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Abstract. The duality relation between shortest paths and potentials in directed graphs and
the significance of both of these in the theory of network flows is well known. In this paper, we
work out the analogous undirected notions, which neither are contained in nor contain their directed
counterpart. They are more related to matching theory than to network flows: the corresponding
min-path-max-potential theorem can be considered a weighted generalization of the Gallai–Edmonds
structure theorem for matchings.

In our earlier work [J. Combin. Theory Ser. B, 49 (1990), pp. 10–39], the corresponding theorems
are proved in the special case of ±1 bipartite weightings, and this special case already contains the
main points of the general proof. The goal of the present paper is to extrapolate from this ±1-
weighted bipartite special case the arbitrarily weighted general min-path-max-potential theorem and
to show some algorithmic consequences related to planar multiflows, the Chinese postman problem,
the weighted and unweighted matching structure, etc. In order to make this paper self-contained, we
also include a compact, revised variant of earlier proofs, adapted to the present context. In addition
to good characterization theorems and polynomial algorithms, efficient (logarithmic polynomial)
parallel algorithms follow for some of these problems.
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1. Introduction. In this section, we explain the background of the paper and
introduce the main tools that we will use. In particular, we present potentials in the
±1-weighted bipartite special case, which was developed in Sebő [1990]. Since this
constitutes the kernel of our results, we fully include a compact proof of the main
theorem concerning this case.

Then in section 2, we define potentials in arbitrary weighted undirected graphs
and prove (extrapolate from the bipartite special case) a minimax theorem on mini-
mum weight paths and maximum potentials. In section 3, we point out the algorithmic
consequences of our results and apply them to, for example, planar multiflows.

If G is a graph and w : E(G)→ IR, define the distance of x, y ∈ V (G) as

λG,w(x, y) = λw(x, y) = λ(x, y) = min{w(P ) : P is an (x, y) path}.

In this paper, paths are considered to be sets of edges, or subgraphs. (For instance,
V (P ) will denote the set of vertices of the path P .) They can have a repetition
of vertices, but no repetition of edges is allowed. An (x, y) path is a path whose
endpoints are x, y ∈ V (G). The definition of λG,w(x, y) is meant to be ∞ if x and y
are not in the same component of G.

A path without repetition of vertices will be called simple. If the two endpoints
of a (simple) path coincide, it is a cycle (circuit). w(P ) denotes the sum

∑
e∈P w(e).

A shortest (w-shortest) path is an (a, b) path P with w(P ) = λw(a, b). If a, b ∈ V (P ),
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P (a, b) denotes a simple subpath of P joining a and b. (If P is simple, P (a, b) is
uniquely determined.) For X ⊆ V (G), δ(X) will denote the set of edges with exactly
one endpoint in X. We will also use the notation E− := {e ∈ E(G) : w(e) < 0},
E+ := {e ∈ E(G) : w(e) > 0}.

A graph G with a weighting w : E(G)→ IR is called conservative if w(C) ≥ 0 for
every circuit C ⊆ E(G). Conservative graphs are characterized as follows.

(1.1) (G,w) is conservative if and only if for all x, y ∈ V (G), λw(x, y) = min{w(P ) :
P is a simple (x, y) path}.

In particular, for connected graphs, λw(x, y) is finite for all x, y ∈ V (G).

Recall that λw(x, y) can be computed via matching techniques in various well-
known ways (see Edmonds [1965a] or Lawler [1976]); one of these will be explained
in section 3. On the other hand it cannot be reduced to the well-known shortest-path
algorithms because the two directed edges corresponding to an undirected edge of
negative weight constitute a negative directed cycle; moreover, subpaths of shortest
paths are not necessarily shortest and distances do not satisfy the triangle inequality.
Thus the notion of potentials and the related theory are also different in the undirected
case.

The behavior of undirected potentials is determined by the following theorem, as
will be explained in section 2:

If (G,w) is conservative and x0 ∈ V (G), we call each set V i = V i(λ) := {x ∈
V (G) : λw(x0, x) ≤ i} (i = 0,±1,±2, . . .) a level set of (G,w, x0); we denote by Gi

the graph induced by V i, and we call it the level graph. If the weights are ±1, then
edges go between neighboring levels; that is, we have the following.

(1.2) If w : E(G) → {−1, 1} is conservative, then for all xy ∈ E(G), |λ(x0, x)−
λ(x0, y)| ≤ 1. If, in addition, G is bipartite, then this inequality is satis�ed with
equality for every edge.

Indeed, we can assume without loss of generality that λ(x0, x) ≥ λ(x0, y). Let P
be a simple shortest (x0, y) path. If xy ∈ P , then xy ∈ E− follows, and λ(x0, x) ≤
w(P \ {xy}) = w(P ) + 1; if xy /∈ P , then xy ∈ E+, and λ(x0, x) ≤ w(P ∪ {xy}) =
w(P ) + 1. Thus λ(x0, y) ≤ λ(x0, x) ≤ λ(x0, y) + 1. If G is bipartite, then in addition
λ(x0, x) 6= λ(x0, y), whence λ(x0, x) = λ(x0, y) + 1, and (1.2) is proved.

For an arbitrary conservative weighting, the inequality |λ(x0, x)− λ(x0, y)| ≤
|w(xy)| can be checked in the same way (and also follows easily from (1.2); see the
proof of Lemma 2.1(a)).

Theorem 1.1. Let G be a bipartite graph and w : E(G) → {−1, 1} such that
(G,w) is conservative. Furthermore, let x0 ∈ V (G) be arbitrary and D be the vertex
set of a component of Gi (i ∈ {0,±1,±2, . . .}, V i 6= ∅). Then |δ(D) ∩ E−| = 1
provided that x0 6∈ D and |δ(D) ∩ E−| = 0 provided that x0 ∈ D.

If D denotes the family of sets occurring as the vertex set of a component of a Gi

(as a D in the theorem), where G is bipartite, then because of (1.2), {δ(D) : D ∈ D}
partitions E(G); the theorem states that the D ∈ D with x0 /∈ D partition E− into
singletons.

Theorem 1 contains Seymour’s minimax theorem on T -joins and T -cut packings,
the Berge–Tutte theorem, and the Gallai–Edmonds structure theorem. It actually
implies the generalization of this structure theorem to T -joins and weighted matchings
(see Sebő [1990] and section 3 below).

Figure 1 illustrates the components of the level sets of a ±1-weighted conservative
graph. The thick edges are those of weight −1.

Proof of Theorem 1.1. Let (G,w) be conservative. We prove the theorem by
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Fig. 1.

induction on |V (G)|. Let b be a vertex that satisfies

λw(x0, b) = m := min{λw(x0, x) : x ∈ V (G)}

and let P be a simple (x0, b) path, with w(P ) = m. (P exists because of (1.1).)
In addition, we assume that b is chosen among all possible choices so that |P | is
minimum. (This last assumption is not really essential; the claims that we will prove
for b are true without it. However, it will be useful for technical simplicity.)

Let us first check the statement for {b}: since G is bipartite, V m does not induce
edges, whence {b} is one of its components. The statement to check is the following.

Claim 1.

|δ(b) ∩ E−| = 1 provided b 6= x0,

|δ(b) ∩ E−| = 0 provided b = x0;

Moreover, if b 6= x0, then P contains the unique negative edge adjacent to b.
If b = x0, then because of m = λw(x0, b) = 0, there cannot be a negative edge

adjacent to x0 = b. Now suppose that b 6= x0.
Since P is simple, it has exactly one edge adjacent to b. That edge is negative

because otherwise, if we delete it from P , we get a path which is shorter than w(P ) =
m. Suppose indirectly that there exists a negative edge e ∈ δ(b) \ P : P ∪ e is also a
path and w(P ∪ e) < w(P ) = m, and this contradiction proves Claim 1.

Let G∗ be the graph that we obtain after contracting δ(b) or, equivalently, after
identifying the vertices adjacent to b and deleting b. (By the choice of b and because
of (1.2), all neighbors of b are at level m − 1.) We consider that the vertices and
edges of G∗ are the same as those of G − b; w∗ is defined as the restriction of w to
E(G− b) = E(G∗). (Parallel edges can be replaced by one edge whose weight is the
minimum of the weights.)

Claim 2. Suppose b 6= x0. Then (G∗, w∗) is conservative, and for every x ∈
V (G∗), x 6= b, λG∗,w∗(x0, x) = λG,w(x0, x).

