_{\mathcal{M}}(X \cap R)=r_{\mathcal{M}^{\prime}}\left(X^{\prime} \cap R^{\prime}\right)$. Then, by (3.5), we obtain $d_{A^{\prime}}^{-}\left(X^{\prime}\right)=d_{A}^{-}(X) \geq r_{\mathcal{M}}(R)-r_{\mathcal{M}}(X \cap R)=r_{\mathcal{M}^{\prime}}\left(R^{\prime}\right)-r_{\mathcal{M}^{\prime}}\left(X^{\prime} \cap R^{\prime}\right)$, that is $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies (3.4). We can now apply Theorem 3.4 to obtain in $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ a matroid-based arborescence packing $\left\{\boldsymbol{B}_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in R^{\prime}}$.

For all $r \in R$, let $\boldsymbol{B}_{\boldsymbol{r}}$ be obtained from $\left\{B_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in Q_{r}}$ by contracting Q_{r} into r. Since $\left\{B_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in R^{\prime}}$ is a packing, so is $\left\{B_{r}\right\}_{r \in R}$. Let $r \in R$. Since $\left\{r^{\prime} \in R^{\prime}: v \in V\left(B_{r^{\prime}}^{\prime}\right)\right\}$ is independent in \mathcal{M}^{\prime} for all $v \in V$ and Q_{r} is a set of parallel elements in $\mathcal{M}^{\prime},\left\{B_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in Q_{r}}$ is a set of vertex-disjoint r^{\prime}-arborescences in D^{\prime} and hence B_{r} is an r-arborescence in D. Moreover, for all $v \in V, r_{\mathcal{M}}\left(\left\{r \in R: v \in V\left(B_{r}\right)\right\}\right)=r_{\mathcal{M}^{\prime}}\left(\left\{r^{\prime} \in R^{\prime}: v \in\right.\right.$ $\left.\left.V\left(B_{r^{\prime}}^{\prime}\right)\right\}\right)=r_{\mathcal{M}^{\prime}}\left(R^{\prime}\right)=r_{\mathcal{M}}(R)$. Thus the packing $\left\{B_{r}\right\}_{r \in R}$ of arborescences has the desired properties.

We are now ready to derive Theorem 3.6 from Theorem 3.5. The role of Theorem 3.5 in the proof is similar to the role of Theorem 3.2 in the proof of Theorem 3.3. While the proof contains similar ideas to the ones in the proof of Theorem 3.3, it is somewhat more technical.

Proof. (of Theorem 3.6) Necessity is evident.
For sufficiency, let $\left(\boldsymbol{D}=(V \cup R, A), \boldsymbol{\mathcal { M }}=\left(R, r_{\mathcal{M}}\right)\right)$ be a minimum counterexample. Obviously $V \neq \emptyset$. Let $C \subseteq V$ be the vertex set of a strongly connected component of D that has no arc leaving. Since each $r \in R$ is a root, C exists.

Let $\boldsymbol{D}_{\mathbf{1}}=\left(\boldsymbol{V}_{\mathbf{1}} \cup R, \boldsymbol{A}_{\mathbf{1}}\right)=D-C$. Note that $\left(D_{1}, \mathcal{M}\right)$ is a matroid-rooted digraph.
LEMMA 4.5. $\left(D_{1}, \mathcal{M}\right)$ contains a matroid-reachability-based arborescence packing $\left\{B_{r}^{1}\right\}_{r \in R}$ and $P_{v}^{D_{1}}=P_{v}^{D}$ for all $v \in V_{1}$.

Proof. By $d_{A}^{+}(C)=0$, we have $d_{A_{1}}^{-}(X)=d_{A}^{-}(X)$ and $P_{X}^{D_{1}}=P_{X}^{D}$ for all $X \subseteq$ $V_{1} \cup R$. Then, since D satisfies (3.6), so does D_{1}. Hence, by the minimality of D and $P_{v}^{D_{1}}=P_{v}^{D}$ for all $v \in V_{1}$, the desired packing exists in D_{1}.

By Lemma $4.5,\left(D_{1}, \mathcal{M}\right)$ has a matroid-reachability-based arborescence packing $\left\{\boldsymbol{B}_{\boldsymbol{r}}^{\mathbf{1}}\right\}_{r \in R}$. We now define a matroid-rooted digraph $\left(D_{2}, \mathcal{M}_{2}\right)$ which depends on the arborescences. Let $\boldsymbol{R}_{\mathbf{2}}=P_{C}^{D} \cap R, \mathcal{M}_{\mathbf{2}}$ the restriction of \mathcal{M} to R_{2} and $\boldsymbol{D}_{\mathbf{2}}=\left(V_{2} \cup\right.$ R_{2}, A_{2}) with $\boldsymbol{V}_{\mathbf{2}}=C \cup T, \boldsymbol{T}=\left\{\right.$ new vertices $\left.\boldsymbol{t}_{\boldsymbol{u v}}: u v \in \rho_{A}^{-}(C)\right\}, \boldsymbol{A}_{\mathbf{2}}=A(D[C]) \cup\left\{r t_{u v}:\right.$ $\left.r \in R_{2}, u \in V\left(B_{r}^{1}\right), t_{u v} \in T\right\} \cup\left\{t_{u v} v, r_{\mathcal{M}_{2}}\left(R_{2}\right) * v t_{u v}: t_{u v} \in T\right\}$.

