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t-joins are generalizations of postman tours, matchings, and paths; t-cuts contain planar 
multicommodity flows as a special case. In this paper we present a polynomial time combinatorial 
algorithm that determines a minimum t-join and a maximum packing of t-cuts and that ends up 
with a Gallai-Edmonds type structural decomposition of (G, t) pairs, independent of the running 
of the algorithm. It only uses simple combinatorial steps such as the symmetric difference of two 
sets of edges and does not use any shrinking operations. 
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I. Introduct ion 

Let G be an undi rec ted  graph and t: V ( G ) ~ _ .  V(G) is the vertex set and E ( G )  

the edge-set of  the graph G. (7/ is the set of  integers.) F c  E ( G )  is called a t-join 
if dr(x) =-- t(x) rood 2 V x c  V(G). (d~-(x):= [{ec F :  e is adjacent  to x}[. Since all 

congruences  will be "rood 2," we shall omit  " m o d  2" in the notat ion.)  It is not 

difficult to see that G possesses a t-join if and only if t(V(G')) =- 0 for each connected 

c o m p o n e n t  G' .  (See Section 2 for the cons t ruct ion  of a t-join. If f :  X 4 Z, then 

f ( X )  := Y {f (x ) :  x ~ X}.) Suppose G is connected,  t (V(G))  =- 0 and let r := ~'(G, t) := 

min{lF[: F is a t-join}. If ]F I = T(G, t), then F is called a minimum t-join. 

For X c V(G), G( X)  denotes the subgraph of G induced by X, E ( X )  := E(G(X) )  
and  6 ( X ) : = { x y c E ( G ) : x c X ,  y ~ X } .  6(X)  is called the coboundary of X. K c  

E(G) is a cut if K = 6(X)  for some X & V(G). If t (X)  -~ 1, then X is called a t-odd 
set and  6(X)  is called a t-cut. Obviously,  ]Fc~ K] ~ 1 for any t-join F and any t-cut 

K. 

A k-packing (k ~ 7/, k I> 0) of t-cuts is a family Y{" of t-cuts with ]{K c K: e c K}I ~< k 

for each e c E(G).  Repeti t ions are allowed in Yr. Let Uk := Uk(G, t):= max{lY{]: Y{ is 

a k-packing  of t-cuts}. A 1-packing is s imply called a packing and  u := ul- It is easy 

to see that r>~ u2 /2~  > v. The following min imax  theorems hold: 
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Theorem 1.1 [10]. ~-(G, t )=  ~'2(G, t)/2. 

Theorem 1.2 [16]. I f G  is bipartite, then ~-(G, t) = u(G, t). 

These are sharpened, respectively, by the following results: 

Theorem 1.3 [6]. r (G,  t)=~max{Y~7=, q,(X,): {X, . . . . .  Xi,}c ~(V(G) )}  where 
~ ( X )  denotes the set of partitions of X and q,(X) for X c V(G) denotes the number 
of t-odd components of G - X. 

Theorem 1,4 [6]. If  G is bipartite with classes A and B, then ~-(G, t )=  

max{Z~=, q,(X,): {X, . . . .  , Xk} e ~(A)}. 

Note that Theorem 1.4 trivially implies all the previous theorems and the Berge- 
Tutte theorem on matchings (cf. [6]). A surprisingly short proof of Theorem 1.4 is 
given in [14] (cf. also [6]). A fifth minimax theorem is presented in [15], which 
provides the minimal TDI description (Schrijver system) of t-join polyhedra, This 
theorem contains Theorems 1.1 and 1.2 but seems to be independent of Theorems 
1.3 and 1.4. On the other hand, Theorems 1.1-l.4 and the "Schrijver system" are 
implied by a "structure theorem" of t-joins proved in [12]. None of these theorems 
will be used in the present paper. Quite the contrary--an algorithmic proof is provided 
Jbr the "'structure theorem'" and hence.for all of these results. 

A path in this paper is considered to be a set of edges. When a repetition of 
vertices and edges is allowed, we use the term walk If the two endpoints of a path 
(walk) coincide, then it is called a circuit (closed walk). The length of a path, walk, 
etc., is the number of its edges (with multiplicity). The vertex set of a path P is 
denoted by V(P). If x, y ~ V(P),  then P(x, y) is the subpath of P joining x and y. 
"A "  denotes the symmetric difference operation. 

