
Mathematical Programming 36 (1986) 123-134
North-Holland

F I N D I N G T H E t - J O I N S T R U C T U R E O F G R A P H S

Andr~is SEBO

Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Received 27 September 1984
Revised manuscript received 19 February 1986

t-joins are generalizations of postman tours, matchings, and paths; t-cuts contain planar
multicommodity flows as a special case. In this paper we present a polynomial time combinatorial
algorithm that determines a minimum t-join and a maximum packing of t-cuts and that ends up
with a Gallai-Edmonds type structural decomposition of (G, t) pairs, independent of the running
of the algorithm. It only uses simple combinatorial steps such as the symmetric difference of two
sets of edges and does not use any shrinking operations.

Key words: t-joins, t-cuts, matchings, algorithmic proof, structure theorem, Chinese postman
problem.

I. Introduct ion

Let G be an undi rec ted graph and t: V (G) ~ _ . V(G) is the vertex set and E (G)

the edge-set of the graph G. (7/ is the set of integers.) F c E (G) is called a t-join
if dr(x) =-- t(x) rood 2 V x c V(G). (d~-(x):= [{ec F : e is adjacent to x}[. Since all

congruences will be "rood 2," we shall omit " m o d 2" in the notat ion.) It is not

difficult to see that G possesses a t-join if and only if t(V(G')) =- 0 for each connected

c o m p o n e n t G' . (See Section 2 for the cons t ruct ion of a t-join. If f : X 4 Z, then

f (X) := Y {f (x) : x ~ X}.) Suppose G is connected, t (V(G)) =- 0 and let r := ~'(G, t) :=

min{lF[: F is a t-join}. If]F I = T(G, t), then F is called a minimum t-join.

For X c V(G), G(X) denotes the subgraph of G induced by X, E (X) := E(G(X))
and 6 (X) : = { x y c E (G) : x c X , y ~ X } . 6(X) is called the coboundary of X. K c

E(G) is a cut if K = 6(X) for some X & V(G). If t (X) -~ 1, then X is called a t-odd
set and 6(X) is called a t-cut. Obviously,]Fc~ K] ~ 1 for any t-join F and any t-cut

K.

A k-packing (k ~ 7/, k I> 0) of t-cuts is a family Y{" of t-cuts with]{K c K: e c K}I ~< k

for each e c E(G). Repeti t ions are allowed in Yr. Let Uk := Uk(G, t):= max{lY{]: Y{ is

a k-packing of t-cuts}. A 1-packing is s imply called a packing and u := ul- It is easy

to see that r>~ u2 /2~ > v. The following min imax theorems hold:

123

124 A. Seb6 / Finding t-joins

Theorem 1.1 [10]. ~-(G, t)= ~'2(G, t)/2.

Theorem 1.2 [16]. I f G is bipartite, then ~-(G, t) = u(G, t).

These are sharpened, respectively, by the following results:

Theorem 1.3 [6]. r (G, t)=~max{Y~7=, q,(X,): {X, Xi,}c ~(V(G))} where
~ (X) denotes the set of partitions of X and q,(X) for X c V(G) denotes the number
of t-odd components of G - X.

Theorem 1,4 [6]. If G is bipartite with classes A and B, then ~-(G, t)=

max{Z~=, q,(X,): {X, , Xk} e ~(A)}.

Note that Theorem 1.4 trivially implies all the previous theorems and the Berge-
Tutte theorem on matchings (cf. [6]). A surprisingly short proof of Theorem 1.4 is
given in [14] (cf. also [6]). A fifth minimax theorem is presented in [15], which
provides the minimal TDI description (Schrijver system) of t-join polyhedra, This
theorem contains Theorems 1.1 and 1.2 but seems to be independent of Theorems
1.3 and 1.4. On the other hand, Theorems 1.1-l.4 and the "Schrijver system" are
implied by a "structure theorem" of t-joins proved in [12]. None of these theorems
will be used in the present paper. Quite the contrary--an algorithmic proof is provided
Jbr the "'structure theorem'" and hence.for all of these results.