A circuit or (x0, x) path (x ∈ V (G), x 6= b) K∗ of G∗ is a circuit or (x0, x) path
of G or can be made into one by adding two edges of δ(b). Denote this corresponding
circuit or path of G by K. Since |δ(b)∩E−| = 1, w(K∗) = w(K)−2 or w(K∗) = w(K).
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If K is not a zero-weight circuit or shortest (x0, x) path, then since G is bipartite,
w(K) ≥ 2 or w(K) ≥ λw(x0, x)+2, respectively, and w(K∗) ≥ 0 or w(K∗) ≥ λw(x0, x)
follow.

Therefore, let w(K) = 0 or w(K) = λw(x0, x), respectively. Claim 2 clearly
follows now from the following: either K ∩ δ(b) = ∅ or K ∩ δ(b) = {e1, e2}, e1 ∈ E−,
e2 ∈ E+.

Suppose indirectly that K ∩ δ(b) = {e1, e2}, e1, e2 ∈ E+.

Case 1. K∩P = ∅. If K is a zero-weight circuit, then P ′ := (P ∪K)\e1 is a path,
with w(P ′) = w(P ) +w(K)− 1 = w(P ) + 0− 1 < m, a contradiction. Therefore, sup-
pose that K is a w-shortest (x0, x) path. By (1.1), we can suppose that K is simple.
Since the only edge of K(x0, b) adjacent to b is positive, by Claim 1, K(x0, b) is not a
w-shortest path, that is, w(K(x0, b)) > w(P (x0, b)). Then, however, w(P (x0, b) ∪
K(b, x)) = w(P (x0, b)) + w(K(b, x)) < w(K(x0, b)) + w(K(b, x)) = λw(x0, x), a
contradiction because P (x0, b) ∪K(b, x) contains an (x0, x) path.

Case 2. K ∩ P 6= ∅. Then b 6= x0 (otherwise P = ∅), and by the last part of
Claim 1, the edge of P adjacent to b is negative, so it is different from the edges of
K adjacent to b. Thus V (K) ∩ V (P ) cannot consist of b only. Walking on P from
b towards x0, let a 6= b be the first vertex of K we meet. K(a, b) ∩ P (a, b) = ∅.
K ′ := (K \K(a, b)) ∪ P (a, b) is also a circuit (if K is a circuit) or an (x0, x) path (if
K is so), whence w(K(a, b)) ≤ w(P (a, b)); otherwise, K ′ would be shorter than K.
Moreover, w(P (a, b)) ≤ 0 because otherwise w(P (x0, a)) = w(P (x0, b))−w(P (a, b)) <
m. On the other hand, by the conservativeness of (G,w), w(K(a, b) ∪ P (a, b)) ≥ 0,
whence we have equality throughout; in particular, w(K(a, b)) = w(P (a, b)) = 0 and
w(P (x0, a)) = m. |P (x0, a)| < |P (x0, b)|, contradicting the choice of b. Claim 2 is
proved.

Theorem 1.1 now follows by induction in a straightforward way:

• If b can be chosen to be different from x0, then the level sets of G∗ are the same
as those of G by Claim 2, except that {b} is no longer a level set and its neighbors
are identified.

• If b = x0 is the only possible choice for b, then all distances are positive from
x0. In particular, there is no negative edge adjacent to x0, and in contracting δ(x0),
all distances from x0 decrease exactly by one; again, the level sets of G∗ are the same
as those of G, except that {x0} is no longer more a level set and its neighbors are
identified.

In both cases, the components of the level graphs of G that are different from {b}
are exactly the components of the level graphs of G∗. We apply Claim 1 to {b} and
apply the induction hypothesis to G∗, and the theorem follows.

In the remaining part of this section, we explore some applications of our results.
For the moment, we restrict ourselves to the ±1-weighted special case.

If T ⊆ V (G), then F ⊆ E(G) is called a T -join if T is the set of odd-degree
vertices of F . X ⊆ V (G) is said to be T -odd if |X ∩ T | is odd. C ⊆ E(G) is a T -cut if
C = δ(X) for some X ⊆ V (G) and X is T -odd. It is an easy exercise to show that a
T -join F and a T -cut C have an odd and, in particular, nonempty intersection, and it
follows that the minimum cardinality of a T -join is at least as much as the maximum
cardinality of a family of pairwise-disjoint T -cuts.

To give a first, typical example of how Theorem 1 relates T -joins and T -cuts, let
us show how Theorem 1.1 implies Seymour’s [1981] following well-known theorem.

(1.3) If G is bipartite, then the minimum cardinality of a T -join is equal to the
maximum cardinality of a family of pairwise-disjoint T -cuts.
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It is an easy exercise to show that a T -join F has minimum cardinality if and
only if, upon defining the weight of the edges in F to be −1 and the weight of the
other edges to be 1, we get a conservative weighting (a remark of Guan [1962]). Apply
Theorem 1.1 to this conservative weighting and to an arbitrary x0 ∈ V (G). If D is
a component of a level graph for which x0 /∈ D, then |δ(D) ∩ F | = 1; it follows that
δ(D) is a T -cut. According to (1.2) applied to the bipartite graph G, every edge leaves
some level graph, whence by Theorem 1.1, the number of T -cuts δ(D), x0 /∈ D, is |F |,
and these are pairwise disjoint. We have thus found a family of pairwise-disjoint T -
cuts which has the same cardinality as the minimum T -join, and Seymour’s theorem
is proved. In fact, the constructed set of disjoint T -cuts has the particular form of
the packings presented by the following theorem of Frank, Sebő, and Tardos [1984].

(1.4) Given a bipartite graph with a ±1 conservative weighting, both classes of
the bipartition can be partitioned into classes X1, . . . , Xk so that δ(C), where C is a
component of G−Xi (i = 1, . . . , k), contains at most one negative edge.

Indeed, according to Theorem 1.1, the vertices x, λw(x0, x) = i, in the components
of Gi with i odd, i = ±1,±3, . . . (or of Gi with i even), constitute the classes of a
partition which has the claimed property.

(1.3) and (1.4) easily imply half-integer minimax theorems valid for arbitrary
graphs. (The half-integer version of (1.3) is a result of Lovász [1975].)

The generalization of theorems on T -joins or conservative weightings to the weigh-
ted case is straighforward via subdivision of edges. For instance, given a weight
function w : E(G) → IIN, the minimum weight of a T -join is at least as much as the
maximum cardinality of a w-packing of T -cuts, where a w-packing is a multiset which
covers edge e ∈ E(G) at most w(e) times; Seymour’s theorem ((1.3)) states that there
is equality here for bipartite weightings. (For the sharpening series of integer minimax
theorems that have been developed (including weighted variants) and the blocking
pair of T -join and T -cut polyhedra, see Lovász and Plummer [1986b]; for a survey
of more recent results, see, for instance, Frank [1990] or other recent publications on
T -joins mentioned in the reference list. We will state some of these in section 3.) The
weighting w:E(G) → ZZ is called Eulerian if w(C) is even for every cut C, and it
is bipartite if it is even for every circuit C. A graph is Eulerian or bipartite if the
identically 1 function on its edges is Eulerian or bipartite.

Let us also note that the distances do not depend on the choice of the minimum
T -join F . (For an easy exercise, see, for example, Sebő [1990].)

The weighted generalization of (1.4) is somewhat artificial. On the other hand,
Theorem 1.1 itself can be straightforwardly generalized to the weighted case, and this
can be used for various purposes, as we will show in the following sections.

We finish this introduction by showing how Theorem 1.1 already applies to un-
weighted multiflows, that is, edge-disjoint path problems. We assume that the reader
is familiar with the (easy) relation between some notions in planar graphs and those
in the planar dual: the dual of the dual of a graph G is equal to G; Eulerian and bi-
partite graphs or weight functions correspond to each other; disjoint unions of circuits
correspond to sets of the form δ(X) (X ⊆ V (G)); etc.

If G is planar, in the dual graph, Theorem 1.1 has the following more apparent
meaning.

We are given an Eulerian graph (dual of “bipartite”) G embedded in the plane
and R ⊆ E(G) so that the cut condition

|C ∩R| ≤ |C \R| for every cut C
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Fig. 2.

is satisfied for (G,R). (This condition is equivalent to the conservativeness of the
dual graph. Set weights −1 on (duals of) edges in R.) Assign to every face ϕ of G the
following magic numbers:

λ(ϕ) := min{|P \R| − |P ∩R| : P dual path from the infinite face to ϕ}.

A “dual” path is a path of the dual graph and can be imagined as going from face to
face, crossing edges. λ(ϕ) can be interpreted as the minimum cost of reaching face ϕ
if we must pay 1$ for crossing an edge in |E(G) \R| and −1$ for crossing an edge of
R. (Negative costs correspond to incomes.)