A postman tour is a closed walk in G that contains each edge of G at least once. 
It is easy to see that there is a one-to-one correspondence between minimum-length 
postman tours and minimum de-joins (de:--de(G~). Further applications (e.g., 
matchings and • paths) are summarized in [13]. 

The problem of finding minimum-length postman tours (the Chinese postman 
problem) was posed by Mei Gu Guan in [7], where an algorithm is also suggested. 
This algorithm proceeds by finding an arbitrary de-join F first and then achieving 
improving steps. An improving step can be achieved if and only if there exists a 
circuit C with IC\FI < IC c~ F I. Such a circuit will be called an improving circuit. If 
C is an improving circuit, then I C A F I < I F  I, and since C A F  is also a t-join, we 
can decrease the size of the current t-join. Conversely, if F' is a t-join, IF'I < Ill ,  
then F 'A  F has all degrees even and contains an improving circuit. This idea is 
appealing, but Guan does not give a polynomial algorithm to find an improving 
circuit. As Lawler [9] remarks: "The only trouble with these observations, as 
Edmonds pointed out, is that it is not apparent how one should detect negative 
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circuits in an undirected network. The ordinary shortest path computations do not 
apply to undirected networks in which some arcs have negative length. And any 
apparent  process of  enumeration involves a lengthy computat ion."  (Improving 
circuits are negative circuits if we put weight -1  on e~ F and weight +1 on 
e~E(G) \F . . )  

Polynomial algorithms for solving the Chinese postman problem have been 
presented in [1, 3, 4, 8]. Let us remark that each known algorithm for finding the 
minimum cardinality postman tour makes use of  or is an adaptation of Edmonds 's  
weighted matching algorithm and works with a linear programming framework 
which is quite strange for the cardinality case. Fractional (dual) solutions may occur 
and may be used in the course of  solving the problem. The packing determined by 
these algorithms depends on the algorithmic execution. 

In this paper  we turn back to Guan 's  original approach by defining and using a 
generalization of the improving circuits. We describe a direct combinatorial 
algorithm that finds a minimum t-join and a maximum packing of t-cuts through 
elementary improving steps, in polynomial time. The algorithm ends up with a 
packing that does not depend on the execution of the algorithm and is actually the 
unique "canonica l"  maximum packing of t-cuts (cf. [12] and below). 

Let us now say a few words about the origins of  this paper. The essential step of 
all versions of  Edmonds 's  matching algorithm is a certain "blossom shrinking" 
operation, presented in his celebrated paper  [2], and the same shrinking operation 
occurs in the algorithms that solve generalizations of  the matching problem (cf., 

e.g., [1,3, 5, 8, l l ] ) .  In the present paper  our starting point is a new principle 
presented by Lov~isz [ 11 ], which yields an entirely new interpretation of the matching 

algorithm. Lov~isz's version keeps in each step a list of  equal size matchings at hand, 
and constructs a "tentative . . . .  Gal la i -Edmonds  partit ion" corresponding to this list. 
I f  the current partition happens to be the Gal la i -Edmonds  partition of the graph, 
then the algorithm stops by concluding that each matching of the list is maximum. 
If  it is not, then either a matching of greater cardinality is determined starting a 
new list, or a matching of  the same cardinality is added to the list. In the latter 
case, the tentative partition corresponding to the new list turns out to be better in 
some sense. 

The "structure theorem" of t-joins proved in [ 12] generalizes the Gal la i -Edmonds  
theorem. It claims the existence of a unique "canonical"  packing of t-cuts that 
characterizes the set of all minimum t-joins. It will be stated here in the form of an 
"optimali ty criterion" and will be proved algorithmically. It will play the same role 
as the Gal la i -Edmonds  theorem in Lovfisz's algorithm. That is, the algorithm does 
not rely on the theorem; the knowledge of the theorem serves merely as a motivation 
for the algorithm. Thus the paper  is self-contained and provides an independent 
algorithmic proof  of  the structure theorem. This algorithm contains Lovfisz's 
algorithm as a special case, but the case analysis of  the latter becomes considerably 
simpler at the level of  t-joins. 