LEMMA 4.6. $\left(D_{2}, \mathcal{M}_{2}\right)$ has a matroid-based arborescence packing $\left\{B_{r}^{2}\right\}_{r \in R_{2}}$.
Proof. We show in the following claim that $\left(D_{2}, \mathcal{M}_{2}\right)$ satisfies (3.5). Let $\boldsymbol{X} \subseteq$ $V_{2} \cup R_{2}$ with $X \cap R_{2}=\operatorname{span}_{\mathcal{M}_{2}}\left(N_{D_{2}}^{-}(X \cap V) \cap R_{2}\right)$.

CLAIM 4.7. $d_{A_{2}}^{-}(X) \geq r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(X \cap R_{2}\right)$.

Proof. If $X \cap C=\emptyset$, then $d_{A_{2}}^{-}(X) \geq d_{A_{2}}\left(v, t_{u v}\right)=r_{\mathcal{M}_{2}}\left(R_{2}\right) \geq r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}(X \cap$ R_{2}) for some $t_{u v} \in X-R_{2}$. If $X \cap C \neq \emptyset$, then, since $D[C]$ is strongly connected, we have $R_{2}=P_{C}^{D} \cap R=P_{X \cap C}^{D} \cap R$. Let $\boldsymbol{Y}=(V \cup R)-U_{R-X}^{D}$ and $\boldsymbol{Z}=(X \cap C) \cup Y$. Then $P_{Z}^{D} \cap R=R_{2}$ and $Z \cap R=X \cap R_{2}$.

Proposition 4.8. $d_{A_{2}}^{-}(X) \geq d_{A}^{-}(Z)$.
Proof. Let $\boldsymbol{u} \boldsymbol{v} \in \rho_{A}^{-}(Z)$. Since $\rho_{A}^{-}(Y)=\emptyset, v \in X \cap C$. If $u \in C$, then $u v \in \rho_{A_{2}}^{-}(X)$. Otherwise, $u \in U_{\bar{r}}^{D}$ for some $\overline{\boldsymbol{r}} \in R-X$ and $t_{u v} \in T$. Then, by $u v \in A$, we have $\bar{r} \in P_{u}^{D} \cap R \subseteq P_{X \cap C}^{D} \cap R=R_{2}$. Note that $\left\{r \in R: \bar{r} \in V\left(B_{r}^{1}\right)\right\}=\{\bar{r}\}=P_{\bar{r}}^{D}$. If $t_{u v} \in X$, then, since $\left\{r \in R: u \in V\left(B_{r}^{1}\right)\right\}$ is a basis of $P_{u}^{D} \cap R$ in \mathcal{M}, we have

$$
\begin{aligned}
\bar{r} \notin X \cap R_{2} & =\operatorname{span}_{\mathcal{M}_{2}}\left(N_{D_{2}}^{-}\left(X-R_{2}\right) \cap R_{2}\right) \supseteq \operatorname{span}_{\mathcal{M}_{2}}\left(N_{D_{2}}^{-}\left(t_{u v}\right) \cap R_{2}\right) \\
& =\operatorname{span}_{\mathcal{M}_{2}}\left(\left\{r \in R_{2}: u \in V\left(B_{r}^{1}\right)\right\}\right)=\operatorname{span}_{\mathcal{M}}\left(\left\{r \in R: u \in V\left(B_{r}^{1}\right)\right\}\right) \cap R_{2} \\
& \supseteq P_{u}^{D} \cap R_{2} \supseteq\{\bar{r}\},
\end{aligned}
$$

a contradiction. Thus $t_{u v} \notin X$ and so $t_{u v} v \in \rho_{A_{2}}^{-}(X)$.
By Proposition 4.8 and (3.6), we have $d_{A_{2}}^{-}(X) \geq d_{A}^{-}(Z) \geq r_{\mathcal{M}}\left(P_{Z}^{D} \cap R\right)-r_{\mathcal{M}}(Z \cap$ $R)=r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(X \cap R_{2}\right)$ and the proof of Claim 4.7 is complete.

By Claim 4.7 and Theorem 3.5, the desired packing exists in D_{2}. This completes the proof of Lemma 4.6.