This definition of λ(ϕ) corresponds to a natural choice of x0 in Theorem 1.1. Let
x0 be the vertex corresponding to the infinite face of the dual graph. Let us apply
Theorem 1.1 to the dual of G with this choice of x0.

The union of any set of faces of a planar graph can be partitioned into (topologi-
cally) connected regions, where each region is the union of faces corresponding to the
components of the dual graph. Consider the regions determined by the faces ϕ with
λ(ϕ) ≤ i (Figure 2). Among these, those whose territory is bounded (equivalently,
which do not contain the infinite face) will be called patches (see Figure 2).

Theorem 1.2. Let G be an Eulerian graph embedded in the plane, and let R ⊆
E(G) be such that (G,R) satis�es the cut condition. Then the boundaries of patches
contain exactly one edge of R each, they are pairwise disjoint, and every e ∈ R is
contained in one of them.

Proof. Apply Theorem 1.1 to the dual of G, where the edge weights are −1 for
the duals of edges in R and 1 otherwise; note that the dual of G is bipartite; define
x0 to be the vertex of the dual graph corresponding to the infinite face of G. Clearly,
there is a one-to-one correspondence between the patches of G and those components
of the level graphs of the dual graph which do not contain x0. Because of (1.2), the
boundaries of these patches are disjoint; the rest of the statement can be extrapolated
from Theorem 1.1.

In other words, if G is a planar Eulerian graph and R ⊆ E(G) is such that (G,R)
satisfies the cut condition, then Theorem 1.2 provides a uniquely determined integer
“multiflow” (see the definition below), which will be called a patch flow . Similarly,
the packing of odd cuts defined after Theorem 1.1 will be called a patch packing for
(G,T, x0).
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The reader may find it amusing to translate the proof of Theorem 1.1 to give a
direct proof of Theorem 1.2 and, in fact, of the following sharpening.

The necessity of the cut condition for the existence of paths in G − R between
the endpoints of the edges in R is trivial. The sufficiency is just the “planar dual” of
(1.3). That is, we have shown a constructive proof (see the corresponding polynomial
algorithm in section 3) of the following theorem of Seymour [1981].

(1.5) Let G be a planar Eulerian graph and R ⊆ E(G). Then there exist edge-
disjoint paths in G−R between the endpoints of the edges of R if and only if the cut
condition is satis�ed for (G,R).

We conclude this section by defining multiflows precisely and listing a sequence of
known results about them. Let G be a graph and c:E(G)→ IR. c will mean capacity
on the positive edges and demand on the negative edges. We define the demand of
e ∈ E(G), c(e) < 0, to be −c(e). If c(e) < 0, e is called a demand edge.

Given a weight function in a graph, let us denote the set of negative edges by E−

and the set of nonnegative edges by E+. A multiflow for (G, c) is a set of circuits C
with “multiplicities” f : C → IR such that

|C ∩ E−| = 1 for all C ∈ C,∑
e∈C

f(C) ≤ c(e) if e ∈ E+, and∑
e∈C

f(C) = −c(e) if e ∈ E−.

If f(e) is (half-) integer for every e ∈ E(G), we say that the flow is (half-) integer.
If in this definition we replace “circuit” by “cut,” we say that (C, f) is a dual multi-
flow . The planar special case of dual multiflows is the panar multiflow problem, but
dual multiflows have the advantage that the theorems concerning them are valid for
arbitrary graphs.

The (integer) multiflow problem is the problem whose instances are (G, c) pairs,
where G is a graph and c:E(G) → IR, and the question is to decide the existence of
an (integer) multiflow. In the planar multiflow problem, we consider only instances
where G is planar.

Statements about capacitated multiflow problems can be reduced to uncapaci-
tated ones by replacing e by |c(e)| parallel copies of e. For instance, the cut condition
becomes

c(δ(X)) ≥ 0 for every X ⊆ V (G).

The results of Edmonds and Johnson [1973], Lovász [1975], Barahona [1980], and
Korach [1982] proved that in a planar graph, a half-integer flow or a violating cut can
be found in polynomial time. The best complexity was attained by Barahona [1989].
The closest predecessor to our approach is in the work of Matsumoto, Nishizeki, and
Saito [1986]. They decreased c along a face for all possible choices of faces and checked
the cut condition for each choice. The proof of Theorem 1.1 indicates explicitly that
the face to be chosen is ϕ with λ(ϕ) minimum; moreover, Theorem 1.1 foresees the
entire multiflow, the same one which would be the result of alternatively determining
ϕ and deleting its boundary.

Various results about integral (dual) multiflows have been obtained by Seymour
[1977, 1981], Korach and Penn [1992], Frank [1990], Sebő [1987a, b], and, more re-
cently, Frank and Szigeti [1995] and Ageev, Kostochka, and Szigeti [1995]. These
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integer multiflows can also be obtained with the help of the “magic numbers”—some
of them with considerable additional work, but also with the algorithmic advantages
that this represents (see section 3).

The planar multiflow problem in general was proved by Middendorf and Pfeiffer
[1989] to be NP-complete.

In section 2, we will extrapolate the weighted generalization of the results in this
section, and in section 3, we will apply the results that we obtain.

2. Potentials. Potentials in directed graphs are defined in the following way:
Let G be a directed graph, w:E(G) → IR, and x0 ∈ V (G). (G,w) is said to be

conservative if w(C) ≥ 0 for every directed circuit C. π : V (G) → IR is called a
potential (centered at x0) if

π(x0) = 0 and

π(y)− π(x) ≤ w(x, y) for every directed edge xy.

The role of potentials is apparent from, for instance, the following well-known propo-
sition.

(2.1)
(a) (G,w) is conservative if and only if there exists a potential.
(b) If π is a potential centered at x0, then for all x ∈ V (G),

λw(x0, x) ≥ π(x).

(c) If (G,w) is conservative, the function de�ned by π(x) := λw(x0, x) is a poten-
tial centered at x0.

(b) and the if part of (a) are trivial; (c) is also easy and proves the only if
part of (a). In other words, potentials centered at x0 give an apparent proof of
conservativeness and a lower bound for the distances from x0. (c) claims the a priori
surprising fact that max{π(x) : π is a potential centered at x0} is attained by one
and the same potential for every x ∈ V (G), that is, by the distance function λ,
λ(x) := λw(x0, x) (x ∈ V (G)).

Now let G be undirected. Suppose first that G is bipartite, w:E(G) → {−1, 1},
and x0 ∈ V (G). π:V (G)→ ZZ will be called a potential centered at x0 if

(i) π(x0) = 0 and
(ii) |π(y)− π(x)| = 1 for every xy ∈ E(G).

If D is a component of the graph Gi = Gi(π) induced by the level set V i = V i(π)
:= {x ∈ V (G) : π(x) ≤ i} (i = 0,±1,±2, . . .), then

(iii)

|δ(D) ∩ E−| = 1 provided that x0 6∈ D,

|δ(D) ∩ E−| = 0 provided that x0 ∈ D.

Theorem 1.1 can now be restated in the following way.
(2.2) If G is ±1-weighted and bipartite, then (2.1) holds.
The if part of (2.1a) and all of (2.1b) can be proved in a straightforward way.

(For details, see Sebő [1990].) To prove (2.1c), which also implies the only if part of
(2.1a), we have to check (i), (ii), and (iii): (i) is trivial, (ii) is easy (we have already
proved it; see (1.2)), and (iii) is Theorem 1.1.
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We have arrived at the main purpose of this section: we will generalize potentials
for arbitrary undirected graphs with arbitrary weights. Of course, we have to satisfy
two constraints: it should be easy to check whether a given function is a potential
(like the inequality for directed graphs or (i), (ii), and (iii) for bipartite ±1-weighted
graphs); (2.1) should be true.

For the sake of simplicity, we first do this work only for integer weights, and
then we will observe that the theorems hold for arbitrary real weights almost without
change and that the extension is straightforward.

If w is not bipartite, we associate with the pair (G,w) a bipartite graph Ĝ and a
weight function ŵ:E(Ĝ)→ {−1, 1} in the following way:

Contract the zero-weight edges of G and replace each edge e ∈ E(G), w(e) 6= 0,
by 2|w(e)| edges in series. (Divide e into 2|w(e)| edges by 2|w(e)| − 1 new points.)
We think of V (G) as a subset of V (Ĝ). If ê ∈ E(Ĝ) is an element of the subdivision
of e ∈ E(G), let ŵ(ê) = −1 if w(e) < 0 and let ŵ(ê) = +1 if w(e) > 0.

Clearly, the natural correspondence between paths of G and paths of Ĝ simply
doubles the weights. Thus

∀x, y ∈ V (G), λĜ,ŵ(x, y) = 2λG,w(x, y).