The paper  is organized as follows. In Section 2 we define the notions needed to 
describe the algorithm and state the optimality criterion that controls the algorithm, 
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Sections 3 and 4 present  and explain the main  steps. In Section 5 a br ief  summary  
of  the a lgor i thm is given together  with some comments .  

2. Preliminary remarks 

The pair  (G, t), where G is an arbi trary graph  and t : V(G) ~ 2v, t (V(G))  -= 1, will 
be called a tower. I f  (G, t) is a tower  and a ~ V(G), set 

{ t(x) if x ~  a, 
t a ( x ) : = [ t ( x ) + l  i f x  = a. 

The input  o f  the a lgori thm will be a tower  (G, t), and the output  will be a min imum 
tX-join for  all x c  V(G). This output  is enough to obtain a canonical  packing of  
tX-cuts for  all x c  V(G) (Section 5). 

Towers  enable  us to generalize improving  circuits. Clearly, if  F a is a ta-join and 
P is an (a, b) path,  then F~'AP is a tb-join. I f  F b is a tb-join and [ fa~Pl<lFb[ ,  
then we say that P is an F~-improving path. I f  a = b, we get back  G u a n ' s  improving  
circuits. 

We shall often use the trivial fact that  the symmetr ic  difference of  a t~ and 
a th-join is the disjoint  union of  an (a, b) path and circuits. Assignments  will be 
denoted by " ~ " .  

Before getting into the details of  improving  paths,  we simplify our  problem.  We 
show that  it is enough to deal with towers ((3, t) where G is bipart i te;  these will be 
called bipartite towers. Let ( G, t) be an arbi trary tower, and divide each edge e ~ E ( G )  
into two edges with a new vertex re. Denote  the result by G ' ,  and define 

t,(x):={to(X) i f x c  V(G), 
if x =  re, e~ E( G). 

(G ' ,  t') is a bipart i te  tower. It is s t ra ightforward to see that  the natural  one- to-one 
cor respondence  be tween r ' - jo ins  of  G and t ': '-joins of  G ' ,  and between 2-packings 
of  tY-cuts o f  G and packings  of  t'X-cuts o f  G ' ,  doubles  the cardinal i ty of  U-joins 
and preserves the cardinal i ty of  packings o f  tX-cuts. So it preserves opt imali ty ,  and 
we may therefore  suppose  in the following that  ((3, t) is a bipart i te  tower. (It  might,  
of  course, be useful in practice to work directly on the nonbipar t i te  tower  without  
doubl ing the edges. The cor responding  a lgor i thm can be deduced f rom the bipart i te 
case.) For  bipart i te  towers  some s ta tements  become  sharper  ( compare  e.g., Theorem 

1.2 with Theorem 1.1, and Theorem 1.4 with Theorem 1.3), and m a n y  technical  
details b e c o m e  s impler  to describe. 

The a lgor i thm starts by determining an arbi t rary P - jo in  F x, for each x e V(G) .  
It is enough to consider  one x e V(G)  since we can get F y f rom F y ~- F ~ A P, where 
P is an (x, y)  path.  It is easy to construct  a tX-join: I f  F c  E(G)  and a ~ b ~ V(G), 
dF(a)~ tX(a), d z ( b ) ~  tX(b), then F ~ F A P  where P is an (a, b) path  increases 
the n u m b e r  of  vertices v e V(G) with dF(v) =-- r~(v). Starting f rom F = 0 and repeat-  

ing this step, we get a t~-join. Let 7r(x):= IFXl . In each step of  the a lgori thm IFXl 
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will be decreased for some x6  V(G), until for each x~ V(G), F ~ is a minimum 
tX-join. When F x changes, ~-(x) must be changed accordingly. 

Now we return to the improving paths. The following two propositions ale 
immediate consequences of  their definition: 

Proposition 2.1. I f  abe E(G)  and 7r(b)< rr(a) -1 ,  then the edge ab is an F ~- 
improving path. 