By Lemma 4.6, $\left(D_{2}, \mathcal{M}_{2}\right)$ has a matroid-based arborescence packing $\left\{\boldsymbol{B}_{\boldsymbol{r}}^{\mathbf{2}}\right\}_{r \in R_{2}}$. With the help of the packings $\left\{B_{r}^{1}\right\}_{r \in R}$ and $\left\{B_{r}^{2}\right\}_{r \in R_{2}}$, a packing in (D, \mathcal{M}) can be constructed yielding a contradiction.

Lemma 4.9. (D, \mathcal{M}) has a matroid-reachability-based arborescence packing.
Proof. For all $r \in R-R_{2}$, let $\boldsymbol{B}_{\boldsymbol{r}}=B_{r}^{1}$ and for all $r \in R_{2}$, let $\boldsymbol{B}_{\boldsymbol{r}}$ be obtained from the union of B_{r}^{1} and $B_{r}^{2}-\left(R_{2} \cup T\right)$ by adding the arc $u v$ for all $t_{u v} v \in A\left(B_{r}^{2}\right)$. Since $\left\{B_{r}^{1}\right\}_{r \in R}$ and $\left\{B_{r}^{2}\right\}_{r \in R_{2}}$ are packings, so is $\left\{B_{r}\right\}_{r \in R}$. Since B_{r}^{1} and B_{r}^{2} are arborescences, for all $r \in R$ and $v \in V$, we have $d_{A\left(B_{r}\right)}^{-}(v) \leq 1$ and $d_{A\left(B_{r}\right)}^{+}(v) \geq 1$ implies $d_{A\left(B_{r}\right)}^{-}(v)=1$ or $v=r$. It follows that B_{r} is an r-arborescence indeed. For $v \in V-C$, we have $\left\{r \in R: v \in V\left(B_{r}\right)\right\}=\left\{r \in R: v \in V\left(B_{r}^{1}\right)\right\}$ which is a basis of $P_{v}^{D} \cap R$ in \mathcal{M} by Lemma 4.5. For $v \in C$, we have $\left\{r \in R: v \in V\left(B_{r}\right)\right\}=\left\{r \in R_{2}\right.$: $\left.v \in V\left(B_{r}^{2}\right)\right\}$ which is a basis of \mathcal{M}_{2}, so a basis of $R_{2}=P_{v}^{D} \cap R$ in \mathcal{M}. It follows that $\left\{B_{r}\right\}_{r \in R}$ has indeed the desired properties.

Lemma 4.9 contradicts the fact that (D, \mathcal{M}) is a counterexample and hence completes the proof of Theorem 3.6.
4.3. Proof of Theorems 3.10 and 3.11. In an analogous structure as before, we first derive Theorem 3.10 from Theorem 3.7.

Proof. (of Theorem 3.10) Necessity is evident.
For sufficiency, we define a simply matroid-rooted mixed hypergraph $\left(\mathcal{H}^{\prime}=\right.$ $\left.\left(\boldsymbol{V} \cup \boldsymbol{R}^{\prime}, \mathcal{A}^{\prime} \cup \mathcal{E}^{\prime}\right), \mathcal{M}^{\prime}=\left(\boldsymbol{R}^{\prime}, \boldsymbol{r}_{\mathcal{M}^{\prime}}\right)\right)$ obtained from $(\mathcal{H}, \mathcal{M})$ by replacing every root $r \in R$ by a set \boldsymbol{Q}_{r} of $\left|N_{\mathcal{H}}^{+}(r)\right|$ simple roots such that $N_{\mathcal{H}^{\prime}}^{+}\left(Q_{r}\right)=N_{\mathcal{H}}^{+}(r)$ in the mixed hypergraph and by $\left|Q_{r}\right|$ parallel copies of r in the matroid.