A path in this paper is considered to be a set of edges. When a repetition of
vertices and edges is allowed, we use the term walk If the two endpoints of a path
(walk) coincide, then it is called a circuit (closed walk). The length of a path, walk,
etc., is the number of its edges (with multiplicity). The vertex set of a path P is
denoted by V(P). If x, y ~ V(P), then P(x, y) is the subpath of P joining x and y.
"A " denotes the symmetric difference operation.

A postman tour is a closed walk in G that contains each edge of G at least once.
It is easy to see that there is a one-to-one correspondence between minimum-length
postman tours and minimum de-joins (de:--de(G~). Further applications (e.g.,
matchings and • paths) are summarized in [13].

The problem of finding minimum-length postman tours (the Chinese postman
problem) was posed by Mei Gu Guan in [7], where an algorithm is also suggested.
This algorithm proceeds by finding an arbitrary de-join F first and then achieving
improving steps. An improving step can be achieved if and only if there exists a
circuit C with IC\FI < IC c~ F I. Such a circuit will be called an improving circuit. If
C is an improving circuit, then I C A F I < I F I, and since C A F is also a t-join, we
can decrease the size of the current t-join. Conversely, if F' is a t-join, IF'I < Ill ,
then F 'A F has all degrees even and contains an improving circuit. This idea is
appealing, but Guan does not give a polynomial algorithm to find an improving
circuit. As Lawler [9] remarks: "The only trouble with these observations, as
Edmonds pointed out, is that it is not apparent how one should detect negative

A. Seb6 / Finding t-joins 125

circuits in an undirected network. The ordinary shortest path computations do not
apply to undirected networks in which some arcs have negative length. And any
apparent process of enumeration involves a lengthy computat ion." (Improving
circuits are negative circuits if we put weight -1 on e~ F and weight +1 on
e~E(G) \F . .)

Polynomial algorithms for solving the Chinese postman problem have been
presented in [1, 3, 4, 8]. Let us remark that each known algorithm for finding the
minimum cardinality postman tour makes use of or is an adaptation of Edmonds 's
weighted matching algorithm and works with a linear programming framework
which is quite strange for the cardinality case. Fractional (dual) solutions may occur
and may be used in the course of solving the problem. The packing determined by
these algorithms depends on the algorithmic execution.

In this paper we turn back to Guan 's original approach by defining and using a
generalization of the improving circuits. We describe a direct combinatorial
algorithm that finds a minimum t-join and a maximum packing of t-cuts through
elementary improving steps, in polynomial time. The algorithm ends up with a
packing that does not depend on the execution of the algorithm and is actually the
unique "canonica l" maximum packing of t-cuts (cf. [12] and below).

Let us now say a few words about the origins of this paper. The essential step of
all versions of Edmonds 's matching algorithm is a certain "blossom shrinking"
operation, presented in his celebrated paper [2], and the same shrinking operation
occurs in the algorithms that solve generalizations of the matching problem (cf.,

e.g., [1,3, 5, 8, l l]) . In the present paper our starting point is a new principle
presented by Lov~isz [11], which yields an entirely new interpretation of the matching

algorithm. Lov~isz's version keeps in each step a list of equal size matchings at hand,
and constructs a "tentative Gal la i -Edmonds partit ion" corresponding to this list.
I f the current partition happens to be the Gal la i -Edmonds partition of the graph,
then the algorithm stops by concluding that each matching of the list is maximum.
If it is not, then either a matching of greater cardinality is determined starting a
new list, or a matching of the same cardinality is added to the list. In the latter
case, the tentative partition corresponding to the new list turns out to be better in
some sense.

The "structure theorem" of t-joins proved in [12] generalizes the Gal la i -Edmonds
theorem. It claims the existence of a unique "canonical" packing of t-cuts that
characterizes the set of all minimum t-joins. It will be stated here in the form of an
"optimali ty criterion" and will be proved algorithmically. It will play the same role
as the Gal la i -Edmonds theorem in Lovfisz's algorithm. That is, the algorithm does
not rely on the theorem; the knowledge of the theorem serves merely as a motivation
for the algorithm. Thus the paper is self-contained and provides an independent
algorithmic proof of the structure theorem. This algorithm contains Lovfisz's
algorithm as a special case, but the case analysis of the latter becomes considerably
simpler at the level of t-joins.