Proposition 2.2. Let P c  F O A F  b be an ( a , b )  path and pc  V(P). P(a,p)  is an 
FP-improving path if and only if 

I Fo n P(a, P ) I -  [F h n n(a, P)I > 7r(a) - ~-(p). 

Let us perform inproving steps with improving paths of  length 1, while the 
condition of Proposition 2.1 holds for some abc E(G). If  it does not, then ]Tr(x)-  
~'(y)] <~ 1 for all xyc  E(G).  Since G is bipartite, xyc  E(G)  implies ~r(x)r  7r(y). 
(FXA F y is the disjoint union of an (x ,y)  path and circuits, but the path is odd 
because xyc  E(G),  and the circuits are even. Consequently, IF x] and [FYl have 
different parity.) If  the condition of Proposition 2.1 does not hold, then 

17r(y)- ~-(x)] = 1 forall  xyc  E(G).  (2.1) 

When rr is decreased in any way during the algorithm, (2.1) can be restored by 
improving with abe E(G)  if necessary (see Proposition 2.1). Similarly, whenever 
we deal with a path p c  F ' A F  -', we can check for each vertex p c  V(P) whether 
P(x, p) or P(y, p) is an FP-improving path or not. If  it is, we improve. If  P(x, p) 
is not FP-improving, then according to Proposition 2.2 we have: 

IF X n P(x, p ) ] -  ]F~'n P(x, p)l ~< 7r(x) - 7r(p). (2.2) 

In particular, if P itself is neither FX-improving nor FY-improving, then 

IFx c~P[-lFY n P l =  zr(x)-Tr(y),  i.e.,IF~[=IF~'API, and 

I FYl = ]F~A PI- (2.3) 

Each step of  the algorithm will work towards finding an improving path. If  any 
of (2.1), (2.2), or (2.3) does not hold, this goal is reached at once. Thus we can 
always assume that they do hold. 

We now introduce the optimality criterion. Given a function It: V ( G ) ~ Z  let us 
introduce the following notations: m:=m(Tr):=min{rr(x) :xcV(G)} ,  M : =  
M ( ~ r ) : = m a x { T r ( x ) : x e V ( G ) } ,  & : = G i ( T r ) : = G ( { x c  V(G):~r(x)~<i}) (m<~i<~ 
M),  ~ := @(~) :=  {D: D is the vertex set of  a component  of G i for some i}. This 

set-system @(~r) will always be at hand. It must be reconstructed each time ~r is 
changed. It will play a crucial role. I f  (2.1) is satisfied, then {6(D): D e @ }  is a 
partition of E(G).  When the algorithm stops, then for all x c  V(G) ~(x)  is the 
cardinality of  a minimum tX-join, and { 6 (D):  D e @} will turn out to be a "canonical 
parti t ion" of  E (G)wi th  respect to t (Section 5). 
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We are able now to state the opt imal i ty  criterion: 

Opt imal i ty  Criterion. Let (G, t) be a bipartite tower, and suppose a t~-join F ~ is given 

jor all x e V( G). Set ~ (x )  := IFq. Then the following statements are equivalent: 
(i) F~is a minimum tX-join for all x e  V(G).  

(ii) (2.1) holds, and there exists a c V(G)  such that: 

a. F ~ r ~ 8 ( D ) = 0 ,  provided a e  D e  ~. 

b. IF" n a (D)]  <~ 1, provided a ~ D e ~. 
(iii) (2.1) holds, and for all x e V( G) and D e  ~, 

a. F ~ n  6 ( D ) = 0 ,  provided x e  D. 

b. ]FXn 8(D)I  = 1 ,  providedx~ D. 

Proof. By Proposi t ion 2.1, (i) implies (2.1). The rest of  " ( i ) ~ ( i i ) "  will follow from 
the algori thm; in Sections 3 and 4 we shall show how some ~-(x) can be decreased  

if (ii)a or  (ii)b, respectively,  does not hold  for some a and D. This proves the 
seemingly s t ronger  s ta tement  that (ii)a and (ii)b hold for all a e V(G)  and D e @. 

