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COLORING FIE MAXIMAL CLIQUES OF GRADPITS

GABOR BACSOP, SYIVAIN GRAVIERT, ANDIRAS GYARPAST,
MYHRIAM PREISSMANRL, AND ARIRAS SEBO

Abstnct, Iu tiis paper we are concerned with the socalled chigue-calorations of a geaph, that
is, colorntions of e vertices 5o that voe maximal cligue i mosaehvamatic, On ane bad, (U is Konows
2o e NP complete 1o deaide whoether o porfect gaagh iepe-colorable, or whether a triang
weaph is 3cliquecolorable; on the other hand, tha siunple of wprrfect grapl whe
than three colurs wonld ba necessnry, We first exhibit cechtsive methods Lo ol
araphs and Lhen relate the chvammtie munber, tie don i
of i stable se (o U cligue-cliomatic sumbes We show exact bounds and polynomind abgviths
that fined the clique-chrom masber for some elussex of gragdss and prove NP-complotonoss vesatls
Tor same others, trylng to find the bomdary Between the two, For instanes, while it is NP-complete
10 devide whethor o geaph of maxbman degree 3 ligae-colornble, Ky =N griphs witholt an
atkd hole Lurs eut (o he abways 2-clique-colorable by o polyaomial dgorivhie, Finadly, we show thig
Sahmost” aB perfect graphs are 3 chgue-colordbie.

g
maore
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ey words, cligue-coloring hypovgraph

AMSE subject classiientions, 15035, 15(17

DOL. HEFIT/S0800450 H035490%

1. Introduction. A hyperyreph H is a pair (V, £), where ¥ is the set of vertices
of M, and & is a family of nonemply subsels of V' called edges of 9. In this paper
raphs are always wnditected, that s, they are hyporgraphs whore every odge has
two clemoents. A k-coforation of H = (V€ is a nupping ¢: V- {1,2,..., 5} such
that for all e € &, || = 2, there exist w.p € ¢ with e(u) ¥ efn). The chrumatic
mrnber 3 {H) of 7 i the smallest & for which H has o L-colovation. In other words,
a k-colovation of H is u partition P of ¥ info at most & parts sueh that no edge of
cardinality at Jeast 2 is contained in some P ¢ P

As wsual, Ko; (1.7 € M) denoles the complete hipartite graph with classes of
cardinality 7 and §; Ky is the complete graph on n vertices, and €, is a graph on
21 vertices ancd 1 edges forming a cireuit. The graph Ky g is also called & elaw, and
Ky = Oy a tiangle. A hole iy an induced chordless eyele with at least five vertices.
A cobipurtile graph is the comploment of a bipartite graph.

A praph ds ealled W free, whoere s o wlderary fixed graph, if it does pot
contain /i as an inducad subgraph.

In this paper we consider hypergraphs arislng from graphs: for o given graph
@ = (V, E), the chigue-hypergreph of G is defined ns MG = (V.£), where £ ¢
Voo N ois & maximal clique of G). (A set JOC V of verti a alique il ab € B hokls
for all distinet a, b ¢ K, and & is & maximal clique if it is not properly comtained in

*Recaived by the editors August &, 1999; accepted for pablication (in revised form) Junc 23, 2004
published elecrvonically Jamary 6, 2004, Fhis wark was supperted by projects TEMPRA (Réghon
hdne. Alpes) and Balaton (CNIS and Hungarisn Academy of Seicnces).
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Viallet, 38031 Grenoble Codex ), France (Sylvain Graviesd
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36




CGRAVIER, GYARFAN, PRIZIGSMANN, AND SIB0

362 1AL
auyy other cligue) A hypergraph H will he ealled a cligues hyprryraph o e H oy
some graph G defined on U vertices of H.

A kecoloration of H{G) w
chromatic smmiber of H(G) e
confusing 1 use i paralich the sl tenms koeol
of € wheve e{u) 7 o(¥) s rpquired Loy every edge v € . As weual, the maxisan
size of n clique In G denoted by w = w () amd (e maximim sive of a stable sof {8
sen of vertices not cantaising any indueed adpe) by o @ af{GY( {6, We will also
e the shorthand notatiowms ¢ w((3) = Y (HIGY), Bt Al e UG

Note that what we call k-clique-eoloration here is ealled strong L-division Ty
Hodng und MeDiarmid in {7}, The main objective of {145 to find n L-cotoration of the
Ty pergraph of sagimon cligue which leads for most part o problons ol a different
nature from those studied he However, the theorens of [T on strong F-divisions

are related 1o some of owy results, and we witl potnl ont the connections that we have

understeod.

Before explaining some conuections be
graphs, lot s show some essential differences conceming conubinal
well as problem conplexity.

1. A basic property of graph coloyr
arations of all the subggraphs of the caloy
notions of “oritical graphs” and s extensively wsed in o
On the conbrary, & cligpie-coloration of @ does not necessati
of the subgraphs of & aceordingly, the Aigue-chromatio
smabler for induced subgraphs.

For example, if G s {onemply) graph and &7
vertex of full degree, then N ERORN while (G} = 2.

However, & E-clique-coloralion of & graph can he defined with the Jecolovation
of # subgraph. Yhis subgraph is not indnced by a setoof verticas, bt avises by
deleting edges and versices of the graph {soe aftor 3 Lelow), Unforlunzaiely & proped
way of doing ¢his depends on the cligue-colarntion iself: deleting or contracting
monodwomatic edges i a chgue colaration does Jead Lo properly calered graphs.

9. The hereditary property of colorations invaives advanlageons algorithimie b
one can color the vertices successively by piving to eath new voertex
a color different from those already assigned 1o its neighbors (s ean he defined
for the ovder in which the vertices are cotoved and for the chaiee of the colov). All
vertex-colorations, nchuding the optimal ones, can arise in thiy way.

A simipie but very nseful modification of this sequentint coloring procedure B
Lo combine jt with shichromatie exchanges” {sec, for exampit, {13)). Such nataral
procecdures do ok show up for the clique-coloring aumber even il some sequential
procedures will produce some resules in what follows

3. Some of the mest basic problens that ave complete
jiractable for elicue-colorin, the prollem of deciding wiothor a hyporgraph given
Imits o Z-coloration is lawown to be NP-complete [13], even for cliepie-
Ty pergrapls {10l Furthermere, just to cheek whetlier a given sot is a colov chiss i
some dligne-coloration is NP-hard; soe section 2.