This shows that we shall have an easy task. We know that the potentials in (Ĝ, ŵ)
are the functions for which (i), (ii), and (iii) hold. On the other hand (e.g., for
applications), we need theorems that consider only (G,w) directly; potentials should
be defined in terms of (G,w). We will face no obstacles in obtaining this direct
definition because it turns out that a potential π̂ : V (Ĝ) → ZZ is already determined
by its restriction to V (G).

Lemma 2.1. Suppose π̂ : V (Ĝ)→ ZZ is a potential in (Ĝ, ŵ). Then π̂ is even on
V (G), and if π : V (G) → ZZ denotes the restriction of π̂/2 to V (G), then for every
ab ∈ E(G),

(a) |π(a)− π(b)| ≤ |w(ab)|.
Denote the path of Ĝ, replacing ab ∈ E(G) by Q = {p0, p1, . . . , pt−1, pt} (p0 =

a, pt = b, t = 2|w(ab)|).
(b) π uniquely determines π̂, namely, if w(ab) 6= 0, then in (Ĝ, ŵ),

π̂(pi) :=

{
2π(a) + i provided that 0 ≤ i ≤ i0,
2π(b) + |2w(ab)| − i provided that i0 ≤ i ≤ t,

where i0 = π(b)− π(a) + |w(ab)|.
(c) max0≤i≤t π̂(pi) = π̂(pi0) = π(a) + π(b) + |w(ab)|.
Remark. Lemma 2.1 gives the value of π̂(pi) (0 ≤ i ≤ t); it even gives two

definitions for π̂(pi0), but both of them define the value π̂(pi0) = π̂(a)+ π̂(b)+ |ŵ(ab)|.
Lemma 2.1 is illustrated in Figure 3.
Proof of Lemma 2.1. First, we prove that π̂ is even on V (G). Indeed, it follows

from (ii) that π̂ has different parity on the two endpoints of every edge, and hence its
parity is fixed on each class of the bipartition of Ĝ. Since one of these classes contains
V (G), and since π̂(x0) = 0, we get that π̂ is even on V (G).

We now prove (a). If w(ab) = 0, then π̂(a) = π̂(b), and (a) is trivial.
Suppose that w(ab) 6= 0. According to (ii), |π̂(pi)− π̂(pi−1)| = 1, whence

2|π(a)− π(b)| = |π̂(a)− π̂(b)| =
∣∣∣∣∣
t∑
i=1

π̂(pi)− π̂(pi−1)

∣∣∣∣∣ ≤ e
t∑
i=1

|π̂(pi)− π̂(pi−1)|
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Fig. 3.

= t = |2w(ab)|,

and (a) is proved.
If π̂(pi) = π̂(pi−1) − 1, then we call the edge pi−1pi descending, and if π̂(pi) =

π̂(pi−1) + 1, then we call it ascending. By (ii), every edge is either descending or
ascending. If pi−1pi is descending, i < t, then pipi+1 cannot be ascending; otherwise,
{pi} ∈ D, which contradicts (iii) because δ(pi) consists of two positive or two negative
edges. From this it follows that there exists an i0 ∈ IIN such that pi−1pi is ascending if
1 ≤ i ≤ i0 and descending if i0 < i ≤ t. Consequently, with this i0, π̂(pi) = π̂(p0) + i
if 0 ≤ i ≤ i0 and π̂(pi) = π̂(pt) + (t − i) if i0 ≤ i ≤ t. Hence π̂(p0) + i0 = π̂(pi0) =
π̂(pt) + (t− i0), that is, i0 = (π̂(b)− π̂(a) + 2|w(ab)|)/2. Thus we have proved (b). (c)
is the immediate consequence of (b).

We call a function π : V (G)→ ZZ a potential centered at x0 ∈ V (G) if the function
2π is the restriction to V (G) of a potential in Ĝ centered at x0 ∈ V (Ĝ). Given G, w,
and a potential π, we will keep the notation Ĝ, ŵ, π̂; these are uniquely determined
(see Lemma 2.1(b)). The properties of π̂ can be “translated” into properties of π:

Let π : V (G) → ZZ and define Giw = Giw(π) by V (Giw) := {x ∈ V (G) : π(x)
≤ i} and E(Giw) := {xy ∈ E(G) : (π(x) + π(y) + |w(xy)|)/2 ≤ i} (i = 0,±1/2,
±1,±3/2, . . .). We also introduce the notation

D := {D ⊆ V (G): D is a component of Giw for some i}.

Lemma 2.2. Let G be an arbitrary undirected graph, w : E(G)→ ZZ, x0 ∈ V (G).
π : V (G)→ ZZ is a potential centered at x0 if and only if the following hold:

(̂ı) π(x0) = 0.
(̂ı̂ı) |π(y)− π(x)| ≤ |w(x, y)| for all xy ∈ E(G).
(̂ı̂ı̂ı) If D is a component of Giw(π), then



592 ANDRÁS SEBŐ

• all negative edges induced by D in G are in E(Giw) and
• (iii) holds for D.

Proof. To prove the only if part, suppose that π : V (G) → ZZ is a potential
centered at x0, that is, 2π is the restriction to V (G) of a potential π̂ of (Ĝ, ŵ) centered
at x0. We must prove that (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) hold for π provided that (i), (ii), and (iii)
hold for π̂. (̂ı) is obvious and (̂ı̂ı) is just Lemma 2.1(a).

To prove (̂ı̂ı̂ı), let ı̂ ∈ ZZ and note the following: the level graph Ĝı̂(π̂) of Ĝ
contains exactly those vertices v ∈ V (G) for which π̂(v) = 2π(v) ≤ ı̂; by Lemma
2.1(c), it entirely contains the subdivision of exactly those edges ab ∈ E(G) for

which π(a) + π(b) + |w(ab)| ≤ ı̂. That is, the components of Ĝı̂ are determined
by those vertices v ∈ V (G) for which π(v) ≤ ı̂/2 and those edges ab ∈ E(G) for which
(π(a) + π(b) + w(ab))/2 ≤ ı̂/2 (̂ı = 0,±1,±2, . . .). Defining i := ı̂/2, we see that these
vertices and edges are exactly those of E(Giw(π)). Thus there is a one-to-one corre-

spondence between the components of Ĝı̂(π̂) and those of Giw(π). If D is a component
of the latter, we will denote the corresponding component of the former by D̂.

(̂ı̂ı̂ı) now follows easily. If a negative edge ab induced by D is not in E(Giw),
then (π(a) + π(b) + |w(ab)|)/2 > i, and it follows from Lemma 2.1 that there are two
negative edges in δ(D̂). (Follow on Figure 3: since pi0 /∈ D̂ but a, b ∈ D̂, δ(D̂) contains
one negative edge from each of the paths (a, pi0) and (pi0 , b).) Therefore, since by
assumption π̂ satisfies (ii), such an edge ab does not exist, and the first part of (̂ı̂ı̂ı)
is proved. Furthermore, it now follows that the negative edges of D̂ are in one-to-one
correspondence with those entering D, so the second part of (̂ı̂ı̂ı) holds as well.

To prove the if part, suppose that (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) hold for π. Define π̂ to be
equal to 2π on V (Ĝ) ∩ V (G), and extend it to the entire V (Ĝ) in the unique way
dictated by Lemma 2.1 (b). By definition, π̂ satisfies (i) and (ii). If D is as in (̂ı̂ı̂ı),
then by the same correspondence as in the proof of the only if part, D correponds

to a component D̂ of Ĝı̂(π̂), and because of the first part of (̂ı̂ı̂ı), there is a one-to-
one correspondence between the negative edges of δ(D̂) and those of δ(D). Now the
second part of (̂ı̂ı̂ı) implies that (iii) holds for D̂.

The following theorem is a straightforward reformulation of Theorem 1.1 (that is,
of (2.2)) for the weighted case.

Theorem 2.1 Let G be an arbitrary undirected graph, and let w : E(G) → ZZ
such that (G,w) is conservative; furthermore, x0 ∈ V (G). Then λ : V (G) → ZZ,
where λ(x) := λG,w(x0, x) (x ∈ V (G)) is a potential centered at x0. Furthermore,
(2.1) holds.

Proof. Apply Theorem 1.1 and then (2.2) to the conservative bipartite (Ĝ, ŵ).
Then apply Lemma 2.2 to obtain the result for (G,w).

The reader may find it to be a useful exercise to give a direct proof of the trivial
if part of (2.1a) and all of (2.1b), where the definition of potentials is given in (̂ı), (̂ı̂ı),
and (̂ı̂ı̂ı).