To prove  "( i i )=>( i i i )"  let a e  V(G)  satisfy (ii)a and (ii)b, and let x e  V(G)  be 
arbitrary. F X A F  " is the edge-disjoint  union of an (x ,a)  path P, and circuits 
C , , . . . , C k .  Since I C ~ n 6 ( D ) I = I C ~ F ~ n 6 ( D ) [ + I C i ~ F ~ 8 ( D ) I  is even and 
IC, n F " r  we have that,  for all D e ~ ,  

IC, nF~nS(D)I~IC, nF"~a(D)I (i= 1, . . . ,  k). (2.4) 

Similarly, if D e ~ is such that {a, x} n D = r or {a, x} c D, then 

I P n  F ~ n a ( D )  1 I> [ P n  F"  c~ 8(D)[.  (2.5) 

On the other  hand,  if a e D, x ~ D, then 

[P c~ F ~ c~ 8 ( D ) ] -  ] n n  F ~ c~ 6(D)] />  1 (2.6) 

because [ P n  6(D)] is odd,  and F ~ c~ 8 ( D )  =0 .  If  a ~  D, x e  D 

[P n F" n ~ ( D ) [ -  IP n F" n 3(D) l  ~> - 1  (2.7) 

directly by (ii). Using the fact that {6(D) :  D e  ~} is a parti t ion,  

rr(x) - rr( a) = [FX\F"[ - [F"\ FX[ = ]P n F ~'1 - [ P  n F"] 

k 

+ Z IC, F i-tC, F~ 
i=l 

= E { I P c ~ F X n 6 ( D ) l - l P n F ' ~ n 6 ( D ) [  
DeCk) 

k 
+ Z (IC, n F " n S ( D ) l - l C ,  n V " n a ( O ) ] ) } .  

i~ l  
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So, app ly ing  (2.4), (2.5) first and (2.6), (2.7) thereafter:  

"n'(x) - r r (a)  >~ E {I P c~ F"  c~ 6(D)[  

- I P c ~  F "  c~ a (D) l :  D e  @, I{a, x ] ~  DI = 1} 

~>l{D~ @: a e  D, x~: V } l - l { D e  ~ :  aC D, x c  V}l 

= [ { D ~  ~ :  a e D } l - - [ { V E ~ : x e V } ]  

129 

M - r r (a)  + 1 - ( M  - rr(x)  + 1) = ~r(x) - ~-(a). 

must  hold throughout .  Let D e @ be such that a ~ D and Consequent ly ,  equali ty 

choose x e D. Equali ty in (2.7) implies that  [Fac~ 6(D)[  = 1. Now,  for arbi trary 
x e V ( G )  and D e ~ ,  equalit ies in (2.4)-(2.7) imply that ]F~c~ 6 ( D )  I = 0 when x e D 
and [F~c~6(D)l  = 1 when x ~  D. Thus ( i i ) ~ ( i i i )  is proved.  

Finally, let us prove  ( i i i ) ~ ( i ) .  Let x e  V ( G )  be arbitrary,  and assume that (iii) 

holds. Then I Fx] = Y. D,=~' I F~ c~ 6(D)l  = J{D c @: x ~ D}I. (iii) implies that B(D) is a 
r~-cut p rov ided  x ~  D. Thus we have a packing of  t ' - cu t s  with cardinal i ty IFX[. L~ 

Note  that  the p roo f  of  the essential part  " ( i ) ~ ( i i ) "  is pos tponed .  
The  s ta tement  " ( i ) ~ ( i i i ) "  is trivially equivalent  to the main  result of  [12] (cf. 

[12, Theo rem 2.6]) and is a version of  what  we call a "s t ructure  t heo rem"  of  t-joins. 
In the fol lowing we shall only use systems ~(~-)  with ~- satisfying (2.1). Our  view 

of  such systems should include the following: 

Proposition 2.3. I f  D e ~ ,  and cd E 6 ( D ), c Z D, d 6 D then 7 r ( d ) =  
m a x { ~ ( x ) :  x e D} = ~ - ( c ) -  1. 

Proof, By definition, D is a c o m p o n e n t  of  the graph G i for some i, m ~< i<~ M. 
7 r ( c ) > i  and ~r(d)<~i follows. (2.1) implies  now ~ r ( c ) = i + l ,  ~ r ( d ) = i =  
max{-n-(x): x c  D}. [] 

3. The bubble step 

In this sect ion we show how to find an improving  path if (ii)a o f  the opt imal i ty  
criterion is not satisfied for some a and D, i.e., 

a c D c ~ g ( r r )  and F O c ~ 3 ( D ) # 0 .  (3.1) 

We shall find an improving  path.  

