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Is 1 a linear or integer combination of some combinatorially interesting vectors?
Some examples, with detours:

1. TOURS

A tour in the graph G = (V, F) is an Eulerian 0 — 1 — 2 function on the edges
(even on stars, connected support). We adapt Wolsey’s argument [16] to prove:

Fact: If G is 3-edge-connected, the all 1 function 1 is in the convex hull of tours.

Proof. 2/3 dominates a point in the spanning tree polytope (satisfies subtour elimination) ; 1/3
dominates a point in the T-join polyhedron, for all T. It is then easy to see that 1 =2/3+1/3
is in the convex hull of trees + an edge-set for each tree correcting the parities of its degrees. [

The same holds for T-tours, that is, connected T-joins, in particular {s, ¢t }-tours.
Problem 1: Can this bound be improved for tours?

The answer is probably yes: by the ‘4/3 integrality gap conjecture’ [8] 4/3 X
2/3 =8/9 is in the convex hull of tours. For {s,¢}-tours 3/2 x 2/3 = 1.

We make now a detour to a lower bound that is in some cases better than linear
programming. The more there are degree 2 vertices the better it is.

Let G = (V,E) be a graph, m := |E|, n := |V|. There is a unique graph
G* = (V*,E*), m* := |E*|, n* := |V*| without degree 2 vertices of which G is a
subdivision. Let T be the set of odd degree vertices of G, 7 the minimum size of
a Tg-join, and OPT the minimum size of a tour.

Inequality: Let G be a 2-edge-connected graph. Then m+7—2k < OPT < m+T,
where k =m—n+1=m"—n*+1 is the number of ears in an ear-decomposition.

Proof. Consider a tour in G = (V| E), and let F' be the set of edges of multiplicity
2 or 0, and F* C F those of multiplicity 0; F is a Tg-join.

Since E \ F* is connected, |E \ F*| > n — 1, that is, |[F*| < m—-n+1 =
m* —n* +1 = k. The tour length is: |E|+ |F| —2|F*| > m + 7 — 2k. O

Note that the upper bound is just the minimum of the Chinese Postman trail;
F* contains at most one edge of each series class; the inequality and its proof can
be straightforwardly generalized to weights.

Corollary :  For the subdivisions of a given graph the solution of the Chinese
Postman problem has a constant additive error for the smallest tour.

Problem 2: When the lower bound is bad (k is large), the upper bound can also
be replaced by a much smaller value! How to improve the bounds in a useful way?
1



2 Oberwolfach Report /

2. H-PERFECT GRAPHS

Given a graph G and a non-negative rational A, the fractional chromatic number
Xy is the minimum of X such that 1/X is in the stable set polytope. For t-perfect
graphs [13] the maximum of 1 on {z € RV(%) . 2(S) < 1, for all stable S,z > 0}
is at most 3, so the optimum of the dual, x; < 3.

Shepherd conjectured that the same is true for the chromatic number .

Laurent and Seymour [13] realized that the complement of the line graph of
the prism (a prism is the complement of Cg) is a counterexample. This graph is
the “t-minor” of a 3-colorable t-perfect graph, contradicting the integer round-up
property of 3-colorable t-perfect graphs, conjectured by Shepherd [15]. It is then
natural to conjecture 4-colorability. Actually more could be true:

Conjecture 3: Every h-perfect graph is w + 1 - colorable (w := clique-number).
Theorem: If this conjecture is true for w = 2, then it is true in general.

Proof. If w > 2, the optimal face is that of the w-cliques so any stable set active in an optimal
dual solution meets all w-cliques. O

Benchetrit [1] found that the complement of the line graph of a 5-wheel is also a
counterexample to Shepherd’s conjecture. In some sense the two counterxamples
are the only obstacles to the integer round-up property [1].

We make now a detour to the maximum number, 3, of starting odd ears in an ear de-
composition [3], related to h-perfect graphs, rounding, the matching polytope; expressing
the complexity of the latter. This is joint work with Yohann Benchetrit.

Question 4: What is the complexity of computing 87
We call 0 here a subgraph consisting of three edge-disjoint paths, two of which are odd, and

one even, between two fixed vertices of a graph. A basis of the cycle space (over GF(2)) of a
graph that consists only of odd cycles will be called an odd cycle-basis. The existence of an
odd cycle basis of a non-bipartite graph immediately follows from the open ear-decomposition
of 2-connected graphs, and the following easy and well-known fact [11]: in a 2-vertez-connected
non-bipartite graph there exist both an even and an odd path between any two wvertices. The
following theorem straightforwardly implies a characterization of h-perfect line graphs.
Theorem Let G be a 2-vertex-connected graph. The following are equivalent:

(i) There e:m'sts no 6 in G.

(ii) B(G) <
(iii) Any two szmple odd cycles have an odd number of common edges.
(iv) In each odd cycle basis, any two cycles meet in an odd number of edges.
(v) There exists an odd cycle basis with the property stated in (iii).

Proof. Any of (i) or (iii) imply (ii), since an odd cycle C' completed by an open odd ear P is a
0, and contradicts (iii). These are known from [5], [6], the rest is from [3].

Supposing (ii) the proof of (iii) is a graph-theory exercise: if two cycles, @1 and Q2 do not
satisfy (iii) and |[V(Q1) N V(Q2)| > 2, then |E(Q1) \ E(Q2)| is odd, easily contradicting (ii).
Otherwise @1 and Q2 are edge-disjoint and one concludes using Menger’s theorem.

Two implications are straightforward: (iv) is just a special case of (iii), and (v) is a special
case of (iv). Last, but not least, if (v) holds, then any odd cycle is the mod 2 sum of an odd
number of cycles, and then knowing (iii) for the basis, it follows for any pair of odd cycles. O



3. HEREDITARY HYPERGRAPHS

This section reports about joint work with Matéj Stehlik [14]. Let H = (V, E)
be a hereditary hypergraph: if e € E all subsets of e are in E.
Closed Problems:

1. Is 1 an integer sum of incidence vectors of e € E, |e| > 2 ?

2. Compute the minimum size p of a cover of V' by members of E.

3. Compute the maximum size p of a set that can be partitioned into e € F,
le] > 2. Such a set is called a p-matching.

Theorem: Problem 2. is NP-hard (SET COVER) but 1. and 3. are polynomially
solvable. Furthermore, there exists a cover of size p containing a p-matching.

The polynomial algorithms are easy consequences of vertex-packing edges and
triangles [7], whereas the last sentence follows from [11][Exercise 9.4], originating
from Gallai’s work [10]. Yet the connections provide a new insight into packing
and covering: the difficult theorem of Gallai [10] is equivalent to the factor-critical
version of [9], and relevant information is smuggled in about the NP-hard problem
of minimum covers, and by transposition, about minimum transversals [14].

Problem 5: Study some conjectures about packing, covering and minimum transversals bearing
in mind the connections mentioned above.

4. TRIANGLES

Problem 6: [12] Characterize the graphs for which 1 is a nonnegative combination of triangles
as edge-sets. In other words, can the system of linear inequalities describing the cone of triangles
of a graph be described 7

The origins of this problem are in regular covers of edges by triangles, see [12].
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