The paper is organized as follows. In Section 2 we define the notions needed to
describe the algorithm and state the optimality criterion that controls the algorithm,

126 A. Seb6 / Finding t-joins

Sections 3 and 4 present and explain the main steps. In Section 5 a br ief summary
of the a lgor i thm is given together with some comments .

2. Preliminary remarks

The pair (G, t), where G is an arbi trary graph and t : V(G) ~ 2v, t (V(G)) -= 1, will
be called a tower. I f (G, t) is a tower and a ~ V(G), set

{ t(x) if x ~ a,
t a (x) : = [t (x) + l i f x = a.

The input o f the a lgori thm will be a tower (G, t), and the output will be a min imum
tX-join for all x c V(G). This output is enough to obtain a canonical packing of
tX-cuts for all x c V(G) (Section 5).

Towers enable us to generalize improving circuits. Clearly, if F a is a ta-join and
P is an (a, b) path, then F~'AP is a tb-join. I f F b is a tb-join and [fa~Pl<lFb[,
then we say that P is an F~-improving path. I f a = b, we get back G u a n ' s improving
circuits.

We shall often use the trivial fact that the symmetr ic difference of a t~ and
a th-join is the disjoint union of an (a, b) path and circuits. Assignments will be
denoted by " ~ " .

Before getting into the details of improving paths, we simplify our problem. We
show that it is enough to deal with towers ((3, t) where G is bipart i te; these will be
called bipartite towers. Let (G, t) be an arbi trary tower, and divide each edge e ~ E (G)
into two edges with a new vertex re. Denote the result by G ' , and define

t,(x):={to(X) i f x c V(G),
if x = re, e~ E(G).

(G ' , t') is a bipart i te tower. It is s t ra ightforward to see that the natural one- to-one
cor respondence be tween r ' - jo ins of G and t ': '-joins of G ' , and between 2-packings
of tY-cuts o f G and packings of t'X-cuts o f G ' , doubles the cardinal i ty of U-joins
and preserves the cardinal i ty of packings o f tX-cuts. So it preserves opt imali ty , and
we may therefore suppose in the following that ((3, t) is a bipart i te tower. (It might,
of course, be useful in practice to work directly on the nonbipar t i te tower without
doubl ing the edges. The cor responding a lgor i thm can be deduced f rom the bipart i te
case.) For bipart i te towers some s ta tements become sharper (compare e.g., Theorem

1.2 with Theorem 1.1, and Theorem 1.4 with Theorem 1.3), and m a n y technical
details b e c o m e s impler to describe.

The a lgor i thm starts by determining an arbi t rary P - jo in F x, for each x e V(G) .
It is enough to consider one x e V(G) since we can get F y f rom F y ~- F ~ A P, where
P is an (x, y) path. It is easy to construct a tX-join: I f F c E(G) and a ~ b ~ V(G),
dF(a)~ tX(a), d z (b) ~ tX(b), then F ~ F A P where P is an (a, b) path increases
the n u m b e r of vertices v e V(G) with dF(v) =-- r~(v). Starting f rom F = 0 and repeat-

ing this step, we get a t~-join. Let 7r(x):= IFXl . In each step of the a lgori thm IFXl

A. Seb6 / Finding t-joins 127

will be decreased for some x6 V(G), until for each x~ V(G), F ~ is a minimum
tX-join. When F x changes, ~-(x) must be changed accordingly.

Now we return to the improving paths. The following two propositions ale
immediate consequences of their definition:

Proposition 2.1. I f abe E(G) and 7r(b)< rr(a) -1 , then the edge ab is an F ~-
improving path.

Proposition 2.2. Let P c F O A F b be an (a , b) path and pc V(P). P(a,p) is an
FP-improving path if and only if

I Fo n P(a, P) I - [F h n n(a, P)I > 7r(a) - ~-(p).