Let c d e  Fo ~ 6 ( D ) ,  c e  V ( G ) \ D ,  d c D. By Proposi t ion 2.3 ~r(c)= ~ r (d )+  1. Let 
Q c  E ( D )  be a m in imum (in edge cardinali ty)  (a, d) path in G ( D ) .  

Case I. IQI = 0 ,  i.e., a = d. In this case the edge cd is clearly an F" - improv ing  
path.  ( F " ~  F d \ { c d }  decreases  ~-(c) by 2.) 

Case Z IQI > 0. Denote  by b the ne ighbor  o f  a on Q. (ab is the first edge of  Q.) 
(2.1) implies that  either Case 2.1 or Case 2.2 holds: 

Case 2.1. ~- (b )=  ~ r (a )+  1. I f  a b e  F a, then the edge ab is an improving  path.  
F b <-- F~\{ab} .  I f  ab ~ F a, then assign F b ,-- F" w {ab}. rr(b) does not change. This 
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implies that ~ = @(It) is unchanged. (3.1) also holds now with b instead of a, and 

[Q(b, d)] < [Q]. Repeat, the algorithm of this section, with b in the place of a. (After 
]Q] repetitions of Case 2, Case 1 holds.) 

Case 2.2. 7r(b) = ~ (a )  - 1. If  abc F a, then F b ~- F"\{ab}. Repeat the algorithm 

of this section with b instead of a. (rr(b) does not change, (3.1) still holds, and IQI 
decreases.) I f  ab r F ~ then consider an (a, b) path P c F a A  F b. By (2.3), 

I F~ ~ P I -  I F"  ~ PI = 1( = 7r(a) - ~'(b)), i.e., IF ~ A P] = lEVI . (3.2) 

I f  V ( P ) r  D, then we can immediately construct an improving path: Let pro P, 
p c  V (P) \D ,  r e D .  By Proposition 2.3 r r ( p ) > ~ r ( r ) ) ~ ( a ) .  Let C:=  P u { a b } .  As 
ab~ F", (3.2) can be written in the form [Cc~ F ~ I - ] C \ F  ~] =0.  It follows that, for 
one of the two (a, p) subpaths C(a, p) c C of the circuit C, 

]C(a, p ) \  F ( ' ] -  IC(a, p) c~ F"l ~ 0 < ~r(p) - 7r(a) 

holds. Hence IF" A C(a, p)l < ]Eel, i.e., C(a, p) is an FP-improving path. 
Thus, V ( P ) c  D, i.e., P c~ 8 ( D ) = 0  can be assumed, ed~ P follows. After Fb~ - 

F"  A P, ~r(b) does not change (see Case 2.2), and (3.1) holds for b. (cd c F b c~ 6(D) ,  
IQ[ is decreased again.) Repeat the algorithm of this section with b instead of a. 

Vertex a in (3.1) can be visualized to be a "bubble"  in the "water"  D, trying to 
come up to the surface of D. Sometimes it goes up (Case 2.1), and sometimes down, 
which is more difficult (Case 2.2). Either it disappears before reaching the surface 
(an improving path occurs before Case 1), or it disappears only when reaching the 
surface at the "wrong"  edge cd (Case 1). 

The procedure described in this section will be referred to as the "bubble step." 
The algorithm is meant to repeat the bubble step until (ii)a holds, i.e., while at least 
one bubble exists. 

4. The straw step 

In this section we show how to find an improving path if in the optimality criterion 
(ii)a is satisfied for all a c V(G), hut (ii)b is not. Note that this will complete the 
proof  of ( i ) ~ ( i i )  in the optimality criterion. 

Let a c V(G),  and let D c ~ be such that a ~ D and IF ~ c~ ,~(D)I/> 2. Let cd c F" n 
6(D),  c~ D, d c D. We shall use the fact that F ~ ~ 6(D) contains another edge as 
well. 