Now let $\left\{\mathbf{X}^{i}\right\}_{1}^{\ell}$ be a biset subpartition of V with $w\left(\mathbf{X}^{i}\right)=\operatorname{span}_{\mathcal{M}^{\prime}}\left(\left\{r \in R^{\prime}\right.\right.$: $\left.\left.N_{\mathcal{H}^{\prime}}^{+}(r) \cap X_{I}^{i} \neq \emptyset\right\}\right)$ for $i=1, \ldots, \ell$. Let $i \in\{1, \ldots, \ell\}$. Note that for all $r \in R$, either $Q_{r} \subseteq w\left(\mathrm{X}^{i}\right)$ or $Q_{r} \cap w\left(\mathrm{X}^{i}\right)=\emptyset$. Let $\mathbf{Y}^{i}=\left(X_{I}^{i} \cup\left\{r \in R: Q_{r} \subseteq w\left(\mathrm{X}^{i}\right)\right\}, X_{I}^{i}\right)$. Observe
that $w\left(\mathrm{Y}^{i}\right)=\operatorname{span}_{\mathcal{M}}\left(\left\{r \in R: N_{\mathcal{H}}^{+}(r) \cap X_{I}^{i} \neq \emptyset\right\}\right), d_{\mathcal{A}}^{-}\left(\mathrm{Y}^{i}\right)=d_{\mathcal{A}^{\prime}}^{-}\left(\mathrm{X}^{i}\right), r_{\mathcal{M}}(R)=$ $r_{\mathcal{M}^{\prime}}\left(R^{\prime}\right)$ and $r_{\mathcal{M}}\left(w\left(\mathrm{Y}^{i}\right)\right)=r_{\mathcal{M}^{\prime}}\left(w\left(\mathrm{X}^{i}\right)\right)$. Then, by (3.10), we obtain $e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right) \geq$ $\sum_{i=1}^{\ell}\left(r_{\mathcal{M}}(R)-r_{\mathcal{M}}\left(w\left(\mathrm{Y}^{i}\right)\right)-d_{A}^{-}\left(\mathrm{Y}^{i}\right)\right)=\sum_{i=1}^{\ell}\left(r_{\mathcal{M}^{\prime}}\left(R^{\prime}\right)-r_{\mathcal{M}^{\prime}}\left(w\left(\mathrm{X}^{i}\right)\right)-d_{A^{\prime}}^{-}\left(\mathrm{X}^{i}\right)\right)$, that is $\left(\mathcal{H}^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies (3.7).

We now apply Theorem 3.7 to obtain in $\left(\mathcal{H}^{\prime}, \mathcal{M}^{\prime}\right)$ a matroid-based mixed hyperarborescences packing $\left\{\mathcal{B}_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in R^{\prime}}$ with arborescences $\left\{\boldsymbol{B}_{\boldsymbol{r}^{\prime}}^{\prime}\right\}_{r^{\prime} \in R^{\prime}}$ as trimmings. For all $r \in R$, let $\boldsymbol{B}_{\boldsymbol{r}}$ be obtained from $\left\{B_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in Q_{r}}$ by contracting Q_{r} into r. As in the proof of Theorem 3.5, we can see that $\left\{B_{r}\right\}_{r \in R}$ is a matroid-based arborescence packing. Finally, for all $r \in R$, let \mathcal{B}_{r} be obtained from $\left\{\mathcal{B}_{r^{\prime}}^{\prime}\right\}_{r^{\prime} \in Q_{r}}$ by contracting Q_{r} into r. As B_{r} is a trimming of \mathcal{B}_{r} for all $r \in R,\left\{\mathcal{B}_{r}\right\}_{r \in R}$ is a packing of mixed hyperarborescences with the desired properties.

We are now ready to derive Theorem 3.11 from Theorem 3.10. Again, the proof has certain similarities to the previous ones.

Proof. (of Theorem 3.11) We first prove necessity. Suppose that there exists a matroid-reachability-based mixed hyperarborescence packing $\left\{\mathcal{B}_{r}\right\}_{r \in R}$. By definition, for every $r \in R$, there is an r-arborescence B_{r} that is a trimming of \mathcal{B}_{r} with $\{r \in$ $\left.R: v \in V\left(B_{r}\right)\right\}$ being a basis of $P_{v}^{\mathcal{H}} \cap R$ in \mathcal{M} for all $v \in V$. Let $\left\{\mathbf{X}^{i}\right\}_{1}^{\ell}$ be a biset subpartition of a strongly connected component C of $\mathcal{H}-R$ such that $w\left(\mathrm{X}^{i}\right)=P_{w\left(\mathrm{X}^{i}\right)}^{\mathcal{H}}$ for all $i=1, \ldots, \ell$.

Let $\boldsymbol{i} \in\{1, \ldots, \ell\}, \boldsymbol{R}_{\boldsymbol{i}}=\left\{r \in R-X_{O}^{i}: V\left(B_{r}\right) \cap X_{I}^{i} \neq \emptyset\right\}$ and $\boldsymbol{v} \in X_{I}^{i}$. Then we have

$$
r_{\mathcal{M}}\left(R_{i} \cup\left(X_{O}^{i} \cap R\right)\right) \geq r_{\mathcal{M}}\left(\left\{r \in R: v \in V\left(B_{r}\right)\right\}\right)=r_{\mathcal{M}}\left(P_{v}^{\mathcal{H}} \cap R\right)=r_{\mathcal{M}}\left(P_{C}^{\mathcal{H}} \cap R\right) .
$$

Thus, by the subcardinality and the submodularity of $r_{\mathcal{M}}$, we have

$$
\left|R_{i}\right| \geq r_{\mathcal{M}}\left(R_{i}\right) \geq r_{\mathcal{M}}\left(R_{i} \cup\left(X_{O}^{i} \cap R\right)\right)-r_{\mathcal{M}}\left(X_{O}^{i} \cap R\right) \geq r_{\mathcal{M}}\left(P_{C}^{\mathcal{H}} \cap R\right)-r_{\mathcal{M}}\left(X_{O}^{i} \cap R\right)
$$