Let us perform inproving steps with improving paths of length 1, while the
condition of Proposition 2.1 holds for some abc E(G). If it does not, then]Tr(x)-
~'(y)] <~ 1 for all xyc E(G). Since G is bipartite, xyc E(G) implies ~r(x)r 7r(y).
(FXA F y is the disjoint union of an (x ,y) path and circuits, but the path is odd
because xyc E(G), and the circuits are even. Consequently, IF x] and [FYl have
different parity.) If the condition of Proposition 2.1 does not hold, then

17r(y)- ~-(x)] = 1 forall xyc E(G). (2.1)

When rr is decreased in any way during the algorithm, (2.1) can be restored by
improving with abe E(G) if necessary (see Proposition 2.1). Similarly, whenever
we deal with a path p c F ' A F -', we can check for each vertex p c V(P) whether
P(x, p) or P(y, p) is an FP-improving path or not. If it is, we improve. If P(x, p)
is not FP-improving, then according to Proposition 2.2 we have:

IF X n P(x, p)] -]F~'n P(x, p)l ~< 7r(x) - 7r(p). (2.2)

In particular, if P itself is neither FX-improving nor FY-improving, then

IFx c~P[-lFY n P l = zr(x)-Tr(y), i.e.,IF~[=IF~'API, and

I FYl =]F~A PI- (2.3)

Each step of the algorithm will work towards finding an improving path. If any
of (2.1), (2.2), or (2.3) does not hold, this goal is reached at once. Thus we can
always assume that they do hold.

We now introduce the optimality criterion. Given a function It: V (G) ~ Z let us
introduce the following notations: m:=m(Tr):=min{rr(x) :xcV(G)} , M : =
M (~ r) : = m a x { T r (x) : x e V (G) } , & : = G i (T r) : = G ({ x c V(G):~r(x)~<i}) (m<~i<~
M), ~ := @(~) := {D: D is the vertex set of a component of G i for some i}. This

set-system @(~r) will always be at hand. It must be reconstructed each time ~r is
changed. It will play a crucial role. I f (2.1) is satisfied, then {6(D): D e @ } is a
partition of E(G). When the algorithm stops, then for all x c V(G) ~(x) is the
cardinality of a minimum tX-join, and { 6 (D): D e @} will turn out to be a "canonical
parti t ion" of E (G)wi th respect to t (Section 5).

128 A. Seb6 / Finding t-joins

We are able now to state the opt imal i ty criterion:

Opt imal i ty Criterion. Let (G, t) be a bipartite tower, and suppose a t~-join F ~ is given

jor all x e V(G). Set ~ (x) := IFq. Then the following statements are equivalent:
(i) F~is a minimum tX-join for all x e V(G).

(ii) (2.1) holds, and there exists a c V(G) such that:

a. F ~ r ~ 8 (D) = 0 , provided a e D e ~.

b. IF" n a (D)] <~ 1, provided a ~ D e ~.
(iii) (2.1) holds, and for all x e V(G) and D e ~,

a. F ~ n 6 (D) = 0 , provided x e D.

b.]FXn 8(D)I = 1 , providedx~ D.

Proof. By Proposi t ion 2.1, (i) implies (2.1). The rest of " (i) ~ (i i) " will follow from
the algori thm; in Sections 3 and 4 we shall show how some ~-(x) can be decreased

if (ii)a or (ii)b, respectively, does not hold for some a and D. This proves the
seemingly s t ronger s ta tement that (ii)a and (ii)b hold for all a e V(G) and D e @.

To prove "(i i)=>(i i i)" let a e V(G) satisfy (ii)a and (ii)b, and let x e V(G) be
arbitrary. F X A F " is the edge-disjoint union of an (x ,a) path P, and circuits
C , , . . . , C k . Since I C ~ n 6 (D) I = I C ~ F ~ n 6 (D) [+ I C i ~ F ~ 8 (D) I is even and
IC, n F " r we have that, for all D e ~ ,

IC, nF~nS(D)I~IC, nF"~a(D)I (i= 1, . . . , k). (2.4)

Similarly, if D e ~ is such that {a, x} n D = r or {a, x} c D, then

I P n F ~ n a (D) 1 I> [P n F" c~ 8(D)[. (2.5)

On the other hand, if a e D, x ~ D, then

[P c~ F ~ c~ 8 (D)] -] n n F ~ c~ 6(D)] /> 1 (2.6)

because [P n 6(D)] is odd, and F ~ c~ 8 (D) =0 . If a ~ D, x e D

[P n F" n ~ (D) [- IP n F" n 3(D) l ~> - 1 (2.7)

directly by (ii). Using the fact that {6(D) : D e ~} is a parti t ion,

rr(x) - rr(a) = [FX\F"[- [F"\ FX[=]P n F ~'1 - [P n F"]

k

+ Z IC, F i-tC, F~
i=l

= E { I P c ~ F X n 6 (D) l - l P n F ' ~ n 6 (D) [
DeCk)

k
+ Z (IC, n F " n S (D) l - l C , n V " n a (O)]) } .