Consider the (a, d) path P c  F ~ A F  '~, and let p be the first vertex of P in D. Let 
us apply (2.2): 

I F~ c~ P ( a , p ) l - I F "  ~ P(a, P)I ~ o r ( a ) -  7r(p). (4.1) 

Case 1. Equality is satisfied in (4.1). In this case Fe< - F ~ A P ( a , p )  is a re-join, 
and ~r(p) is not changed. Consequently, ~(~r) remains the same. Since p is the first 
vertex of P in D, [ P ( a , p ) ~ 6 ( D ) ] = l ;  because of ]Fan6(D)[>~2 we have 
[ ( F a A P ( a , p ) ) m 6 ( D ) ] ~  > 1. Thus, after the assignment above, p is a bubble in 
D (p  satisfies (3.1)). A bubble step is to be executed now. 
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Case 2. Equality is not satisfied in (4.1). p r d follows, since otherwise we would 
have equality by (2.3). Inequality in (4.1) means (using the trivial fact F ~ n P(a, p) = 
P(a, p ) \Fd ) :  

I P(a, p ) \ F d l -  IP(a, p ) n  Fdl < zr(a) -- rr(p). (4.2) 

Consider a (d, p) path Q = F d A F p. As (ii)a is satisfied, F d n 3( D) = 0 = F p n 6( D). 

It follows that Q c~ 6(D)  = 0, and since Q is a (d, p) path, d, p E D we have V(Q) = D. 

On the other hand, p is the first vertex of P in D; hence V(P(a,  p ) ) n  V(Q) = {p}, 
and R := P(a, p) w Q is an (a, d) path. By (2.3): 

[ Q \ F a [ - I O n  F"I = ~r (p) -  ~-(d). (4.3) 

Adding (4.2) and (4.3) we get ]R\Fd[-- IR n Fd[ < ~- (a ) -~ - (d ) .  This means that R 
is an F"- improving path, as we desired. 

The path P(a, p) can be visualized to be a "s t raw" through which either a bubble 
is blown into D (Case 1), or the "wrong" edge cd is "sucked away" (Case 2). 

The straw step has to be repeated while (ii)a holds, but (ii)b does not hold. 

5. Summary and comments  

First we summarize the algorithm. We shall also indicate improvements arising 
from Propositions 2.1 and 2.2. ((2.1), (2.2) and (2.3) will not be assumed to hold 

automatically.) 

Main algorithm 
Input: A bipartite tower (G, t). 
Output: A minimum t~-join for each x c  V(G),  and a system @. 
0. For all x e  V (G)  determine a tX-join F x. go to 1. 
1. While there exists e~  E ( G )  which is an improving path, improve. Afterwards 

(2.1) holds (Proposition 2.1). Determine the system @ ~ @(rr), ~r(x)~ [Fx[ (for 

all x c  V(G)) .  
I f  (ii) of  the optimality criterion is true, stop. Otherwise, one of the following 

two conditions holds: 
If  there exists a ~ D e  @, cd ~ F ~ n 6( D) ( c ~ D, d c D),  then go to 2. 
I f  x ~ D ~ ~ implies F ~ n 6( D) = 0 but there exists a, D, a ~ D c 9,  cd r c'd' c 
F a c~ 6 (D)  (c, c '~  D; d, d '~  D),  then go to 3. 

2. Determine an (a, d) path Q c  D and call the subroutine BUBBLE(a, Q, cd). 

Then go to 1. 
3. Determine an (a, d) path P c F a A  F a. Check whether there exists p ~ V(P)  such 

that P(a, p) or P(d, p) is an FV-improving path. 
If  yes, then improve and go to 1. 
If  no, then (2.2) and (2.3) hold with a, d in the role of  x, y (Proposition 2.2). 
Call the subroutine STRAW(a, P, cd, c'd'); then go to 1. 

end 
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The summary of the subroutines follows now. We do not repeat the conditions 
that must be satisfied by their parameters. Everything true in the calling environment 
is supposed to hold true. 

BUBBLE(a, Q, cd) 
1. If  IQI =0 ,  then the edge cd is an improving path. 

Improve and stop. 
Otherwise, go to 2. 