Since $w\left(\mathrm{X}^{i}\right)=P_{w\left(\mathrm{X}^{i}\right)}^{\mathcal{H}}$, no dyperedge and no hyperedge enters $w\left(\mathrm{X}^{i}\right)$ in \mathcal{H}. Then, by $v \in X_{I}^{i}$, every B_{r} with $r \in R_{i}$ has an arc that enters X^{i}, that is \mathcal{B}_{r} contains either a dyperedge in \mathcal{A} entering X^{i} or a hyperedge in \mathcal{E} entering X_{I}^{i}. Thus, since $\left\{\mathcal{B}_{r}\right\}_{r \in R}$ is a packing, we have

$$
e_{\mathcal{E}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)+\sum_{i=1}^{\ell} d_{\mathcal{A}}^{-}\left(\mathrm{X}^{i}\right) \geq \sum_{i=1}^{\ell}\left|R_{i}\right| \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}}\left(P_{C}^{\mathcal{H}} \cap R\right)-r_{\mathcal{M}}\left(X_{O}^{i} \cap R\right)\right)
$$

For sufficiency, let $\left(\mathcal{H}=(V \cup R, \mathcal{A} \cup \mathcal{E}), \mathcal{M}=\left(R, r_{\mathcal{M}}\right)\right)$ be a minimum counterexample. Obviously, $V \neq \emptyset$. Let $\boldsymbol{C} \subseteq V$ be the vertex set of a strongly connected component of \mathcal{H} that has no dyperedge and hyperedge leaving. Since each $r \in R$ is a root, C exists.

Let $\mathcal{H}_{\mathbf{1}}=\left(\boldsymbol{V}_{\mathbf{1}} \cup R, \mathcal{A}_{\mathbf{1}} \cup \mathcal{E}_{\mathbf{1}}\right)=\mathcal{H}-C$. Note that $\left(\mathcal{H}_{1}, \mathcal{M}\right)$ is a matroid-rooted mixed hypergraph.

LEMMA 4.10. $\left(\mathcal{H}_{1}, \mathcal{M}\right)$ has a matroid-reachability-based mixed hyperarborescence packing $\left\{\mathcal{B}_{r}^{1}\right\}_{r \in R}$ and $P_{v}^{\mathcal{H}_{1}}=P_{v}^{\mathcal{H}}$ for all $v \in V_{1}$.

Proof. The fact that $d_{\mathcal{A}}^{+}(C)=d_{\mathcal{E}}(C)=0$ implies that for all $X \subseteq V_{1} \cup R$, we have $P_{X}^{\mathcal{H}_{1}}=P_{X}^{\mathcal{H}}$, for every subpartition \mathcal{P} of $V \cup R_{1}$, we have $e_{\mathcal{E}}(\mathcal{P})=e_{\mathcal{E}_{1}}(\mathcal{P})$, and for every biset $\mathrm{X}, d_{\mathcal{A}_{1}}^{-}(\mathrm{X})=d_{\mathcal{A}}^{-}(\mathrm{X})$. Then, since \mathcal{H} satisfies (3.11), so does \mathcal{H}_{1}. Hence, by the minimality of \mathcal{H} and $P_{v}^{\mathcal{H}_{1}}=P_{v}^{\mathcal{H}}$ for all $v \in V_{1}$, the desired packing exists.

By Lemma $4.10,\left(\mathcal{H}_{1}, \mathcal{M}\right)$ has a matroid-reachability-based mixed hyperarborescence packing $\left\{\mathcal{B}_{r}^{1}\right\}_{r \in R}$. By definition, \mathcal{B}_{r}^{1} can be trimmed to an r-arborescence B_{r}^{1}
for all $r \in R$ such that $\left\{r \in R: v \in V\left(B_{r}^{1}\right)\right\}$ is a basis of $P_{v}^{\mathcal{H}_{1}}=P_{v}^{\mathcal{H}}$ in \mathcal{M} for all $v \in V_{1}$. We now define a matroid-rooted mixed hypergraph $\left(\mathcal{H}_{2}, \mathcal{M}_{2}\right)$ which depends on the arborescences $\left\{B_{r}^{1}\right\}_{r \in R}$. Let $\boldsymbol{R}_{\mathbf{2}}=P_{C}^{\mathcal{H}} \cap R, \boldsymbol{\mathcal { M }}_{\mathbf{2}}$ the restriction of \mathcal{M} to R_{2} and let $\mathcal{H}_{\mathbf{2}}=\left(V_{2} \cup R_{2}, \mathcal{A}_{2} \cup \mathcal{E}_{2}\right)$ be obtained from $\mathcal{H}[C]$ by adding a set \boldsymbol{T} of new vertices $\boldsymbol{t}_{\boldsymbol{a}}$ for all $a \in \rho_{\mathcal{\mathcal { A }}}^{-}(C)$ and the vertex set R_{2} and by adding dyperedges \boldsymbol{a}^{\prime} $=\left((\operatorname{tail}(a) \cap C) \cup t_{a}, h e a d(a)\right)$ for all $t_{a} \in T$, the arcs $r t_{a}$ for all $r \in R_{2}, t_{a} \in T$ with $\operatorname{tail}(a) \cap V\left(B_{r}^{1}\right) \neq \emptyset$ and $r_{\mathcal{M}_{2}}\left(R_{2}\right)$ parallel arcs head $(a) t_{a}$ for all $t_{a} \in T$.