Clearly, any k-colovation of G is & kedigue-coloration. whenee # S X- Typically
& i much smailer thay X However, a graph G has @ fe-cligne-colomation if nd only

if it has o subgraph H such that.

it oalse b called A Fe-eligue-caloralion of €, at the

eligue-chromalic sanber of (. We hope (6w 1 not be
rafion and chromatic niaader ¥{G)

wween colorations and cligue-eolorations of

orinl properlics as

v also provide proper ol

ations s that the
(o define vious

ed graph. This allows og
loving algovithms and provfs.
by induce ¢f ique-coloyations
numboer i5 vok neeessarily

is oltained from G by adding a

havior as well:

ly erivial for coloring beeoma

explicitly ad

sof €7, Conversely, the adg
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o Jor euery unichnal clique Koof G, (YO 2 b
o M has o kecoloration.

Indeed, & k-colovation of 1 can be wbitrarily
s whose two endpoints have different colovs inoa b

extonded 1o n beligue-coloration
gl

coloration of €7 define 2 with the claimed propertios,

i G s triangle-Tree, then of cowrse w{€) = x{0). Since the clromatic number
of triangie-free graphs s known 1o b unbornded [LTE wa ettt the same Is Lre
for Uie cligue-clivomatic mimber., Lt us vecal) Tor further use Mycieiski's trizngle-free
praphs with wthowded chromatic manboes ’ T

Gy consists of two adjacent vertices.
. For any k > 2, the graph Oy = (Ve i) Bs defined by thie followiny:
SV = Vi S {agd, where Viey = tve. oo foond Sposs
Snges 11
- the subgraph induce
indueed by Sy is astable sety
. Where exists an edge spv; i and onky i Lhere oxists an odpge vy,
4 15 adjacent to alb vortices in Sy and 1o 1o other vertes,

1L is casy Lo show by indhetion that Gy 3s trinngle-free and (G = I for all
F oz 2 It is also casy to chack that (G {e}) = b — 1 for overy ate ¢ of ().
ine-graphs of very

[T

ol by Wiy b dsomorphic (o Gyt the subgraph

The clique-chromatic nwnber is wnhounded already for the |
])m‘Li(:uim graphs. Iudeed, fon the existence of Ram;:o.y pumbors we get that for
m:y fixed _k rere axists N € M oso that for all % 2 Ny, every k-cdge-coloration of
1.‘” containg a ;}10)10?,0101'(:(1 triangle. A Wiangle of I, is o maxinal dique in the
Tine-graph Ly of 1. Therelove wlba) 2k 1ifn e Ne

However, in {4} {reporied also in [8]), the Tollowing guestion 15 asked.

Question 1. Docs there exist some constant £ so that 1 is abways possible (o C-
cotor the chique-lypergraph H(G) of a perfect graph o l

30(&1\11 that a graph is perfect if, for every induced sabgraph &7, ¥{G) = w(
that is, the chromatic number of & is equal Lo ity masium cligue sise,

Paflus ot al. (4] observe that the answer to Question 1 is positive for Lwo subclasses
of perfact graphs: the chgne-chromatic snmber of comparability graphs is at most 2
and that of cocomparability graphs is al most 3 by nvoesull of it)ui)l‘us, Kiersiead em(i
Trotter (3] 1 this paper we show that the answer 1o Question 1 1s yes ih some (!Ji.laur
cases, and again with &= 2 o ¢ = 3. We do not have any ex;\;np‘.u ol a perfect
graph, and not even of an odd-hole-free graph, with dlique-chromatic number greater
tlran 3. ’

et us finally introduce some more nob
use the notation N{U} = {v & V : v¢U, and there axists u € U such that ww €
By, N = N UL Tnstead of {w} we will often write 2. “The border B(U)
of U 5s N(U)yu NV A L) that s, B s Ui sob of verticos of U or VAU that
has & neighber in VAU or U, yespectively. () = B{V U We will say that
w & U is a border-guard of U 3 Ny 2 BU) Borders and border-guards wilt b
nsc!'ui for cligue-colorations because of the simple fact. that any Q € E(’.";’(G‘}) is eillml.'
entively comtained in I, in V VUL or in B{U) i the lﬂl‘iﬁ(il‘“t:ﬂs(: @ contains all the

horder-guards of .

Given IV € V and v € U 1t ig casy Lo test whether w i 1 border-guard of U, This s

L is not as casy fo exhibit a Arepsonable” clique-coloration
aln dilliculty is that it js NP-hard alreacdy 1o cheek whether

ation and tevminology. Yor U ¢V we will

to be appreciated, becans
as it iz a coloration; the m
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A given mapping is a elkue-colorntion! he menlioned propertios of borderpuards
are holplul for achieving Uiese dasks whenever porder-phards exist,

In section 2, we analyze wartous aspects of the complexity of cliue-coloring. Iu
seetion 3, we show some simpke hut general (greedy) ethods 1o chigue-eolor praphs,
n section 4, we exinbit connections hetween wL 0 nadd other Parameters of the graph
¢, In seetion b, we prove Lt some classes of aﬁqm‘»l1_\'])0\'{;,1’;\1}1!‘ ¢ 2- or 3-coloratia.
Fiually, in seetion 6, we show that alnust all perfoct graphs ave 3 cligue-cokorable.

2. The complexity of cligue-cotoring. fu this seetion, we stady several s
pects of the complexily of cligne-coloring.

t s already coNP-eomplete o check whethur a given function ¢ defined on the
vertices of o graph bs a clicue-coloration. More precisely, the faltowing problom i
shown to be NP-compleie.

MAXIMAL CLIQUE CONTARMENT,

NP Graph G (VY and T V.

QUESTION: s there a i digue ) of G snch hat G FY

Thercfore deciding whether L-chiue-coloration exisls is not clearly in NP onoy

clenvly in coNT.

TrREOREM 1. MAXIMAL CLIQUE CONTAINMENT 8 Ni-gomplete and PRGNS
NP-complete if the complement of the input graph G 1s restricted to bu Ky a-frec

Proaf. "The 310 {ihat s, Uhreo-dimensional matehing; see {5} can be vory
simply redueed 10 (his problem (# similar proof of i3] can be shovtent for this simpler
siteation): let (X 2 TY he an nstance of 3-DM; that is, XY Z are finite sels,
Y] = ¥ = [2) and TG X UY U # s that lor ol T e 7,100 Xl= oY=
TN Zf=1 Lot &= Tully)pe¥)

We let G be the intessection graph of the hypoergraph (X4 ¥ U £, E), that s,
the vertex-set of G is £, and we join twa vertices i they interseet. The following
slatoments can be casily checked: o contpins a maximal stabte sut of G il and ouly
i€ e 3-DM problem has @ solntion, that is, if the family 7 contains a partition of
X UYL Z;singe the cardinality of every set in £ i at most Urvee, G s Iy 4-lree.

Tl the 3-DM problem for (XY, 2,T) s veduced to the existence of a maxiniad
lique of & contained in 7, where G is Fya-free. o]

1f the maximal cliques of 8 wraph are given, it e of course b checked in poly-
nomial tme if a coloration is o clique-coloration. S, for general algorithmic consid-
crations it ks reasonable (o consider the prablam in & sotting wheye H{G) is given #8

part of the input.