The main point of Theorem 2.1 is that (̂ı̂ı̂ı) holds for the distances from x0. Since
this statement will be often used in what follows, let us restate it separately in a
slightly different form for later convenience.

(2.3) Let G be a undirected graph, w : E(G)→ ZZ such that (G,w) is conservative,
and x0 ∈ V (G), λ(x) := λG,w(x0, x), Giw := Giw(λ).
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(a) If D is a component of Giw,

|δ(D) ∩ E−| = 1 provided that x0 6∈ D,

|δ(D) ∩ E−| = 0 provided that x0 ∈ D.

(b) Let y(D) := max{i : D is a component of Gi} − min{i : D is a component
of Gi}. Then for all e ∈ E−,

∑
D∈D,e∈δ(D) y(D) = |w(e)|, and for all e ∈ E(G),∑

D∈D,e∈δ(D) y(D) ≤ |w(e)|.
(2.3) shows how the magic numbers λ(x0, x) generate a special dual flow (packing

of T -cuts). This will be the basis of the applications in the following section.
In the rest of the paper, Gi will denote the graph defined in (2.3) (given that

(G,w) is conservative and x0 ∈ V (G)). The family D can be split into the union of
D′ and D′′, where D′ is the family of all components of Gi with i as an integer and
D′′ is the family of all components of Gi with i as a noninteger (but, of course, as
a half-integer). Each element of D′′ is partitioned by some elements of D′ because
V (Gi) = V (Gi+1/2), and E(Gi) ⊆ E(Gi+1/2). The following remark will be useful in
the construction of integer (dual) flows or packings.

(2.4) Let G be an undirected graph, and let w : E(G)→ {−1, 1} so that (G,w) is
conservative. Then {δ(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint cuts each of which
contains one negative edge, and xy ∈ E(G) is in none of these cuts if and only if
λ(x) = λ(y).

Indeed, let xy ∈ E(G), and suppose without loss of generality that λ(x) ≤ λ(y).
Then either λ(x) = λ(y) or λ(x) = λ(y)− 1. In the latter case, xy is in δ(D), where
D is the component of Gλ(x)+1/2 containing x; xy is in none of the other sets of the
form δ(X), X ∈ D′′. In the former case, (λ(x)+λ(y)+w(xy))/2 = λ(x)+1/2, that is,
xy ∈ E(Gλ(x)+1/2. It follows that x and y are in the same component of Gλ(x)+1/2),
whence none of the sets δ(D) (D ∈ D′′) contains it, and (2.4) is proved.

The dual flow defined by

V := {δ(D) : D ∈ D, x0 /∈ D}

with multiplicities y(D) will be called the patch dual flow of (G,w, x0). It is, in fact,
a dual multiflow. A patch dual flow becomes a multiflow in the dual of a planar
graph (and if we dualize so that x0 is the infinite face, this is the uniquely determined
patch flow); applying it to the conservative graph corresponding to a minimum T -join,
we get a patch packing of T -cuts (see section 1 for the unweighted case), which is a
maximum packing of T -cuts.

Note that the results can be generalized to arbitrary w:E(G) → IR, where the
potentials can be defined by (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı). The distances still form a potential ;
furthermore, (2.1) still holds.

Indeed, let ε ≤ (1/2n2)µ, where µ is the minimum difference between different
path lengths. The function wε(e) := dw(e)/εe wε:E(G)→ IIN has the property that for
two paths P and Q (not necessarily between the same pair of vertices), w(P ) < w(Q)
implies wε(P ) < wε(Q), whence the wε-shortest paths are also w-shortest paths.

Since w(e)/ε ≤ wε ≤ 1 +w(e)/ε, we have w(e) ≤ εwε ≤ ε+w(e). Thus, choosing
an arbitrary series εn → 0, εnwεn → w holds (uniformly on the paths). It follows
that, applying (2.1) to wεn , the same follows for εnwεn . Since, as we noticed, the
wεn -shortest paths are also w-shortest, the distances according to the weight function
εnwεn converge to λw. Now since in (̂ı), (̂ı̂ı), and (̂ı̂ı̂ı) we only have linear functions
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of convergent series, these linear functions also converge to the same linear function
of the limits, and (2.1) follows for arbitrary real weights in a straightforward way.

Patch flows and patch packings (without using this term) have been applied to
prove integer-path or cut-packing theorems. See, for instance, Sebő [1990], Frank and
Szigeti [1995], or Ageev, Kostochka, and Szigeti [1995].

3. Algorithms and applications. It is well known that an algorithm for mini-
mum-weight T -joins has been deduced from weighted matching algorithms in various
ways (see Edmonds [1965b] and Lawler [1976]). The same sources reduce the shortest-
undirected-path problem of conservative graphs to matching problems with similar
gadget-type reductions. However, these and other “Waterloo folklore solutions” do
not give a satisfactory answer to the dual of the minimum-weight T -join problem
(though it is often needed in applications; see below). That is why there were later
several attempts at the solution of the primal and dual problem at the same time; see
Barahona [1980, 1989], Edmonds and Johnson [1973], and Korach [1982]. Barahona
[1989] gave a clear presentation; Barahona and Cunningham [1989] showed an elegant
way to provide an integer dual solution in the bipartite case.

Let n stand for |V (G)| and m stand for |E(G)| in the rest of the paper. In this
section, we will show that a dual flow or a maximum w-packing of T -cuts can be found
by solving n independent matching problems (which can also be carried out in par-
allel). Furthermore, we always get a half-integer solution, and if for all circuits w(C)
is even, then we automatically get an integer solution. Then we collect applications
of weighted and unweighted potentials, the complexity of which is determined by our
algorithm.

In the following, we shall need a subroutine that determines a minimum-weight
T -join. For this we shall use Edmonds and Johnson’s [1973] reduction to matchings,
which we shall describe now. It is the following obvious fact that makes possible the
use of this method.

Lemma 3.1. Suppose that (G,w) is conservative, a, b ∈ V (G), and T := {x ∈
V (G) : dE−(x) is odd}. If F is a |w|-minimum T4{a, b}-join, then in F4E−, any
(a, b)-path is w-shortest.

Remark. Since F4E− is an {a, b}-join, an (a, b)-path contained in it is trivial to
find. Thus Lemma 3.1 reduces the shortest-path problem to finding a minimum T -join
for nonnegative weights. Since, moreover, the zero-weight edges can be contracted, in
the following, we can concentrate on T -joins in graphs with positive weights.

We also remark that the converse of Lemma 3.1 is also true (but irrelevant here):
if P is a w-shortest (a, b)-path, then P4E− is a |w|-minimum T4{a, b}-join.

Proof of Lemma 3.1. Clearly, F4E− is an {a, b}-join, and

w(F4E−) = w(F \ E−) + w(E− \ F )

= |w|(F \ E−) + |w|(F ∩ E−)− |w|(E− ∩ F ) + w(E− \ F )

= |w|(F ) + w(E−).

Thus |w|(F ) and w(F4E−) differ only in a constant independent of F . F is a
|w|-minimum T4{a, b}-join ⇔ F4E− is a w-minimum (a, b)-path ⇔ in F4E−, an
arbitrary circuit has weight 0.

Now let w : E(G) → IIN, and on the edges of the complete graph on H with
V (H) := T, define the weighting c(x, y) := min{w(P ) : P ⊆ E(G), P is an (x, y) path}
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> 0. (c(x, y) can, for instance, be computed by Dijkstra’s algorithm; see, for exam-
ple, Lawler [1976].) The following lemma of Edmonds and Johnson [1973] relates the
w-minimum T -joins of G to the c-minimum matchings of H.

Lemma 3.2. Let G be a connected graph, T ⊆ V (G), where |T | is even, and
w : E(G)→ IIN, and from these let us de�ne H and c in the above way. Furthermore,
let k := |V (H)|/2. If {xiyi : i = 1, . . . , k} is a c-minimum perfect matching in H and

Pi is a shortest (xi, yi)-path (i = 1, . . . , k), then Pi ∩ Pj = ∅ (i 6= j) and
⋃k
i=1 Pi is a

w-minimum T-join in G.
Remark. Applying both Lemmas 3.1 and 3.2, the shortest paths of conservative

graphs can be determined using any matching algorithm (see Algorithm 1 below).
Proof of Lemma 3.2. Let M := {xiyi : i = 1, . . . , |V (H)|/2} be a c-minimum

perfect matching and Pi be a w-minimum (xi, yi) path (i = 1, . . . , k). Thus Pi ∩Pj = ∅
since if Pi ∩ Pj 6= ∅, then w(Pi4Pj) < w(Pi)+w(Pj), and Pi4Pj contains two (edge-)
disjoint paths between two disjoint pairs of points in {x1, y1, x2, y2}, which contradicts
the minimality of M.

