Problems about Uniform Covers, with Tours and Detours (Oberwolfach Report)

András Sebő

(joint work with Yohann Benchetrit and Matěj Stehlík)

Is $\underline{1}$ a linear or integer combination of some combinatorially interesting vectors? Some examples, with detours:

1. Tours

A tour in the graph G = (V, E) is an Eulerian 0 - 1 - 2 function on the edges (even on stars, connected support). We adapt Wolsey's argument [16] to prove:

Fact: If G is 3-edge-connected, the all 1 function $\underline{1}$ is in the convex hull of tours.

Proof. 2/3 dominates a point in the spanning tree polytope (satisfies subtour elimination); $\underline{1}/3$ dominates a point in the T-join polyhedron, for all T. It is then easy to see that $\underline{1} = \underline{2}/3 + \underline{1}/3$ is in the convex hull of trees + an edge-set for each tree correcting the parities of its degrees. \Box

The same holds for T-tours, that is, connected T-joins, in particular $\{s, t\}$ -tours.

Problem 1: Can this bound be improved for tours?

The answer is probably yes: by the '4/3 integrality gap conjecture' [8] $\underline{4}/3 \times \underline{2}/3 = \underline{8}/9$ is in the convex hull of tours. For $\{s,t\}$ -tours $\underline{3}/2 \times \underline{2}/3 = 1$.

We make now a detour to a lower bound that is in some cases better than linear programming. The more there are degree 2 vertices the better it is.

Let G=(V,E) be a graph, m:=|E|, n:=|V|. There is a unique graph $G^*=(V^*,E^*)$, $m^*:=|E^*|$, $n^*:=|V^*|$ without degree 2 vertices of which G is a subdivision. Let T_G be the set of odd degree vertices of G, τ the minimum size of a T_{G} -join, and OPT the minimum size of a tour.

Inequality: Let G be a 2-edge-connected graph. Then $m+\tau-2k \leq OPT \leq m+\tau$, where $k=m-n+1=m^*-n^*+1$ is the number of ears in an ear-decomposition.

Proof. Consider a tour in G = (V, E), and let F be the set of edges of multiplicity 2 or 0, and $F^* \subseteq F$ those of multiplicity 0; F is a T_G -join.

Since $E \setminus F^*$ is connected, $|E \setminus F^*| \ge n-1$, that is, $|F^*| \le m-n+1 = m^*-n^*+1=k$. The tour length is: $|E|+|F|-2|F^*| \ge m+\tau-2k$.

Note that the upper bound is just the minimum of the Chinese Postman trail; F^* contains at most one edge of each series class; the inequality and its proof can be straightforwardly generalized to weights.

Corollary: For the subdivisions of a given graph the solution of the Chinese Postman problem has a constant additive error for the smallest tour.

Problem 2: When the lower bound is bad (k is large), the upper bound can also be replaced by a much smaller value! How to improve the bounds in a useful way?

2. H-perfect graphs

Given a graph G and a non-negative rational λ , the fractional chromatic number χ_f is the minimum of λ such that $\underline{1}/\lambda$ is in the stable set polytope. For t-perfect graphs [13] the maximum of $\underline{1}$ on $\{x \in \mathbb{R}^{V(G)} : x(S) \leq 1, \text{ for all stable } S, x \geq 0\}$ is at most 3, so the optimum of the dual, $\chi_f \leq 3$.

Shepherd conjectured that the same is true for the chromatic number χ .

Laurent and Seymour [13] realized that the complement of the line graph of the prism (a prism is the complement of C_6) is a counterexample. This graph is the "t-minor" of a 3-colorable t-perfect graph, contradicting the integer round-up property of 3-colorable t-perfect graphs, conjectured by Shepherd [15]. It is then natural to conjecture 4-colorability. Actually more could be true:

Conjecture 3: Every h-perfect graph is $\omega + 1$ - colorable ($\omega :=$ clique-number). **Theorem**: If this conjecture is true for $\omega = 2$, then it is true in general.

Proof. If $\omega > 2$, the optimal face is that of the ω -cliques so any stable set active in an optimal dual solution meets all ω -cliques.

Benchetrit [1] found that the complement of the line graph of a 5-wheel is also a counterexample to Shepherd's conjecture. In some sense the two counterxamples are the only obstacles to the integer round-up property [1].

We make now a detour to the maximum number, β , of starting odd ears in an ear decomposition [3], related to h-perfect graphs, rounding, the matching polytope; expressing the complexity of the latter. This is joint work with Yohann Benchetrit.

Question 4: What is the complexity of computing β ?

We call θ here a subgraph consisting of three edge-disjoint paths, two of which are odd, and one even, between two fixed vertices of a graph. A basis of the cycle space (over GF(2)) of a graph that consists only of odd cycles will be called an *odd cycle-basis*. The existence of an odd cycle basis of a non-bipartite graph immediately follows from the open ear-decomposition of 2-connected graphs, and the following easy and well-known fact [11]: in a 2-vertex-connected non-bipartite graph there exist both an even and an odd path between any two vertices. The following theorem straightforwardly implies a characterization of h-perfect line graphs.