LEMMA 4.11. $\left(\mathcal{H}_{2}, \mathcal{M}_{2}\right)$ contains a matroid-based mixed hyperarborescence packing $\left\{\mathcal{B}_{r}^{2}\right\}_{r \in R_{2}}$.

Proof. We show in the following claim that $\left(\mathcal{H}_{2}, \mathcal{M}_{2}\right)$ satisfies (3.10). Let $\left\{\mathbf{X}^{i}\right\}_{1}^{\ell}$ be a biset subpartition of $V_{2}=C \cup T$ with $w\left(\mathrm{X}^{i}\right)=\operatorname{span}_{\mathcal{M}_{2}}\left(\left\{r \in R_{2}: N_{\mathcal{H}_{2}}^{+}(r) \cap X_{I}^{i} \neq\right.\right.$ $\emptyset\}$) for all $i=1, \ldots, \ell$.

CLAIM 4.12. $e_{\mathcal{E}_{2}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(w\left(\mathrm{X}^{i}\right)\right)-d_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)\right)$.
Proof. Suppose that $X_{I}^{i} \cap C \neq \emptyset$ for all $i \in\{1, \ldots, j\}$ and $X_{I}^{i} \cap C=\emptyset$ for all $i \in\{j+1, \ldots, \ell\}$. For $i \in\{j+1, \ldots, \ell\}, d_{\mathcal{A}_{2}}^{-}\left(X^{i}\right) \geq d_{\mathcal{A}_{2}}^{-}\left(\operatorname{head}(a), t_{a}\right) \geq r_{\mathcal{M}_{2}}\left(R_{2}\right)$ for some $t_{a} \in X_{I}^{i}$, thus $0 \geq r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(w\left(\mathrm{X}^{i}\right)\right)-d_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)$.

Let now $\boldsymbol{i} \in\{1, \ldots, j\}$. Since $\mathcal{H}[C]$ is strongly connected, we have $R_{2}=P_{C}^{\mathcal{H}} \cap R=$ $P_{X_{I}^{i} \cap C}^{\mathcal{H}} \cap R$. Let $\boldsymbol{Y}^{\boldsymbol{i}}=(V \cup R)-\left(U_{R-w\left(X^{i}\right)}^{\mathcal{H}} \cup C\right)$ and $\mathbf{Z}^{i}=\left(\left(X_{I}^{i} \cap C\right) \cup Y^{i}, X_{I}^{i} \cap C\right)$. Note that $Z_{I}^{i}=X_{I}^{i} \cap C$ and $Z_{O}^{i} \cap R=Y^{i} \cap R=R-\left(R-w\left(\mathrm{X}^{i}\right)\right)=w\left(\mathrm{X}^{i}\right)$, so $r_{\mathcal{M}}\left(Z_{O}^{i} \cap R\right)=r_{\mathcal{M}_{2}}\left(w\left(\mathrm{X}^{i}\right)\right)$.

Proposition 4.13. $d_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right) \geq d_{\mathcal{A}}^{-}\left(\mathrm{Z}^{i}\right)$.
Proof. Let $\boldsymbol{a} \in \rho_{\overline{\mathcal{A}}}^{-}\left(\mathrm{Z}^{i}\right)$. If $a \notin \rho_{\mathcal{A}}^{-}(C)$, then $a \in \rho_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)$. Otherwise, let \boldsymbol{u} $\in \operatorname{tail}(a)-Z_{O}^{i}-C$. Then $u \in U_{\bar{r}}^{\mathcal{H}}$ for some $\overline{\boldsymbol{r}} \in R-w\left(\mathrm{X}^{i}\right)$ and $t_{a} \in T$. Thus, by $a \in \mathcal{A}$, we have $\bar{r} \in P_{u}^{\mathcal{H}} \cap R \subseteq P_{X_{I}^{i} \cap C}^{\mathcal{H}} \cap R=R_{2}$. Note that $\left\{r \in R: \bar{r} \in V\left(B_{r}^{1}\right)\right\}=\{\bar{r}\}=P_{\bar{r}}^{\mathcal{H}}$. If $t_{a} \in X_{I}^{i}$, then, since $\left\{r \in R: u \in V\left(B_{r}^{1}\right)\right\}$ is a basis of $P_{u}^{\mathcal{H}} \cap R$ in \mathcal{M}, we obtain