The converse of this lemma is also easy. Given nonnegative weights, a minimum-
weight T -join (which is a forest) is easy to split into edge-disjoint paths between pairs
in V (H), and no matter how we carry this out, the pairs will create a c-minimum
matching of H.

We now have the means at our disposal to describe the algorithm based on The-
orem 2.1 (section 2).

Algorithm 1.
Input: graph G, x0 ∈ V (G), and w : E(G)→ ZZ.
Output: either a negative circuit in (G,w) or a feasible w-packing which is fur-

thermore the uniquely existing patch dual flow belonging to (G,w, x0).
0. Contract the zero-weight edges and with the help of Lemma 3.2 above, deter-

mine a |w|-minimum T -join F, T := {x ∈ V (G) : dE−(x) is odd}.
• If |w|(F ) < |w|(E−), then a negative circuit can easily be found in F4E−.

STOP.
• If |w|(F ) = |w|(E−), then GOTO 1.

1. With the help of Lemmas 3.1 and 3.2, determine the weight of a w-shortest
(x0, x) path for every x ∈ V (G), x 6= x0. Let this number be denoted by λ(x). GOTO
2.

2. Let the function λ : V (G) ∪ E(G)→ ZZ be the following:

λ(x) :=


λ(x) if x ∈ V (G),

λ(u) + λ(v) + w(uv)

2
if x = uv ∈ E(G).

• For the value of λ(x) (x ∈ V (G)) and λ(xy) (xy ∈ E(G)), define the compo-
nents of the graph Gi, that is, the set system D. (In the case of bipartite weightings,
λ takes only integer values because λ(x) and λ(y) have the same parity if w(xy) is
even and have different parities if it is odd.) The multiplicities y(D) (D ∈ D) are
easily seen to be computable in the following way:

y(D)← max
e∈E−∩δ(D)

λ(e)− min
e∈E−∩E(D)

λ(e).

(See (2.3b); for a proof, use (̂ı̂ı̂ı).)

V ← {δ(D) : D ∈ D, x0 6∈ D},
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where we mean the multiplicity of C ∈ V, C = δ(D) (D ∈ D), to be y(C) := y(D).

Comments.

• The first step of Algorithm 1 associates the execution of a matching algorithm
with each point x 6= x0 (see Lemma 3.1) of step 0. The matching subroutine carried
out in step 0 can be associated with x0, so a matching algorithm has been associated
with each x ∈ V (G).

In fact, there is no real assymmetry between steps 0 and 1, in other words, between
x0 and the other vertices of G. The assymetry disappears as soon as we consider a
somewhat more general object than graphs (see “towers” in Sebő [1990]).

• For arbitrary real weights, Algorithm 1 works without any change; the only
difference is that the function λ defined in step 2 will not be an integer function.
We prefer to assume that the weights are integer and often that they are bipartite
because then λ is also an integer function and the integrality results that we obtain
are included in a natural way.

Theorem 3.1.

(a) V with multiplicities y(V ) (V ∈ V) is a dual flow.

(b) V and y(V ) (V ∈ V) can be determined by �rst computing the distances in
(G, |w|), then using n parallel running and noncommunicating matching subroutines,
and then executing at most n+m subroutines that �nd the connected components of
a graph. (These can also be executed in parallel and without communication.) The
inputs of the subroutines are graphs on at most n points, and in the input of the
matching algorithm, every weight is the sum of the weights w(e) of at most n edges
e ∈ E(G).

We will assume throughout the paper that the complexity of computing the dis-
tances (in parallel or nonparallel) in a graph with nonnegative weights does not exceed
that of the (parallel or nonparallel) matching algorithms, whence it can be neglected.

Proof of Theorem 3.1. (a) can immediately be seen from (2.3) (that is, Theorem
2.1), and it is an immediate consequence of Lemma 3.1 and 3.2 that Algorithm 1
satisfies the properties described in (b).

Corollary 1. Suppose that we have a weighted matching algorithm whose run-
ning time is t(n) for an input of n points, and suppose that it uses p(n) processors.
Then either a dual multiflow or a negative circuit can also be determined in t(n) time
and with np(n) processors.

According to the results of Mulmuley, Vazirani, and Vazirani [1986], a maximum
matching can be determined in O(log2 n) time with a random parallel algorithm. The
same article solves weighted matching problems for particular weights, but we do not
know of any general efficient parallel algorithm that solves this problem. However,
Mulmuley, Vazirani, and Vazirani note that the general weighted problem is also in
RNC2 if the encoding of the weights is unary. Wein [1991] developed a Las Vegas RNC
algorithm for minimum-weight perfect matchings which is logarithmic polynomial if
the encoding of the weights is unary. Through Theorem 2.1, we get the same results for
dual multiflows and all of their applications. (Wein’s [1991] result itself uses Theorem
2.1.)

In Algorithm 1, Theorem 3.1, and Corollary 1, instead of “dual flow,” we could
of course have written “maximum T -cut packing” for a (G,T ) and a weighting w :
E(G) → ZZ+. Furthermore, Algorithm 1 always defines the uniquely existing patch
packing. Thus for every application of patch packings, we have the following corollary:

In planar networks, with the “dualization” described in section 1 and within the
time limits in Corollary 1, Algorithm 1 either finds a cut that violates the cut condition
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or finds a feasible flow. The “dual distances” (see section 1) taken from the infinite
face can be determined by Algorithm 1, and in this way our result will be the uniquely
existing patch flow. The same holds for the Ising model (see Barahona [1980]). Thus
for these problems as well, a structural decomposition is implied. In the case of an
Eulerian graph, this will automatically be an integer flow.

Of course, to get the best complexity results, one should substitute into Corollary
1 the best possible complexity results that exploit planarity. Finding a logarithmic
polynomial parallel matching algorithm is still an open problem. The best known com-
plexity for matchings in planar graphs is by Lipton and Tarjan [1980]: O(n3/2 logn).
It follows that the sequential complexity of finding a patch flow in planar graphs—and
of all the planar problems mentioned above—is O(n5/2 logn).

Nishizeki, Matsumoto, and Saito [1986] also solved planar flow problems within
this time limit via n matching algorithms; however, these must be successive. In
their algorithm, the input of every matching subroutine depends on the output of all
subroutines carried out previously, and the output of the whole algorithm depends on
the choices made during the running of the algorithm.

Note that the best sequential complexity for the planar Chinese postman problem
has thus far been reached by Barahona [1989] with a direct algorithm that has the
same complexity as the best planar matching algorithm at present, O(n3/2 logn).

We now mention some applications that require more than a simple use of Theo-
rems 2.1 and 3.1.

3.1. Integer packings in graphs without odd K.
(3.1) (Seymour [1977]) Let G be a graph and suppose that T ⊆ V (G), where |T |

is even. If V (G) cannot be partitioned into four T -odd parts so that each induces a
connected graph, and if there exists an edge between any two of the four parts, then the
maximum cardinality of a family of disjoint T -cuts is equal to the minimum cardinality
of a T -join.

Since the constraint of (3.1) remains true after the usual subdivision (or contrac-
tion) of edges, the weighted generalization can be straightforwardly deduced. The
condition of (3.1) is not only sufficient but also necessary to have a maximum w-
packing of T -cuts that is integer for an arbitrary nonnegative integer weight function
w.

(3.1) is an important special case of Seymour’s general characterization of binary
clutters with the strong max-flow min-cut property. It is closely related to the follow-
ing result. (Again, for the sake of simplicity, we state only the cardinality case, which
implies the general case through the usual subdivision of edges.)

If P is a partition of V (G) into T -odd parts each of which induces a connected
graph, then the set of edges whose endpoints are in different parts of P is called a T -
border . The value of this T -border is |P|/2. A T -border B is called bicritical if, upon
contracting all the edges of E(G) \ B (that is, shrinking all the classes of P), we get
a bicritical graph, that is, a graph that has a perfect matching, and according to the
weight function that is −1 on a perfect matching and 1 everywhere else, the distance
between any two points is −1. (It is an easy exercise to show that this definition does
not depend on the chosen matching.)

(3.2) (Sebő [1988]) Let G be a graph and T ⊆ V (G), where |T | is even. The
minimum cardinality of a T -join of G is equal to the maximum sum of the values of
a set of edge-disjoint bicritical T -borders.