VWe will in fact consider the following scemingly move general problem.

k-CLIGUIR-COLORING.

INPUT: A family M of maximal cliques of G, amd ke I

QUESTION: Can H be k-coloved?

The protiem of coloring H s uot yeally more geneval than that of colarimg H{G)-
Indeed, adding 1o G a vertex vy for avery clique K € HLGYVH, and joining v cxactly
to the vertices of K, we obuait a graph &7 with e property that 3 s f-colorable 3
and only il H{C'} is k-colorable k=2

This docs not mean that 2 avises as Lhe Typergraph of alt the maxtmal cligues
of some graph: let G be the graph consisling of a cirenit on § vertices and 3 chotds
n then H{GIN T} does not arise as the sei of all maximal cibepnes

forming a triangle
of a graph.

COLORING THE MAXIMAL GLIQUES OF LIRAPHS 365

Nutiee ;{l:;nm thak the problem of coloring cligpu-hypongraphs s mone restrietive
than Wt of gencral hypergraph coloring the lypergeaph 10,2}, {2 31, 43,0 docs
. . ; Tebv )

HOL AYEEe a8 A ('11(|ur_!-Iiyp::rg:ruph.

] Since tie computation of the chromatic punher is NP-DBard for triangle free griaphs
_ Since the comput. ‘ i wireo graphs
f12} a.l. i also Ni-hard Lo compute the cligue-chromatic snder of tinngle free graphs,
even i all e cliquos are given explicitly as part of the upal. .

Cuitte general elasses of hypergraphs can be Zeolored. Using the Loviss local
!c.:mnm\ i\‘{(‘,l)ifll‘!l'ﬁi(l 118] proves that all hypergraphs whese hyperedges are “large”
{in i wall-defined sense), as comparad o the degrees, ave 2-colornble.  Ahnost ‘ull
perfeet graphs arg Seeligne-colornbie {see seation 63, bt deciding if a prefect raph of
maximmn chique-size four is 2-cligue-colovable is alrendy NI complete, by l(]‘?{lm‘h\'il
and Tuza [10]. On the ather hand, Mohar and Skyekovski [16] hu.\'(‘- shawn Chat
every planar graph is Sclique-colarable, and Kratochvil awct Thza [$0) proposed
polyuomial algoritinn Lo decide if a planar graph s Z-cligue-colbrable {the ‘-_G('lL of
cliques 3s given in the inpul}. . o

The fullowing residt s inspired by the methods of {10}

) PREOREN 2. 2-elique coloring is NP-complete even if the upal graph G 15 16
stricted Lo be of masinem degree 3. )

2y L. = v N . b HH J

I 1(3::_[. W nse the nat-sli-cqual satisfiability preblem {NAI-SATY, which ks known
to be NP-eomplote {21},

NAL-SAT,

NPT A sol N : : ol

INPUT: A set X of Boolean variables and a collection £ of clnses [set of literals
aver [), cach clase containing three different literals.

QUESTION: Js there p fruth assignment for X such that every chnse containg
at least one bme and al least one false literal?

Giiven i instance F of NAE-SAT, wo build a graph G as lollows.

To ll)l:.(iliills<:s we associate vertex disjoint Wriangles; each vertex correspoids to
ane of the literals of the dlause. For each variable w, vertex disjoint. paths P, ave added
to the grnp}h us f()l!()\\'ss. Tl Cyy ey O e the clanses in which @ or its negation ocenr,
l—lll_ﬁ‘ path P is l_luimcd with Verlioes vy, ... ey, (in this order). The path Py ond the
triangles ave joined with the following rule: i € contains = {resp., @), we aded the
edpe from the vertex of the Lriangle yepresenting © 10 Tag, {resp., to e ). This
f‘.ousl‘mcl,um i clearly polynomial in the size of F, and it 3 ehsy 10 vorify -t:I‘\Iu!. G{F)
is Z-dl(}m:-cui(u‘nhle if and only il F is not-all-equal salisfiable. Furthunn‘m'u. G(F)is
of nuximum degree 3, [} o .

_B(:(:nusu of the natare of the clique-coloring problem, the NP-campleteness of the
2—‘(:h<|uc-::ol(.)rmp, problem does not immediately imply the NP-completencss of the ke
eligue-coloring jroblem {for any finet & = 2). Novertheless it is Lrue; here is n simple
reduction. ’ )

CoROLLARY 3. For any fieed k0203, the k-cligue-coluving problem s NP-
complele. ’

Proof. Let G be an instance ¢ i i

ol L o of the h-clique-coloring problo :
the (k4 2)-chromatic Mycielski gu & e o ])lﬂh?‘;”?- A
4 : atic Mycielshi graph Graa. Roemove an edge incidenl 10 ppz {wWe

wie the notation given i the introduction), and veplace whq2 by [V{G)] copies of
ar ARELTH g 9 e H i ; . ‘
apen. Pairing these copies of ayag with the vertices of G, we oblain a new graph G

Ol!. wrve now Liat m‘mly (% -+ 1)-coloration of C, all copies of w2 bave the same
color. Hence & (& + D-clique-coloration of &' yields a -cligne-caloration of G, which
completes the reduction. s} ' ‘
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3. How to clique-color a graph? Juis nat dillicult Lo provide r'liq!u'-(:ulna'nlin.n
of o gl just color every verkes with n Qitferent colov; a solorakion of |.i}t! ,;m‘uh i
also a proper clique-coloration, oie, Henwever, the eligque-chvomatic b s ypleatly
much smatter than the chromatic aumber. For instance, {or perfact. graphs the chro-
Jatie nunler is woand the cliquuvcin‘nmal.ic mnnber is Con_ic'(:l.m‘(t-:i Lo be nconstant,
nmayhe 3

W peed heuristics that may provide better estimates e the elromatic mimber.
Besides the difficulty of coloring with 1 small masber of colors, it is also difhicnlt Lo
yealize thnt noprocedire is good, since by Theorem 1 we cannot even chael whether a
partition of the vertice a eligue-coloration.

Powever, certain constrnetions inherently guarauics that 1he resull is & |)i'ﬂ.})ul'
coloration, and at the sime dine the mumber of occurring cotors can he bounded i a
helplul way. We present in this section three such feameworks, These are memst o l')c
sed miore as [rameworks thin algoritinms: i the rentizations quenes cian e troken in
various ways, and ihis arisiug freedom will be exploiled in e particular procedures

we will present laler. ]

A l11'.'11’,]11)l)l‘]!(.‘r()(i-‘(:ci()l‘}\l.i()ll is any dique-coloration obtained by thie following
greedy (ramowork.