$$
\begin{aligned}
\bar{r} \notin w\left(\mathrm{X}^{i}\right) & =\operatorname{span}_{\mathcal{M}_{2}}\left(\left\{r \in R_{2}: N_{\mathcal{H}_{2}}^{+}(r) \cap X_{I}^{i} \neq \emptyset\right\}\right) \\
& \supseteq \operatorname{span}_{\mathcal{M}_{2}}\left(\left\{r \in R_{2}: t_{a} \in N_{\mathcal{H}_{2}}^{+}(r)\right\}\right) \\
& =\operatorname{span}_{\mathcal{M}_{2}}\left(\left\{r \in R_{2}: \operatorname{tail}(a) \cap V\left(B_{r}^{1}\right) \neq \emptyset\right\}\right) \\
& \supseteq \operatorname{span}_{\mathcal{M}}\left(\left\{r \in R: u \in V\left(B_{r}^{1}\right)\right\}\right) \cap R_{2} \\
& \supseteq P_{u}^{\mathcal{H}} \cap R_{2} \supseteq\{\bar{r}\},
\end{aligned}
$$

a contradiction. It follows that $a^{\prime} \in \rho_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)$.
Since $w\left(Z^{i}\right) \cap C=\emptyset,\left\{Z_{I}^{i}\right\}_{1}^{j}$ is a biset subpartition of C. Moreover, no dyperedge and no hyperedge leaves $U_{R-w\left(\mathrm{X}^{i}\right)}^{\mathcal{H}} \cup C$, so $w\left(\mathrm{Z}^{i}\right)=Y^{i}=P_{Y^{i}}^{\mathcal{H}}=P_{w\left(\mathrm{Z}^{i}\right)}^{\mathcal{H}}$. Then, by (3.11) and Proposition 4.13, we have $e_{\mathcal{E}_{2}}\left(\left\{X_{I}^{i}\right\}_{1}^{\ell}\right)=e_{\mathcal{E}_{2}}\left(\left\{X_{I}^{i}\right\}_{1}^{j}\right)=e_{\mathcal{E}}\left(\left\{Z_{I}^{i}\right\}_{1}^{j}\right) \geq$ $\sum_{i=1}^{j}\left(r_{\mathcal{M}}\left(P_{C}^{\mathcal{H}} \cap R\right)-r_{\mathcal{M}}\left(Z_{O}^{i} \cap R\right)-d_{\mathcal{A}}^{-}\left(Z^{i}\right)\right) \geq \sum_{i=1}^{j}\left(r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(w\left(\mathbf{X}^{i}\right)\right)-\right.$ $\left.d_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)\right) \geq \sum_{i=1}^{\ell}\left(r_{\mathcal{M}_{2}}\left(R_{2}\right)-r_{\mathcal{M}_{2}}\left(w\left(\mathrm{X}^{i}\right)\right)-d_{\mathcal{A}_{2}}^{-}\left(\mathrm{X}^{i}\right)\right)$, that completes the proof of Claim 4.12.

By Claim 4.12 and Theorem 3.10, the desired packing exists in \mathcal{H}_{2}.
By Lemma 4.11, $\left(\mathcal{H}_{2}, \mathcal{M}_{2}\right)$ has a matroid-reachability-based mixed hyperarborescence packing $\left\{\boldsymbol{\mathcal { B }}_{\boldsymbol{r}}^{\mathbf{2}}\right\}_{r \in R_{2}}$ with r-arborescences $\left\{\boldsymbol{B}_{\boldsymbol{r}}^{\mathbf{2}}\right\}_{r \in R_{2}}$ as trimmings. With the help of the packings $\left\{\mathcal{B}_{r}^{1}\right\}_{r \in R}$ and $\left\{\mathcal{B}_{r}^{2}\right\}_{r \in R_{2}}$, a packing of $(\mathcal{H}, \mathcal{M})$ can be constructed yielding a contradiction.

Lemma 4.14. $(\mathcal{H}, \mathcal{M})$ has a matroid-reachability-based mixed hyperarborescence packing.

Proof. For $r \in R-R_{2}$, let $\boldsymbol{B}_{r}=B_{r}^{1}$ and for $r \in R_{2}$, let $\boldsymbol{B}_{\boldsymbol{r}}$ be obtained from the union of B_{r}^{1} and $B_{r}^{2}-R_{2}-T$ by adding an arc $u v$ for all $t_{a} v \in \mathcal{A}\left(B_{r}^{2}\right)$ for some $u \in \operatorname{tail}(a) \cap V\left(B_{r}^{1}\right)$. As in the proof of Theorem 3.6, we can see that $\left\{B_{r}\right\}_{r \in R}$ is a packing of arborescences such that the root of B_{r} is r for all $r \in R$ and $\{r \in R: v \in$ $\left.V\left(B_{r}\right)\right\}$ is a basis of $P_{v}^{\mathcal{H}} \cap R$ in \mathcal{M} for all $v \in V$.