Again, (3.2) implies its own weighted generalization in the usual way. (3.2) implies
(3.1) using the following.
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(3.3) (Sebő [1988]) The vertices of a bicritical graph can be partitioned into four
classes of odd cardinality so that, upon contracting all edges with both endpoints in
the same class, we get K4.

The original proof of (3.3) reduces the statement to Seymour’s theorem and points
out that an elementary proof would generate a simple proof of Seymour’s theorem via
(3.2). A simple proof of (3.3) was given by Lovász through the ear decomposition of
nonbipartite matching-covered graphs and by Gerards [1987] in an elementary way.
For an elegant, elementary proof of (3.3), see Frank and Szigeti [1994].

The original proof (see Sebő [1987a]) of (3.2) used Theorem 1.1, and for the sake
of the algorithmic consequences, this is what we must follow here. (In Sebő [1988],
the same proof was described in a self-contained way by substituting the proof of
Theorem 1.1 instead of using it. Frank and Szigeti [1994] replaced Theorem 1.1 by
using (1.4), which combined with their proof of (3.3) is the shortest variant.)

Proof of (3.2). It is trivial that the minimum is greater than or equal to the
maximum. To prove equality, let F be a minimum T -join and define w(e) := −1 if
e ∈ F and w(e) := 1 if e ∈ E(G) \ F . By Guan’s remark (see section 1), (G,w) is
conservative. We can suppose without loss of generality that G is connected. Let
x0 ∈ V (G) be arbitrary. Define D, D′, and D′′ as we did immediately after (2.3), and
apply (2.3).

As we noticed after (2.3), each D ∈ D′′ is partitioned by some elementsD1, . . . , Dk

of D′. If x0 /∈ D, then x0 /∈ D1 ∈ D, . . . , x0 /∈ Dk ∈ D, and by (2.3a), δ(Di) contains
exactly one negative edge for i = 1, . . . , k, and since δ(V (G) \ D) = δ(D), so does
δ(V (G)\D). G−D may be disconnected, but for one of its components—denote it by
D0—δ(D0) contains the unique negative edge of δ(D). Add each component of G−D
except D0 to one of the Di’s (i = 1, . . . , k) adjacent to it. (Since G is connected,
there exists at least one such Di for every component of G−D.) In this way, we get
a partition P(D) := {D0, D

′
1, . . . , D

′
k} whose classes are matched by (k + 1)/2 edges

of F , and there is no other edge of F in the set B(D) of edges joining different classes
of P(D). Thus B(D) is a T -border.

Moreover, B := {B(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint T -borders whose
sum of values is equal to |F |. This proves (3.2) without proving that these T -borders
are bicritical. If some of the T -borders B ∈ B are not bicritical, we will �nd a larger
number of disjoint T -borders with the same value. This will complete the proof of
(3.2) because the number of disjoint T -borders is bounded by the number of edges,
so it has a maximum, and then all T -borders are bicritical.

Let B∗ be the graph that we obtain by contracting E(G)\B (that is, by shrinking
the classes of the underlying partition). F ∩ B is a perfect matching of B∗, and the
weighting w becomes w∗: −1 on F and 1 elsewhere. (B∗, w∗) is conservative. Suppose
that B∗ is not bicritical; let x∗0 6= x∗ ∈ V (B∗) and λB∗,w∗(x

∗
0, x
∗) ≥ 0.

Apply to (B∗, w∗) the argument that we used for (G,w) to find a set of disjoint
V (B∗)-borders of maximum sum of values. We get a set B∗ of disjoint T -borders of
total value |B ∩ F |, the same as the value of B. The T -border in B∗ containing the
negative edge e adjacent to x∗0 contains only edges adjacent to vertices at distance
−1, whence it does not contain the negative edge adjacent to x∗. Thus |B∗| ≥ 2, as
claimed.

The algorithm that follows from this proof for finding the integer packing of (3.2)
is the following.

Algorithm 2.

Input: a graph G and w : E(G)→ IIN.
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Output: a w-packing of T -borders (T -cuts if the condition of (3.1) is satisfied).

1. Find a patch dual flow (see Algorithm 1).

2. Find a w-packing of T -borders using the guidelines of the first part of the proof
of (3.2).

Comment. Of course, the proof must be applied to the graph where each e ∈
E(G) is subdivided into a path of w(e) edges, and if the algorithm really does the
subdivision, the polynomial bound is lost. However, from the multiplicities of the
cuts in the dual flow provided by Algorithm 1, it is straightforward to compute the
multiplicities of the T -borders in the packing without actually doing the subdivision.

3. Decompose each T -border B of the constructed packing into disjoint bicritical
T -borders using the guidelines of the second part of the proof of (3.2), and replace B
with the elements of the decomposition, assigning its multiplicity to each. Continue
this procedure with each of the newly constructed T -borders until there is no more
proper decomposition, that is, until the distance between any two vertices in all of
the T -borders is −1 (according to the weight function defined in the proof of (3.2)),
i.e., until they are all bicritical.

Comment. This step is the same in the weighted and unweighted cases. The
decomposition of a T -border into bicritical T -borders is an unweighted problem.

Theorem 3.2. The integer packing of odd cuts in (3.2) and (3.1) can be found
by solving O(mn2) matching algorithms on minors of G (graphs that arise with the
contraction and deletion of some edges from G) and performing some additional steps
whose order of magnitude is smaller.

Proof. To execute steps 1 and 2, the number of matching algorithms to be solved
is n. After the execution of step 3, the number of bicritical T -borders that decompose
a bicritical T -border is at most the number of edges of the latter. Thus m is an
upper bound for the number of times Algorithm 1 must be applied to the subsequent
T -borders. On each of these T -borders, we have to execute n2 matching algorithms
to prove that they are bicritical or decompose them.

It follows that the maximum integral dual solution to the minimization problem on
a T -join polyhedron described with a minimal totally dual integral (TDI) description
(see Sebő [1988]) can also be computed within the same time limit.

However, note that the bounds in Theorem 3.2 are weaker than those in Corollary
1. We do not see how our parallel complexity estimates could be saved for this case.

3.2. Integer flows—almost. Let (G,w) be ±1-weighted and conservative. Of
course, E− forms a forest. Korach and Penn [1992] proved that there exist pairwise-
disjoint cuts, each of which contains one negative edge, so that every negative edge
is in some of the cuts except perhaps at most one edge of each component of E−; in
fact, for one component of E−, one can require every edge to be in some of the cuts.
Equivalently, for arbitrary weights, Korach and Penn proved the following theorem.

(3.4) If (G,w) is conservative, then there exists F ⊆ E− with |F ∩ C| ≤ 1 for
every connected component C of E− such that for the weight function w′, there exists
an integer dual flow, where w′(e) := w(e) if e ∈ E \F and w′(e) := w(e)− 1 if e ∈ F .

We give the proof of Sebő [1990], which provides an algorithm for finding this dual
flow and the multiflow of Corollary 2 below via Theorem 2.1, with the time limits of
Theorem 3.1.

Proof of (3.4). The usual subdivision of edges leads to a ±1-weighted conservative
graph, so suppose that (G,w) is already one. Let x0 ∈ V (G) be arbitrary and λ(x) :=
λw(x0, x) (x ∈ V (G)). Denote the components of E− by E0, . . . , Ek.
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Claim 3. For every x ∈ V (Ei), there exists at most one y ∈ V (Ei) with xy ∈ Ei
such that λ(y) ≥ λ(x) (i = 1, . . . , k).

Indeed, let xy1, xy2 ∈ Ei, y1 6= y2. A shortest simple (x0, x) path P contains
at most one of these edges—say, it does not contain the edge xy2. Then, however,
P ∪ xy2 is an (x0, y2) path and λ(y2) ≤ w(P ∪ xy2) = w(P )− 1 = λ(x)− 1.

Claim 4. The maximum of λ(x) on V (Ei) is reached on one vertex or the
two endpoints of an edge (i = 1, . . . , k). For every edge uv ∈ Ei but this one,
|λ(u)− λ(v)| = 1.

Indeed, if there are two nonadjacent vertices of Ei with λ(x) maximum, then
these two vertices are joined by a subpath of Ei, which, if it consists of at least two
edges, must contain a vertex, contradicting the claim. If |λ(u)− λ(v)| = 0, then in
exactly the same way, we get from Claim 3 that λ(u) = λ(v) are the only maxima of
λ(x), x ∈ V (Ei).

Thus each Ei (i = 1, . . . , k) contains at most one edge xy with λ(x) = λ(y).
According to (2.4), {δ(D) : D ∈ D′′, x0 /∈ D} is a set of disjoint cuts which contains
every negative edge except those with λ(x) = λ(y), that is, there is at most one
exception in each Ei (i = 1, . . . , k) (see Claim 4).