NRIGHPICRIOON COLORING,

INPUT: Graph G = (V, ) andd MG HIGT

0. n each fteration, the algorithm wpdates thie st 22 of “eonsiderc
the set L of Heolored” vertices, 72 ¢ L Initislly sl 1, Lo g

While not all the veriices are colored do the Jollowing:

1. Choose = € ¥\ 12, and consider v.

9. W Ly then assign (o v 2 color which thoes not oceur i Ny Lo LU {e}.

3. Lel ¢ be a color different from all colors orewyring mnong the neiphbars of
vortices in N(w)\ L. Assign to ail vertices in N{e)\ & the color ¢

4. Update: 17 = DU {v}, Lo LU N{v) .

Limgaia 1. The coloration found by the algovithm is a cligue-coloration of G.

Jtemark. At cach iteration the sot of considered vertiess dominates the set of
cetorad vertices, so that the set 17 obtained at the end of the alpgoriting is & dominating
wot of G: that is, N{D} = V.

The ovder in which the vortices are considered, or the free choices for the colors,
for color ¢, will be replaced by particular rules inonore specific coloring

= vertices and

{or instane
proceduyes. )

The next lemma shows that if o graph admits a cerfain partition of the vertices,
then it is k-elique-colorable. A clique-coloration obtained by the way deseribed in the
pracd of Lemma 2 will be called & partition coloration.

Lisima 2. Lot G o= (V, 5} be graph and k €, k2 2.

If G admils « partition {V,,...,\f,,} of ¥V such that

- GV 18 ique- colorable, ead Vi lius @ border-guard in G (= 1,0 8 (e
SOV b)) does not contain o maximal chigue of G
. the graph H obtained by identifying the vertices of vach Vi (denole the new
pertices by w15 o p) has x(HY £k
then G i3 ke-cligue-colorable.

Proof of Lemma 2. Consider a k-coloration oy : V{HY = {x... .*,m-,,} -
£1,....k) of 1 and alse a E-clique-coloration ¢; @ V5 -~ {1, k) of GV (1 =

COLORNG THE MAXIMAL CLHIUES OF GRAPIS 367

By asmnuption Vi has o border-guard v in G {f = 10 r). We e suppose
st el = () {(otherwise we interchange two colors in thie eotoration of (VL
Farthernore, for © = v 4 1, pwe define g(n) = e} for all ¢ Vi Defing for
v VG efw) = 0] v 6 V.

Now let € be o maximal elique of G W @ s contained in some ¥, then by the
assumplion 7 e and a(q) = e} for all g € 3. Therefore, st least two colors ocewr
in . 1 Q is not contained I some ¥, then say Q@Y £ G4 QNY; Lot w ¢ QO
vy 6 QTV) bean arbitrary vertex in @ OVV; (resp, Q@0 Viy for 1 2 v {resp.,
i 7).

Clearly, v, 1 € Q. Sinee o{w) = oy (a3} o cplry) = ofwg) bhecause of
J5(1), two diffarent colors do oceur in Q. M

A hird simple but useful method s presented in the following lemma, A pair
fd, 12} is ealled a dominating pair if de v, Do Nd), and any masimal cligee 1 of
& containing d satisfies K 00D o 4, The {ollowing lomma shows that such a pair can
e usefn! for our coloving praleny,

Lisnthia 3 (dominating pair lanma). Let (d, 1) e o dowidnating Sair, und fet &
be @ nonncgative inbeger with Y| < ko I H(G - d) 35 F-colorable, ten so is 1H{G).

Proof. Let e be a fk-coloration of H{G--d}. Since k= D], there exists n color 7 that
doos not ocewr in £ Let ¢ 1 ¥ - {3,900 k), with <) = e{u) forall v ¢ G- d
and ) = & Since ¢ is a k-colovation of MG - dY, it is sufficient to cheek thal
any maximal dligue K which contains d s not monocolored by €. By definition of
& dominating pair, there exists n vertex v € K0 /3. By the choice of 4, we have
AHel) = 1 # elu} = ¢(u). Thus ¢ is a k-coloration of {7, o]

Lot & be n graph with the property thal every induced subgrapl containg a verfex
« whose neighborhood hias at wost & comnected components, cach of which is 2 cligue.
A direet consequence of the dominating par Yenuma is that O s k4 1-clique-colorable,

4. Twough general bounds. Iu this section we estitrle the cigue-chromatic
yumber with some other graph parameters.

Recall that a domingting set 12 is # subsel of ¥ such that NIDj = V. The
domination number v0G) of a graph G §s the smallest cardinality af such a set. Note
that 4{G) 1s always smaller than or caual Lo the stability wnbey o).

We assune G to be connected, leaving to the reader the frivial extension of the
following theorem (o graphs with several connected conmponents.

TuporeM 3. I G = (V, E) is o connected graph, then s(GY 5 HGY 41, and
w{GY = H{G) i 1, then every dominating st D of ainémaon size is o stable sel, and
me of the following holds:

- D] < alG),
- 17 is @ scl of two nonadjacent vertices of = s,
D= and G W, n 2 2

Praof of Theorem 3. Let 2 == {an,...
UL I there exists a,b ¢ D, abe E

@} be a dominating set of G, and 7=
, suppose &g = b, Apply a noighborhood
coloring with the following specifications: the order of considering the vertices is
Ty s the iU iteration (2 1, ... k), if @ Bs not yeb colored, color it with
color 1; morcover, fori=1,... k-1, color the not yet coloved vertices of N {20} with
color 1+ 15 if elar) o 1, thon color N{a}\ U;‘I;lﬁj\’ia:jk with ¢olor 1, otherwise with
color k -+ 1. Tt can be checked immediately that the defined colors are allowed, and
(he number of colovs s k4 1 only if [ is a stable set. More exactly, we have the
follewing claims.
Chagm 1. IF w{G) = &k + 1, then D is a maximal stable set of minbmum size.

<
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Tudead, il thare exists o maxinal stabla set 13 of snnller size 1 1 [12] < ke, Uhen
i i also n dominating sei. Henee w(GY S K4 14 byas required,

Assume now that k= oG,

Claim 2. 1 5(G) = f 1, k= oG) S 2, then cithey o Gy, o0 G K 2 2

Indeed, il & = a = 1, then & = I, Lol now ke 2 We prove by induction
on the mmber of vertices that #{G} = 2, unless &

Let @ and b be twe nonadjacent vertices; then beeawse of o < 3, Nlabu Nb} =
V().