Finally, for $r \in R-R_{2}$, let $\mathcal{B}_{r}=\mathcal{B}_{r}^{1}$ and for $r \in R_{2}$, let \mathcal{B}_{r} be obtained from \mathcal{B}_{r}^{1} and $\mathcal{B}_{r}^{2}-R_{2}-T$ by adding the dyperedge $a \in \mathcal{A}$ for all $a^{\prime} \in \mathcal{A}\left(\mathcal{B}_{r}^{2}\right)$. The above argument shows that this is a packing of mixed hyperarborescences in \mathcal{H} (with arborescences $\left\{B_{r}\right\}_{r \in R}$ as trimmings) with the desired properties.

Lemma 4.14 contradicts the fact that $(\mathcal{H}, \mathcal{M})$ is a counterexample and hence the proof of Theorem 3.11 is complete.
5. Algorithmic aspects. This section deals with the algorithmic consequences of our proofs.

For the basic case, we show that our proof of Theorem 3.3 yields a polynomial time algorithm. We acknowledge that so is the original proof in [9]. We first mention that the packings in Theorem 3.2 can be found in polynomial time, following either the proof of Edmonds in [3] or the proof of Frank (Theorem 10.2.1 in [5]). Using this, we can turn our proof of Theorem 3.3 into a polynomial time algorithm for finding the desired packing of arborescences. We first find the arborescences B_{r}^{1} in the smaller instance $D-C$. As the size of D_{2} is polynomial in the size of D, we can apply the algorithm mentioned above to obtain the arborescences B_{r}^{2} in polynomial time. The obtained arborescences can be merged efficiently to obtain the B_{r}.

For the matroidal case, we show that our proof of Theorem 3.6 is algorithmic if an independence oracle for \mathcal{M} is given. We acknowledge that so is the original proof in [10]. We first recall that the packings in Theorem 3.4 can be found in polynomial time as mentioned in [2]. It is easy to see that the proof of Theorem 3.5 yields a polynomial time algorithm if a matroid oracle is given. By similar arguments as before and the fact that an independence oracle for \mathcal{M} yields independence oracles for all matroids considered, we obtain that the proof of Theorem 3.6 can be turned into a polynomial time algorithm if an independence oracle for \mathcal{M} is given.

For the more general case, using the fact that the proof of Theorem 3.7 is algorithmic if a matroid oracle is given ([4]), we obtain that also Theorems 3.10 and 3.11 yield polynomial time algorithms given independence oracles. In particular, the arborescences in Corollary 3.12 can be found in polynomial time.

REFERENCES

[1] K. Bérczi, A. Frank, Variations for Lovász' submodular ideas, in: M. Grötschel, G.O.H. Katona (eds.), Building bridges between mathematics and Computer Science, Bolyai Society, Series: Mathematical Studies, 19, Springer, 137-164, 2008.
[2] O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti, Matroid-based packing of arborescences, SIAM Journal on Disc. Math, 27(1), 567-574, 2013.
[3] J. Edmonds, Edge-disjoint branchings, in: B. Rustin (ed.), Combinatorial Algorithms, Academic Press, New York, 91-96, 1973.
[4] Q. Fortier, Cs. Király, M. Léonard, Z. Szigeti, A. Talon, Old and new results on packing arborescences in directed hypergraphs, Discrete Appl. Math., 242, 26-33, 2018.
[5] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, 2011.
[6] A. Frank, On disjoint trees and arborescences. In Algebraic methods in graph theory, 25, Colloquia Mathematica Soc. J. Bolyai, North-Holland, 59-169, 1978.
[7] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discrete Appl. Math., 131(2), 385-400, 2003.
[8] H. Gao, D. Yang, Packing of maximal independent mixed arborescences, arxiv.org/abs/2003.04062
[9] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-tress in digraphs, Combinatorica, 29(2), 197-214, 2009.
[10] Cs. Király, On maximal independent arborescence packing, SIAM Journal on Disc. Math, 30(4), 2107-2114, 2016.
[11] T. Matsuoka, S. Tanigawa, On reachability mixed arborescence packing, Discrete Optimization, 32, 1-10, 2019

[^0]: *Submitted to the editors 29/06/2020
 ${ }^{\dagger}$ Univ. Grenoble Alpes, Grenoble INP, CNRS, GSCOP (florian.hoersch@grenoble-inp.fr).
 ${ }^{\ddagger}$ Univ. Grenoble Alpes, Grenoble INP, CNRS, GSCOP (zoltan.szigeti@grenoble-inp.fr).