i~ l

A. Seb6 / Finding t-joins

So, app ly ing (2.4), (2.5) first and (2.6), (2.7) thereafter:

"n'(x) - r r (a) >~ E {I P c~ F" c~ 6(D)[

- I P c ~ F " c~ a (D) l : D e @, I{a, x] ~ DI = 1}

~>l{D~ @: a e D, x~: V } l - l { D e ~ : aC D, x c V}l

= [{ D ~ ~ : a e D } l - - [{ V E ~ : x e V }]

129

M - r r (a) + 1 - (M - rr(x) + 1) = ~r(x) - ~-(a).

must hold throughout . Let D e @ be such that a ~ D and Consequent ly , equali ty

choose x e D. Equali ty in (2.7) implies that [Fac~ 6(D)[= 1. Now, for arbi trary
x e V (G) and D e ~ , equalit ies in (2.4)-(2.7) imply that]F~c~ 6 (D) I = 0 when x e D
and [F~c~6(D)l = 1 when x ~ D. Thus (i i) ~ (i i i) is proved.

Finally, let us prove (i i i) ~ (i) . Let x e V (G) be arbitrary, and assume that (iii)

holds. Then I Fx] = Y. D,=~' I F~ c~ 6(D)l = J{D c @: x ~ D}I. (iii) implies that B(D) is a
r~-cut p rov ided x ~ D. Thus we have a packing of t ' - cu t s with cardinal i ty IFX[. L~

Note that the p roo f of the essential part " (i) ~ (i i) " is pos tponed .
The s ta tement " (i) ~ (i i i) " is trivially equivalent to the main result of [12] (cf.

[12, Theo rem 2.6]) and is a version of what we call a "s t ructure t heo rem" of t-joins.
In the fol lowing we shall only use systems ~(~-) with ~- satisfying (2.1). Our view

of such systems should include the following:

Proposition 2.3. I f D e ~ , and cd E 6 (D), c Z D, d 6 D then 7 r (d) =
m a x { ~ (x) : x e D} = ~ - (c) - 1.

Proof, By definition, D is a c o m p o n e n t of the graph G i for some i, m ~< i<~ M.
7 r (c) > i and ~r(d)<~i follows. (2.1) implies now ~ r (c) = i + l , ~ r (d) = i =
max{-n-(x): x c D}. []

3. The bubble step

In this sect ion we show how to find an improving path if (ii)a o f the opt imal i ty
criterion is not satisfied for some a and D, i.e.,

a c D c ~ g (r r) and F O c ~ 3 (D) # 0 . (3.1)

We shall find an improving path.

Let c d e Fo ~ 6 (D) , c e V (G) \ D , d c D. By Proposi t ion 2.3 ~r(c)= ~ r (d)+ 1. Let
Q c E (D) be a m in imum (in edge cardinali ty) (a, d) path in G (D) .

Case I. IQI = 0 , i.e., a = d. In this case the edge cd is clearly an F" - improv ing
path. (F " ~ F d \ { c d } decreases ~-(c) by 2.)

Case Z IQI > 0. Denote by b the ne ighbor o f a on Q. (ab is the first edge of Q.)
(2.1) implies that either Case 2.1 or Case 2.2 holds:

Case 2.1. ~- (b)= ~ r (a)+ 1. I f a b e F a, then the edge ab is an improving path.
F b <-- F~\{ab} . I f ab ~ F a, then assign F b ,-- F" w {ab}. rr(b) does not change. This

130 A. Seb5 / Finding t-joins

implies that ~ = @(It) is unchanged. (3.1) also holds now with b instead of a, and

[Q(b, d)] < [Q]. Repeat, the algorithm of this section, with b in the place of a. (After
]Q] repetitions of Case 2, Case 1 holds.)