11 wer can 2-clique-color the subgraph Moy indunced by N{a)NN(B), then we exlond
his coloration to all & defing efv) r= 1 v & {«] UN(D) A\ M), and efw) s 20F
e (MUNRA\ND). HQisa mximal chigque of O and, say, o{g) = 1 for all ¢ & 2,
Lhen all vertices of Q@ \ o are adjacent 1o b, Sinee ofb) = 2 it follows that o & @ . But
then @ Y a is a maximal cligue of Ny, and, since ¢ is a 2ecligue-coloration of Moo,
O\ ais a single vertex, w10 {b, v} is not a maximal clique, ther by giving color 2 to
@ we gol 8 2-cique-coloration of G Tise » it adjacent only to @ and & ek 50, since
a == 2, VO {a b v} is a cligue, Woe may assune that N .{n} i empty z\.ml thait
MY\ N () and N(DY\ N (a) are nopeinpty, since, else, there exists n dominating edye
i € and hence, by Claim 1, a 2-cligue-coloration of ¢, I case ¢ or b has at lewst
Lwa neighbors distinet from v, then let w be one of those, give color 1 to a, b: and w,
and give color 2 1o all the other vertices: Uhis a 2-clique-coloration of (. The only
remaining ease is when [N{a)\ N(b) N\ N{a)] = 1; then G = O

We now asstime that Ny has no 2-cligue-coloration. Thus by induction hypothe-
sis, at lenst one conpected component of Wy induces o Cn. Singe o= 2, we have Ny, =
Cs. Label uy,..., s its vertices in the eyelic ovder. If N{a}\ N} = NN (e} = o,
then & is 2-cligue-colorable; el fix a versex v iv, say, N{a}\ N(B). Since (G} = 2,
v 15 adjacent oither (o vy oF 10, 52y My andd v s adjacent either Lo vy oF {0 U, SAY
wg. Now give color 1 to a, th, Vg, B and all the vertices iy N(#) \ N{a), and give
color 2 10 all the other vertices: this a 2-clique-eoloration of G\

The claim is now proved.

To finish the proof of Theorem 3, suppase that k> 3 and thal I is a stable set
of cavdinality k = o(G). In the above constructed neighborhood coloring, et By
Bpor, T be the three palvwise nonadiagent vertices colored tast. The neighborhood
coloring assigns colors e{@r.g) = efagaa ) = ol = Land now colovs ki~ 1, &, k1
10 the set of thelr not-yet-colored neighbors.

Claim 3. The groph induced by vertioes of color & — 1, &, k-t 1 and 2pa, Fe-n
2p can be 3-clique-colored.

The elaim Gnighes the proofl of the thooram. Indeed, choose the three colors 1o
bel k-1, and kto gel a k-clique-coloration of G. (‘The cotors k— 1 and & do nol
oeeny previously, and all previously colared vertices of color 1 ave nonadjacent to the
vertices that are present in (he claim.}

To prove Claim 3, we e suppose k= 3; then the notation is simplifiad, and we
only have o prove x{G) £ 3.

If G~ Nfvj is not a Cp for some & V{6, then by Claim 2t can be coloved with
colors 1 and 2; completing this coloration with o) = 1 and ofz) =3 il w € N,
the statenent is proved.

Supposa now that &~ Niof is a Gy for all w € V{G). Then @ is n — G-regniar.
1{ there is 1o triangle in (7, then N{) is a stable ser for all v € V{G), and therefore
1~ 6 < 3. The cquality holds here, because if G is 2-vegular, then G — Nl cannot
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bo i Gy for all o ¢ VG) B i the equality holds, when the wnnber of edpes with
exaetly one endpoint in Mo} i, on ane hand, 2[A(0)] 5= 6 oud, on the other haud | 8
(Becanse there is exactly one such adge for every vertex of G - Nisi).

Sa (4 has o triangle. Let ob ¢ B(G) be one of its edges, 11 {a, B} is o dominating
sel, tha we ean 2chique-cotor ¢ by Clin 1. Let us suppose that w is adjacent neither
to o nor to b Since & - Mol is a € containing the edgo ab, where ab s contain HURTH
a triangle of €, the following coleration is correcis ofu) s efa) v o{b) = 1, o) 5= 2
il @ N(o), o the renaining (rce vertiees forming a path in the Oy can be colored
31,0 §]

Remark that for any intoger kb, a path [ on 30 vertices has o dowduating nunber
cqual Lok and w{Py) = 2

O the other hand, Mycielski’s praphs provide any infinite cass of trinngle-free
wraphs G for which w(G} = (G4) = W{Gr) 4 3= & (for & 2 4 the fisst ease of the
theorem holds, for & = 3 the second, and for & = 2 the third), Let Dy = {u}, where
v is cither vertex of Gy, and define Dy = D 08 {an} (we bse the notation given in
the Introdnetion). By construction, 1, is n dominating sel of Gy and (3] = & - 1.
By the eorens, and since <{G) G = Ly we e that p{Ge) = b — 1, and it
follows Whal. Dy s o maxima) stable set of minhnun size (and not naxinun as sooh
an k 24}, .

COROLLARY 2. For any paplt G # Oy with o(G) 2 2, we hvwe #{G) <
a{ (. 0

This first corolinry sharpens Theorem 2 in |7 Indeed, it is stated there that
£(€) € o GY - 1 and the strict inequality hotds for Cg-Tree noncomnplete graphs,

COROLLARY 3. Fur any graph & of ovder a, we have 5(G) < 2[v7 1.

Proof. Let 2= {i, . m} beasubset of & vertices with the following properti

- )i 2 A,
W) o W Nyl 2 VR ford = 2,00k
any vertex ¥ € V(G satishes |V (o) ~ N[DH < /.

Note that 1 can be emphy. Singe 12 is a dominating set of N{Dj, ane 14 < /1,
Iy Theoren 3, we can cigue-color the subgraph indneed by NID] with {7 ] colors,
say {1,.... Vi 1}

Oun the other hand, in the subgraph induced by ¥V \ N3 the degree of every
vortex is sirietly snratler than 7, so we can color this subgraph with [/ 1 coloms,
sy {7 1 1,00 2003 11 by o sequential algovichm. This coloration is « elique-
coloration Loo. i

This bound s not best possible: Kotlov [0] proved that sl £ [vEr]. We do
not even know whether the maxinmum of Lie cligue-chramatic number for graphs on
2 vertices divided by v is a constant or tends o 0. ]

Tueoresm 4. Lt G = (V B} e o graph and g be an dnteger, ¢ > 1. Then the
Iypergraph M, o= (K e HIGY (K 2 g} @ [%lg;l}-r:ofombl(:.