Theorem Let G be a 2-vertex-connected graph. The following are equivalent:

- (i) There exists no θ in G.
- (ii) $\beta(G) \leq 1$.
- (iii) Any two simple odd cycles have an odd number of common edges.
- (iv) In each odd cycle basis, any two cycles meet in an odd number of edges.
- (v) There exists an odd cycle basis with the property stated in (iii).

Proof. Any of (i) or (iii) imply (ii), since an odd cycle C completed by an open odd ear P is a θ , and contradicts (iii). These are known from [5], [6], the rest is from [3].

Supposing (ii) the proof of (iii) is a graph-theory exercise: if two cycles, Q_1 and Q_2 do not satisfy (iii) and $|V(Q_1) \cap V(Q_2)| \geq 2$, then $|E(Q_1) \setminus E(Q_2)|$ is odd, easily contradicting (ii). Otherwise Q_1 and Q_2 are edge-disjoint and one concludes using Menger's theorem.

Two implications are straightforward: (iv) is just a special case of (iii), and (v) is a special case of (iv). Last, but not least, if (v) holds, then any odd cycle is the mod 2 sum of an odd number of cycles, and then knowing (iii) for the basis, it follows for any pair of odd cycles. \Box

3. Hereditary hypergraphs

This section reports about joint work with Matěj Stehlík [14]. Let H=(V,E) be a hereditary hypergraph: if $e \in E$ all subsets of e are in E.

Closed Problems:

- 1. Is $\underline{1}$ an integer sum of incidence vectors of $e \in E$, $|e| \geq 2$?
- 2. Compute the minimum size ρ of a cover of V by members of E.
- 3. Compute the maximum size μ of a set that can be partitioned into $e \in E$, $|e| \geq 2$. Such a set is called a μ -matching.

Theorem: Problem 2. is NP-hard (SET COVER) but 1. and 3. are polynomially solvable. Furthermore, there exists a cover of size ρ containing a μ -matching.

The polynomial algorithms are easy consequences of vertex-packing edges and triangles [7], whereas the last sentence follows from [11][Exercise 9.4], originating from Gallai's work [10]. Yet the connections provide a new insight into packing and covering: the difficult theorem of Gallai [10] is equivalent to the factor-critical version of [9], and relevant information is smuggled in about the NP-hard problem of minimum covers, and by transposition, about minimum transversals [14].

Problem 5: Study some conjectures about packing, covering and minimum transversals bearing in mind the connections mentioned above.

4. Triangles

Problem 6: [12] Characterize the graphs for which $\underline{1}$ is a nonnegative combination of triangles as edge-sets. In other words, can the system of linear inequalities describing the cone of triangles of a graph be described?

The origins of this problem are in regular covers of edges by triangles, see [12].

Acknowledgment of support: PERSYVAL-Lab (ANR-11-LABX-0025-01)

References

- [1] Y. Benchetrit, PhD Thesis, in preparation
- [2] Y. Benchetrit, Integer round-up for some h-perfect graphs, submitted
- [3] Y. Benchetrit, A. Sebő, On the complexity of matching polytopes, in preparation
- [4] H. Bruhn, M. Stein, Mathematical Programming, series A, 133 (1-2), 461–480 (2012)
- [5] D. Cao, Topics in node packing and coloring, PhD thesis, Georgia Institute of Technology
- [6] D. Cao, G. Nemhauser, Polyhedra and perfection of line graphs, DAM, 81, 141–154 (1998)
- [7] G. Cornuéjols, D. Hartvigsen, Pulleyblank, Packing Subgraphs in a Graph, Operations Research Letters, 4, 139–143 (1982)
- [8] R. Carr, S. Vempala, On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems, Mathematical Programming, series A, 100, 569–587 (2004)
- [9] T. Gallai, Neuer Beweis eines Tutte'schen Satzes A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 8, 135–139, 1963.
- $[10]\,$ T. Gallai, Kritische Graphen II, -"-, 373–395, 1963.
- [11] L. Lovász, Combinatorial Problems and Exercises,
- [12] S. Poljak, A. Sebő, P. Seymour, Open Problem 8, Graph Minors, Robertson, Seymour, p.680
- [13] A. Schrijver, Combinatorial Optimization, North Holland (2002)
- [14] A. Sebő, Stehlík, Matching and Covering in Hereditary Hypergraphs, in preparation
- [15] B. Shepherd, Applying Lehman's theorem to packing, Math. Prog. 71, 353-367 (1995)
- [16] L. Wolsey, Heuristic analysis, LP, and branch and bound, Math. Prog. S. 13 (1980), 121–134