2. If I Q I > 0  , then let abcQ.  
I f  7r(b) = 7r(a) + 1, then go to 2.1. 
If  7r(b) = 7r(a) - 1, then go to 2.2. 

2.1. F b ~ F a w { a b }  and call BUBBLE(b, Q(b, d), cd). Then stop. (ab~ F ~, since 

abc F ~ would imply that ab is an improving path, contradicting 1 of the main 
algorithm.) 

2.2. If  ab ~ F a, then F h ~- Fa\{ab}. Call BUBBLE(b, Q(b, d), cd). stop. If  ab r F", 

then consider an (a, b) path P c F a A F b. C ~ P w {ab}. Check whether there 
exists p ~ V(P) such that either of the two distinct (a, p) subpaths of C is 
improving. 

If  yes, then improve and stop. 
If  no, then F ~ ' ~ F " A P .  Call BUBBLE(b, Q(b, d), cd). stop. 

end 

Clearly, the subroutine BUBBLE finds an improving path after at most ]QI 
recursive calls. 

STRAW(a, P, cd, c'd') 
1. Let p ~ V(P)  be the first vertex of P in D, starting from a. One of the following 

alternatives holds. ( I f  P(a, p) were an improving path, we would have improved 
in 3 of the main algorithm.) 

If  ] F " A P ( a , p ) ] = F  p, then F P e - F " A P ( a , p ) .  Call BUBBLE(p,Q, cd (or 
c'd')), where Q is a (p, d) path (or (p, d ')  path), Q c  D. Then stop. ( I f  the 
last edge of P(a, p) is cd, d = p, then after the above assignment cd ~ F p c~ 6(D), 
and we have to call BUBBLE with c'd'.) Otherwise go to 2. 

2. I f  IF a A P(a, p)] > IVI, then determine the (d, p) path Q c F d A F p. It turns out 

that P(a, p) and Q only have their endpoint p in common, and P(a, p) w Q is 
an Fa-improving (d, a) path. Improve and stop. 

end 

Let us now estimate the running time of the algorithm. I f  a t~-join contains a 
circuit, then deleting this circuit we obtain a r ' - join with smaller cardinality. Thus 
F ~ ( xe  V(G))  can be assumed to be a forest in the beginning, and consequently 
0 ~< 7r(x) ~< n - 1. Thus 0 ~< ~ x~ vl G I rr(x) ~< n 2. It follows that the number of  improving 
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steps is at most n 2. It is easy to see that each subroutine finds an improving path 
in O(n 2) time. Thus the algorithm has O(n 4) worst-case running time. 

Clearly, when the algorithm stops, the system ~ is identical to @(7r), where 
w(x) := r(G, tx). It follows that the output ~ does not depend on the algorithm, 
only on ((5, t). Luckily enough, (iii)b of the optimality criterion implies that 
{6(D): D e  @, x~  D} is a maximum packing of tX-cuts. (See the proof of ( i i i )~ ( i )  
of the optimality criterion.) Theorem 1.2 immediately follows, and with little work 
the tighter Theorems 1.3 and 1.4 can also be proved. (To prove Theorem 1.4 choose 

:= {{x 6 D: rr(x) = maxy~D or(y)} c~ A: D ~ ~}.) Note that this maximum packing 
of tX-cuts is also defined with (G, t) only. 

We have thus made a particular system @(G, t) correspond to each tower (G, t). 
We call { D e  @(G, t): x ~  D} a canonicalpacking of tX-cuts in the tower (G, t). In 
[12] and [ 13] properties characterizing @ (G, t) are mentioned. One of these proper- 
ties is that the set of minimum t*-joins can be described in terms of the system 
@(G, t). The essential part of  this description is that (iii) of the optimality criterion 
holds. 

The algorithm and the system ~(G,  t) are also new in the special case of postman 
tours and minimum weight paths in graphs without negative circuits (cf. [12]). 
Specializing them to matchings (see the reduction in [6, 12, or 13]), the bubble step 
becomes a step of Lov~isz's algorithm, and the system ~(G,  t) gives the Gallai- 
Edmonds decomposition of graphs. Thus it does not give a new algorithm in this 
case, although it provides some simplifications. 

Further applications are mentioned in [13] with more details. 
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