Progf. Let k= (G g = 1)) Lol S1, ..., Sy he the color ¢
colovakion of & ¥ori = 1,..., k. we consider the union of ¢ - 1 colo
U;(:-f.(.i)n{f,ux),{-: 8 iff=1,. - 1, adl G = } ((’s)__,)(q__])_i_l 8.
Thus, the coloration e, defined by

s of o x[G)-

e Oy ==

e} = i o € O, s & A-colaration of #,.
COROLLARY 4. [f G is an wrbibrary graph, then (s — D{&-1) < 2min{y. i}~ 2.
Proof. Lot k be the size of a smallest maximal stabie set of G. Since a maximal

srable set of & is a dominating set of &, by Theorem 3, we have that #{G) -2 £ k-1,
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By the dhoice of k, we have Uhat any maximad clique of €7 has size at lenst k 1§
&3 1, by Theotem 4, we obl i (G} -1 5 . Muhtiplying the Lwa inecuntitios,
wo obtain o~ D -1 5 8- 1

Ik =1, then K =

2 ang Wivially (k- 2E-N < -1

T both cases we get (K~ TH{# -~ Negs k222X - 1} B

Applying this again after interehanging the rele of o and G, we get the
claim. 0

"Chis Hownd ean be sharpened undder various asstnplions. For instance, if & o &
are close Lo x or ¥, Nl for Myciclski graphs {see wection 1), if 5 = x, then & 5 3.
(In fuct, fov Myeiclski praphs the statement “k = 2 except for ¢ O, is easy Lo
prove divectly.) "The bound can also be refined using other paramet as Kotlov {9
woticed, {x— 1}E -1} = - ik

5. Claw-free and perfect graphs, In this section we study #{G) and R{G)
when s a claw-free or 2 porfect graph or both,

I G s a perfect graph, then we have RO & Gy = w(G). Applying also
Corollary 2, if € Is not a complete geaph, then we have sGY £ ymin{a(G), (G
(This is bettor than e bound of Corellary 4 enly if & = 2.} Moreover, when Gis
perfect, aG) and W{G} can be computed in polynomial time 6.

Furlhesmore, it seems that in porfoct graphs not only the maxhmun cliques hut,
also the maximal cliques behave well from the viewpoint of cligue-colorations. A
consaruence contd be that there exists & constant & suelt that. M(G) is C-colorable
for a perfect graph & Ahat is, Question 1 hay a positive answer. We prove thal suah
a £ exists for some clagses of perfect grapis.

Fer example, the hypergraph of maximal cligues of a strongly perfect graph G
(defined by the property that. every induced subgraph of G contains a stable set
intersecting el maximal cliques) is obviously 2.colovable: indeod, color a stable set
intersecting all maximal digues of ¢ with one color and the rest of the vortices with
another color.

Note that r{G) can be greater than 2, even for a perfect graph G (sex Figure 513

| —
| S—

Y. 5.1, The cligue-hypemroph of this perfost graph is clearly et Z.coloveble since it conlains
cdges of Co as fyperedges,

We saw in the introduction that the clique-chromatic nummber of claw-free graphs
or even of ling-graphs s not bownded, The following theorem shervy thiat triangles are
the only sourer of diffienity.
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W dlo 1ot kow the complexity of clique-coloriug line-praphs of grapls optimaily.
Observe tiat in the s of Hine-graphs, it i casy Lo cheek whother ngiven colorntion
i correct siiee all maxiwal eligues of  linegraph L(G) are cither sts or wriangles
of €, and therefore the mumbhar of il chiques is small (honnded by » polynomial
of the number of vertiees).

A multigraph is a graph thal may contain an arbitrmy namber of paralle] edpes.

TasorEM G, Let G be a mulligraph, H o= (Y £y uhere Ve KO, und £ is the
collection of stavs of G Ther x (M = 3. Mareoner, (MY = 3 if and only if (7 has a
camponent which is an add eircuit.

Proof. Withont Yoss of generality; assume thnt €7 1 comnected, Lot G be oblained
from € by adding (o it a poerfect ninteling A of its odd-degree vortices, if e Let 7
e Ay Bulerian tonr of G Color the edges of 1 alternatively black and white, starting
al a vertes of degree at least fowr (if any) or with an edpe of M (0 any). 1 there is
such i vertex or sueh an edge, thoen Lhis coloving induces n propey 2-coloration of H.
Flse, € is a cyele, and this Scotoration of M is not proper iIEmd only if i an odd
ayele £l

W e highty indebted to Kotlov 0 Yor short-catting most of our eviginal proof.

For complamants of claw-free graphs, the fllowing siple bound holds,

FHEOREN 6. Let B 2k € a[C). JFG is Ky free, then w(GY 5 k.

Proof. Sinee & < a{Q), there exists 8 stable set 8 G VG, 151
K5 p-free, S indunees a dominating clique (not necessarily maximal) of
the proof of Theorem G by applying Theorem 4 4]

Notice that the complensents of Myciclski's praphs are Ky g-froe, showing that
the condition & < @ (G in the preceding theorent i i ary,

We have now arrived al the smest diffieuls sesult of this paper: we deterimine Lhe
cligue-chromatic numbar of elaw-lroe perlect graphs.

TreoreM 7. TG is a cdawfros perfect graph, then H{GY v 2-colorable.

13y Thearam 6 any graph which is the-complement of a claw-free graph of stability
ymbser al least 3 is Seclique-colovable even it is ol perfect. On the other hand,
we saw that line-graphs (which are. of course, Glaw-free) may have arbitrary large
clicue-chromatic number, utless they arise from {rinngle-free graphs,

In {7} it s proved that the hypergraplt of meximun clignes of & claw-free graph
is 2ocatorable i and only it does not contain an odd hole, A common featwee of the
prood of {7] and owr proof below is the use of Ten Reben's Jemma (s cited in {2}
however, an ossential difference is that the matn part of our proof is the perfect case.

COROLLAXY B. I O d5 a clum-free graph withaul an odd hole, then 1[G} < 2.

Proof of Corollary 5. Let G be claw-free without an odd hole, 1T a(G) 2 2, then
by Covolary 2, #{CG) 5 2.

I o) 2 3, then G is perfoct because of the following: by Ben Rebea in 2] a
comected claw-free graph G with af@) = 3 containing an odd antihole akso contains
an odd hole; Pavthagaraty and Ravindra (18] praved that a elaw-free wraph with
soither an odd hole nor an odd antiok: is porfect.

Sinee ¢ is perfect, Theovem 7 can now be applied. =

1 order (o prove Theorem 7. we nse the structural praperty of claw-free graphs
explored by Clvital and Shibi {2 and Maitray and Reod {14).