The following statement of Korach and Penn [1992] is an immediate corollary.
Corollary 2. If (G, c) is an instance of the planar multiflow problem and the

cut condition is satis�ed, then upon decreasing all but one of the demands by 1 (that
is, increasing all the negative capacities by 1), there exists an integer multiflow.

Korach and Penn also noticed that one can, in fact, require F ∩ E0 = ∅ for any
given component E0 of E−. Indeed, in the above proof as well, the choice x0 ∈ V (E0)
makes sure that in Claim 4, λ(x0) = 0, and for every other vertex of E0, λ(x) < 0. In
E0 there is no edge xy with λ(x) = λ(y).

Frank and Szigeti [1995] generalized (3.4) in the following way.
(3.5) Let G be a graph, w : E(G)→ ZZ, and E0, E1, . . . , Ek, Ek+1, . . . , Ek+l be the

components of E−. Suppose that w(C) ≥ s(C) holds for every circuit C of G, where
s(C) := |{i ∈ {1, . . . , k} : Ei ∩ C 6= ∅}| .

Then there exists a set F ⊆ Ek+1 ∪ · · · ∪ Ek+l such that |F ∩ Ei| ≤ 1 if i =
k + 1, . . . , k + l, with the property that, upon decreasing the demand of e ∈ Ei ∩ F by
1 (i = k + 1, . . . , k + l), there exists a dual multiflow.

The proof of Frank and Szigeti consists of splitting every vertex v ∈ E1 ∪ · · · ∪Ek
into two vertices v1 and v2, where v1 is incident to the positive edges and v2 is incident
to the negative edges of δ(v). v1 and v2 are joined by an edge of weight −1/2. If
the condition of (3.5) is satisfied, then the constructed graph with the constructed
weighting is conservative, and applying the proof of (3.4) to this graph with this
weight, we can obtain the dual multiflow stated in (3.5).

Frank and Szigeti [1995] also observed the following immediate corollary.
Corollary 3. If (G,w) is conservative and w(δ(X)) +w(δ(X)∩E−) ≥ 0, then

there exists an integer dual multiflow.
Theorem 3.1 then implies the following:
The integer (dual) multiflow in (3.4), (3.5), and Corollary 3 can be found within

the same time limits as those in Corollary 1. Of course, the same holds for integer
multiflows in planar graphs.

3.3. Packing cuts exactly. Finally, let us comment on the complexity of inte-
ger odd cut packings. Let G be a graph and T ⊆ V (G), where the number of vertices
of T in each component of G is even. (G,T ) is said to have the Seymour property
if the minimum cardinality of a T -join is equal to the maximum cardinality of a set
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of disjoint T -cuts. Accordingly, (G,w) (w : E(G) → ZZ) has the Seymour property
if there exists an integer dual flow. Middendorf and Pfeiffer [1989] proved that it is
NP-complete to test the Seymour property, even in planar graphs.

Therefore, instead of the Seymour property, our interest turns towards Seymour
graphs. G is called a Seymour graph if for arbitrary w : E(G)→ {−1, 1} for which the
cut condition holds, there exists an integer dual multiflow. Through the subdivision of
edges, the weighted generalization is the following: G is a Seymour graph with respect
to the weight function w : E(G)→ IIN if for an arbitrary w′ : E(G)→ [−|w(e)|, w(e)]
such that w′(e) ≡ w(e) mod 2 and the cut condition holds, there exists an integer
dual multiflow. (This is the class of weight functions that one gets by independently
signing the parts of a subdivided edge. In the following, we will restrict ourselves to
unweighted Seymour graphs since the generalization is trivial and somewhat artificial.)
It is not known whether the problem of deciding whether a graph G is a Seymour
graph is polynomially solvable or coNP-complete. (It is not trivial but true that it is
in coNP, as we shall see later.) However, the following somewhat weaker results are
known:

As Seymour’s result (1.3) implies that bipartite graphs are Seymour graphs, so
does (3.1) imply that series-parallel graphs are Seymour graphs. (The latter statement
can also be easily proved directly without using (3.1).) Gerards [1992] proved a
common generalization of these two results. A sharpening of this that provides a
coNP characterization of Seymour graphs was conjectured by Sebő [1991] and proved
by Ageev, Kostochka, and Szigeti [1995]. The following simplified version still provides
a polynomially checkable obstacle, and it suffices for our purposes.

(3.6) G is not a Seymour graph if and only if there exists a signing of the edges
such that the union of zero-weight circuits (in fact, of only two zero-weight circuits)
is nonbipartite.

The proof of the if part of this conjecture is a straightforward exercise.
The proof of the only if part given by Ageev, Kostochka, and Szigeti is based on

Theorem 1.1 in such a way that Algorithm 1 can be straightforwardly substituted in
it, and the corresponding polynomial bounds follow easily:

Given the graph G and w : E(G) → {−1, 1}, there is a polynomial algorithm
which either (a) finds an integer dual multiflow in (G,w) or a negative circuit or (b)
exhibits a weight function w′ : E(G)→ {−1, 1} for which (G,w′) is conservative but
no integer dual multiflow exists. In the latter case, a “good certificate” (a nonbipartite
graph and two zero-weight circuits covering all the edges) is provided.

As a consequence, the unweighted dual multiflow problem is polynomially solvable
in Seymour graphs , and all of the consequences provided by the Corollary 1 also hold.
Let us finally state the specialization to planar graphs (after dualization):

Given the graph G = (V,E) and R ⊆ E, there is a polynomial algorithm which
either (a) finds an integer multiflow in (G,R) or a violated cut or (b) exhibits R′ ⊆ E
for which the cut condition is satisfied (certificate: a half-integer multiflow) but no
integer multiflow exists (certificate: two zero-weight cuts whose union is odd).

As a consequence, the edge-disjoint paths problem is polynomially solvable in dual
Seymour planar graphs. The main open problem of whether Seymour graphs are in
NP and whether they can be recognized in polynomial time remains.

3.4. Weighted and canonical matching and T -join structure. If V (G) is
odd, a matching M will be called perfect if it leaves exactly one vertex uncovered.
The maximum- (or minimum-) weight matching problem can be easily reduced to the
problem of finding minimum-weight perfect matchings. If w : E(G) → IR, we will
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denote by τ(G,w) the minimum weight of a perfect matching in G.

It is now easy to deduce the consequences of Theorems 2.1 and 3.1 to weighted
matchings:

Add a large number N (say, N is the sum of the absolute values of the weights) to
the weight of every edge. Add a new vertex x0 to G, and join it to every vertex with
an edge of weight N . Let G′ denote this new graph and w′ denote the weight function
that we defined on its edges. It is easy to see that the w′-minimum T := V (G′)-joins
(or T := V (G′) \ {x0}-joins, depending on which of the two is even) of G′ are exactly
the w-minimum perfect matchings of G (after deleting the edge adjacent to x0 if
|V (G)| is odd).

Choose a minimum-weight perfect matching of G or G′ (depending on whether
|V (G)| or |V (G′)| is even), and change the sign of the weights of the edges in it.

It is now easy to see that the distance of the vertex x ∈ V (G) from x0 is the
number τ(G − x,w) − τ(G,w). Note that it is independent of the particular w-
minimum matching chosen.

From a maximum 2-packing of T -cuts in G′, a maximum odd cut packing of G can
also be reconstructed. That is, Theorem 1.1 can be adapted to weighted matchings.
The “magic” numbers should be defined to be τ(G− x,w)− τ(G,w). These numbers
will be equal to the distances with the chosen weights; these independently computable
numbers determine a packing of odd cuts, which could be called a “patch packing”
and which generalizes the Gallai–Edmonds structure of maximum matchings. (See
more about the relation of Theorem 1.1 and the Gallai–Edmonds structure theorem
in Sebő [1990].)

Algorithm 1 and Lemmas 3.1 and 3.2 can be applied to other problems involving
integer packings in a similar way. We mention some results whose proofs involve
Theorem 1.1 (or 2.1) so that they can be accompanied by a polynomial algorithm
that combines Lemmas 3.1 and 3.2 and Algorithm 1.

A generalization of the Kotzig–Lovász theorem (Sebő [1987a, b]) provides a “canon-
ical partition” (implying new results on integer feasible flows or the computation of
the dimension of T -join polyhedra or multiflows). This canonical partition can be
computed via the distances, that is, with Lemmas 3.1 and 3.2. Thus the integer pack-
ings and flows of Sebő [1990], or perhaps a negative cut or an odd circuit consisting of
tight edges, or a set violating the cut condition or some stronger condition (see Sebő
[1987b]) can also be found in polynomial time.
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