Chvdtal mnd Shihi [2] defined tvo specinl dasses of chaw-free perfoet graphs: ihe
clementary gruplts wxl peculior graphs. A graph is called clementary if 15 odpes can be
cotored with two colors siei that every induced Py (chordloss path on thiee vort
has its Lwo edges eoloved diflerently. Cloarly elementry graphs arve claw-{ree, bDut nob

koo Sinee O s
Wo achieve
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vice vorsa, as O shows. A graph is enlied poculine if il enn be obtained as TesHowss: take
{hree pairwise vertex-digjoint cobipartite praphs; enlt them (Ay, Ba), (g, Bk {Aq )
suelt that excit of them has at least one pair of non-adincent vortices; add all edges
Ietween every two of these cobipartite graphs; then add Whree cligues Qy, Qg @z thal
are paivwise disjoing and disjoint from the A's and 73%s; add all the adges between
0y and Az i) 35 lor § # 45 there is no other edge in e graph., Chvdtal and Shiti (2]
proved that every claw-free perfuct graph con be decomposed via cligue-cutsets inte

indecomposahle graphs that ave cither peenliar or elementary.

Trzones § (see (), G isa claw-free perfect graph withoul. @ ofigue cutsel,
then G i cither elenentary or peenfiar,

The structure of clenentary grapls was determined by Malivay and Reed in {14]
as follows. An edge s ealled flat if it daes net Jie i a wingle. Let ey be a Hat edpge
of a graph G oand (X, ) b cobipartite graph disjoint from (' and containing
at least one edge with ona extrenity in X and the other in ¥, Wo obtain a new
graph from G - [, g} and (XY FY by making the union of their sets af vertices and
edges md adding all possible edges between X aad N (23 {y) and botween Y and
Ne(i) \ {2} This is ealled angmenting the fiat edge ay wilh the cobipmtite graph
(X.Y; F). The resull of avgmenting o set of pairwise independent {nonincident) fat
edpes ey, ... 2 stceessively s ealled an angmentation of G,

Triorm 9 {see (14]). A graph ¢ is clementary if and ondy if it 38 en angmen-
tation of the tne-graph of ¢ biparlite muliigraph.

Proof of Theorem 7. We now prove Theorent 7 through several lemmas,

LA 4. I & is an dementary graph, then N{GY) is 2-colorabie.

Proof of Lemona 4. Tor line-graphs of bipartite multigraphs the statenent Jollows
from Thearem 5. Puvthermore, if G has a 2-clique coloration, the graph obtained by
augmenting a flal edge vy with Bom (XY F) still has a -clique-coloration: keep
che same color for all vertices of & — {x, y}i choose an cdge ob of B3 with e € X and
be ¥; and give color 1 to a and to all vertices in Y A {b} and celor 2 to b and 1o all
vertices in X\ {a}. jul

Using provious results, it is also not difficntt Lo check the following.

Lumna & JF G is o peculiar graph, then H(G) is 2-coloveble.

Proof of Lemma 5. Lot G = {V, E) be a peculiar graph composed of {4y, 13),
(A9, Bi), (A2 R}, Gy, Q2. Q4 as in the definition of & peculiar gragh. Let a € A,
and Jet b 6 By (by definition all the Af's, Bi's ave nonempty). It is easy Lo verify
(hat the edge ab is dominant, amd hengo by Theorem 3 we obiain that H(G) s
2-colorable, 8

Limua 6 I G is a claw-frec graph and () is w cligue which is minitnael culsel,
then G — @ has two components; denote their sct of verlices Vi and Vg, and at least
one of the following helds:

(a) Fither ford =1 or fori=12 both Vi and V\ Vi have a border-guard.

(b) Both ¥, end V2 have a border-guard.

(¢} Both Vi uQ and Yy LU have two border-guards,

Proof of Leweme 6. Since ( is 2 winimal culset, every ¢ € @ hag a neighbor in all
the components. Since G is claw-free, & — € has two components, and N{g}nisisa
ligue for all 4= 1,2 and all ¢ € Q.

Cluioi 1. For all o, b € O, either ¥ ()N G NV, or Ne}nls & N{BYN Vs,

Tndesd. if not, lot @; € N} WA (N @OV = 1,2). Clearly, a, b, @y, az induce
a claw, a contradietion.
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Claim 2. Vither there exists o bovder-pguacd in ¥y, or there exist twe distino
hordesguards in WV U6

Indoed, suppose the frst possibilily does not hold. Then there are w6 € @ so
that Nfe}ar by and MOV are not equal, and they ave both ehusionwise mininial
among Mgl V(g € @) (I theye were s inique inclusionwise minbnal Nig) v
(i € ), then any »y @ Mgj 11 V) would be a border-ganvd of V)

Since neither Aal 11V nor N OV, containg the other, by Claiin 1 both Nla)
Vi €& N O Ve and N B0 Ve € Nlef 0V hold; thal is, Najoi Vv = N MV =1 Na.

New by tie minimal choice of Nfa)1 V) and of X0V, Nglaw for any ¢ € @
cmmol be a subset of botl, So by Chaim 1, Ngl Ve € No for all g ¢ Q‘. Since
B{Vy 0 Q) s QU Ny, we proved that boul a and b are l)nl‘(‘ier-p_mu'ds of ¥ U6 ad
the chabm s proved., )

Te finish the prool of Lerome 8, note Ueal by syninvetry, Céa'un 2 alse holds il we
raplace 1 by 2. From these two varkants of Claim 2 we get that anc of the Toflowing
cases Lokis:

Hoth Vp and ¥y have a bovder-gnard, and then each of these is adiacent with
every verex in @ So ¢ is nol a maximal digue, and “b" of the lemma holds.

- Hoth V) L@ and Vo U Q hnve two border-guards, and then we have ¢

- V) and Ve U@ have border-gunds or ¥ and W 1 have border-guards. This

is just “a’” 8]
The proof of Theorem 7 works by induetion on V] Lot G = (V, E) be a elaw-free
perfect praph, 3f & bas one, two, or three verlices, then cearly HG) §s 2-colorable.
Suppose now that & has n verlices and thal the theoren has heen proved for any
claw-free perfest graph wit Tess than nvertices, 11 G s either clementary or ]>(‘.<'.uliml'.
thon, by Lemmas 4 amnd §, 240470 is 2-colorable. So by Theorem 8, we My assime
that ¢ has a clique cutsel,

We can now finish the proof of Theorem 7 Ly applying the idea of Leamna 2 in
very simple speckal case.

It Lemma 6(a) holds for say £ = 1, by the indnetion hypothesis, we can 2-clique-
color G{1) and GV \ ). Without loss of generality, we may assume that the
bordar-guard of 14 has a different color from that of VA V. Every maximal cligne of
G is contained éither in ¥ or in ¥\ W, or containg both bovder-guards, In any case,
both colors oceur By it.

) 15 Lemma G{bY holds, then by the indnction hypothesis, we can 2-elique-calor
GV ) and G{I4%), Without loss of generality, we may assmne that both their border-
guards have color 1. Color all vertices of @ with color 2. Bince avery maximal clique
of & is comtainad in Vy or Vo or contains a border-grard and a vertex of €, we defined
a 2-clique-caloration.

Finally, if Lomma 6{c) halds, then eolor @ so that the two border-guards of VU@,
and also those of 4 U, have differait colors, and otherwise arbitrarily. We complete
this coloration by a 2-cligne-coloration of G{14) and G'(Vi). Now cvcry‘mnximal clique
of (7 35 contained in 1} or in ¥, or for some ¢ € {3,2) it contains both border-gnavds
of U0, o

Note that the prool of Theorem 5 bs algorithmic; maoreover, either it reduces the
cligne-coloration of & into the elique-coloration of two saller graphs or the graph
itsell s easy to color.

Using the follewing ingredients, the proof pravides & way of 2-clique-coloring an
arbitrary claw-free pevfect graph G in polynomial tine

< Whitesides's algovithm 23] that finds 2 clique cutsel;
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. Chvittal nrad Shibi's Theovem 8 {2];

- Maffray and Reed’s canonieal decomposition alporithn of an chancutay praph
into a line-graph of o bipartite grapi and some wugentations 14k

. checiding Tor border-guards is polynamial {obvious);

- the mumber of graphs oconrring throngh the decomposition can ba bounded
Ly o polynomial of the number of vertiees of Uhe inpat gragh. (Thoese graphs
are not the same ag i Chvital ang Shibi’s algorithas for reco nining claw-
free perfoct graphs, sinco the elique-autset s not left in both twe decomposing
praphs.)

Farthermore, this algorithm uses ealy the graph (7 and not a tist of its maximal
cliques,

Dimmond-free perfect graphs coustitute another interesting class of perfeet praphs
fa dizmend is a ]y mibnus i edpe). It s known (22, 19} that a disond-free graph s
perfact. il and only if it does not contain an odd hole. Unlortunately we cainol prove
< 3 for this class, This s somewhat fustrating, heeanse Tucker [22] proved that a
dinmond-free perfect graph has a vertex which is contained in at moest two maximal
cliques of size al least 3. which bnplics the following.

Pravosttion 1. The hypegraph of maximal cliques of size al least 3 of ¢
diameend-free perfect graph is 3-golorable. In purticddar, if G is diamond-free perfect
graph without flut. edyes, then #(G) <3

The conjecture & S 3 for dinmoncd-free porfect graphs {aquivalently dinnond- and
add-haote-lree graphs) conld contaiin many of the difficuttics of coping with odd-hole-
frae graphs in gencral. We wonder whether the dligue-chromatic aumber of adid-hole-
free graphs could be bounded as wells we also do not know of any odd-hole-free praph
with dique-cliromatic mmaber greater than Uiree,

8. Gencralized split graphs, A graph G is a generalisud split graph i cither
& or the complement of § has a vertex partitioned into sets A, B3 (1 545 k) sothat
A and al! Bi's span complete graphs and there are no edges between J3; and f3; f
i # 3. Goneralized split graphs are povlect and have heen introtduced i the paper of
Prémel and Steger [20]; this s plays a crucial vole in their proof of the asymplotic
version of Lhe stroug perfect graph conjecturer almost all Berpe graphs are perfect,
In fact, they proved i 20} that almost all Cl-free graphs ave generalized sphit graphs,
(“Almost all” means here that the tatfo of the nuuber of labelled n-vertex Cy-free
praphs o the namber of n-vertex generalized split graphs tends to one if n tends
to infinity) Therefore myy property of genernlized split graphs holds for almost all
perfect grapbs. In our case the propevly tn guestion is the domatic mumber of the
clique hypergraph.

Turores 10, The cligue-hypegrapk of o generalized sphit graph is 3-colonabie.

Proof. Assume that G is a generalized sphit graph. If the complement of G has
the requived partition inte A, By's, then & proper coloration for the maxinwl eligues
of & is trivial: the verlices of A are colored with color 1, the vertices of By are colored
with color 2, and the vertices in all other H,’s (i there are any) are colored with
color 3.

1£ €7 hag the requived partition, then two cases are considered. 1T [A] 2 1, then we
color the Bi's with colors 1 and 2 so that cach of them with at leasl two vertices gels
both color 1 and color 2, and i A is ponempty, we color it with color 3. Finally, i
{A] = 1, a fixed vertex v € A s cotored by color 2, all other vertices of A are colored
with color 3, the sels 12; with one vertex are colored with color 1, and any set 3; with
al least Lo vertices is colored using the sanme rales il s adjacent Lo all vortices of

COLORING THE MANIMAL CLIGHURS OF GRAPHS

I35, then coler alb vertices of By with eolov 13 atherwise, a fixed vertex of Jy which is
not adjacent to @ is colored with color 2 and all othey vertices of 1, are colored with
color 1. 1 is straghtforward to cheek tiat wider this coloradion every maximal cligue
of (7 gots at Jeast Lwe colurs, )

H is worth noting tat the theorens ix sharp in the sense that there are penevalized
split graphs with S-clromatic cligueshypexgraphs, for iostancs, the praph i Figure
5L

The result of Primed and Steger {200 mentioned above yields e followhig coral-
Jary, which s an asymptotic nmswer Lo Question 1,

COROLLARY 6. Almast all perfect graphs ave 3-cligue-colovieble.

7. Opon problems, Iy Theovem 1) we proved that MAXINAL CLIQUI GON-
TAINMERT is NP-complete for the complements of Kya-lree graphs. s therefore
natural (o fivst ask the following guestion.

Question 2. 15 MAXIMAL CLIQUE CONTAINMENT polynomially solvable for the
complements of K g-froe graphs? '

Sinee it is N)*-complete to compute the chromatic number of 1 trinpgle-Troe graph
{19}, it is NP-complete to compute the clique-chromatic nimber of a comploment of
a Iy g-free graph, Neverthel wa know by Theoram 6 that VM) < 3 whon &
i Ky g-froe and oG} 2 3. Hence we should ask the next question.

Question 3. Is il NP-complete to determine whether ¢7 is 2-clicue colorable when
G s Iy g-froe?

We saw (inb i is NP-gomplote to determine whether a graph of maxinm degree
3 is 2-clique-cotorable. Moreover, Corollavy B pives Uil any Ky g-free graph with no
odd bole is 2-cligue eolorable,

Question 4. 1s it NP-camplete Lo determine whather G is 2-cligque colorable when
G s I g-free?

Most of our restlts concern classes of graphs defined by forbidden configurations.
Thus it wonld be ideresting to study hereditary properties of the cliguie-chromatic
number of a graph. Hebuyg and Meliumid in [7] studied such questions. Coneetning
the complexity aspeet, we asl the following.

Question . What s the complexity of deciding whether a graph and all its
induced subgraphs can be 2clique-coloved?
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