Case 2.2. 7r(b) = ~ (a) - 1. If abc F a, then F b ~- F"\{ab}. Repeat the algorithm

of this section with b instead of a. (rr(b) does not change, (3.1) still holds, and IQI
decreases.) I f ab r F ~ then consider an (a, b) path P c F a A F b. By (2.3),

I F~ ~ P I - I F" ~ PI = 1(= 7r(a) - ~'(b)), i.e., IF ~ A P] = lEVI . (3.2)

I f V (P) r D, then we can immediately construct an improving path: Let pro P,
p c V (P) \D , r e D . By Proposition 2.3 r r (p) > ~ r (r)) ~ (a) . Let C:= P u { a b } . As
ab~ F", (3.2) can be written in the form [Cc~ F ~ I -] C \ F ~] =0. It follows that, for
one of the two (a, p) subpaths C(a, p) c C of the circuit C,

]C(a, p) \ F ('] - IC(a, p) c~ F"l ~ 0 < ~r(p) - 7r(a)

holds. Hence IF" A C(a, p)l <]Eel, i.e., C(a, p) is an FP-improving path.
Thus, V (P) c D, i.e., P c~ 8 (D) = 0 can be assumed, ed~ P follows. After Fb~ -

F" A P, ~r(b) does not change (see Case 2.2), and (3.1) holds for b. (cd c F b c~ 6(D) ,
IQ[is decreased again.) Repeat the algorithm of this section with b instead of a.

Vertex a in (3.1) can be visualized to be a "bubble" in the "water" D, trying to
come up to the surface of D. Sometimes it goes up (Case 2.1), and sometimes down,
which is more difficult (Case 2.2). Either it disappears before reaching the surface
(an improving path occurs before Case 1), or it disappears only when reaching the
surface at the "wrong" edge cd (Case 1).

The procedure described in this section will be referred to as the "bubble step."
The algorithm is meant to repeat the bubble step until (ii)a holds, i.e., while at least
one bubble exists.

4. The straw step

In this section we show how to find an improving path if in the optimality criterion
(ii)a is satisfied for all a c V(G), hut (ii)b is not. Note that this will complete the
proof of (i) ~ (i i) in the optimality criterion.

Let a c V(G), and let D c ~ be such that a ~ D and IF ~ c~ ,~(D)I/> 2. Let cd c F" n
6(D), c~ D, d c D. We shall use the fact that F ~ ~ 6(D) contains another edge as
well.

Consider the (a, d) path P c F ~ A F '~, and let p be the first vertex of P in D. Let
us apply (2.2):

I F~ c~ P (a , p) l - I F " ~ P(a, P)I ~ o r (a) - 7r(p). (4.1)

Case 1. Equality is satisfied in (4.1). In this case Fe< - F ~ A P (a , p) is a re-join,
and ~r(p) is not changed. Consequently, ~(~r) remains the same. Since p is the first
vertex of P in D, [P (a , p) ~ 6 (D)] = l ; because of]Fan6(D)[>~2 we have
[(F a A P (a , p)) m 6 (D)] ~ > 1. Thus, after the assignment above, p is a bubble in
D (p satisfies (3.1)). A bubble step is to be executed now.

A. Seb6 / Finding t-joins 131

Case 2. Equality is not satisfied in (4.1). p r d follows, since otherwise we would
have equality by (2.3). Inequality in (4.1) means (using the trivial fact F ~ n P(a, p) =
P(a, p) \Fd) :

I P(a, p) \ F d l - IP(a, p) n Fdl < zr(a) -- rr(p). (4.2)

Consider a (d, p) path Q = F d A F p. As (ii)a is satisfied, F d n 3(D) = 0 = F p n 6(D).

It follows that Q c~ 6(D) = 0, and since Q is a (d, p) path, d, p E D we have V(Q) = D.

On the other hand, p is the first vertex of P in D; hence V(P(a, p)) n V(Q) = {p},
and R := P(a, p) w Q is an (a, d) path. By (2.3):

[Q \ F a [- I O n F"I = ~r (p) - ~-(d). (4.3)

Adding (4.2) and (4.3) we get]R\Fd[-- IR n Fd[< ~- (a) -~ - (d) . This means that R
is an F"- improving path, as we desired.

The path P(a, p) can be visualized to be a "s t raw" through which either a bubble
is blown into D (Case 1), or the "wrong" edge cd is "sucked away" (Case 2).

The straw step has to be repeated while (ii)a holds, but (ii)b does not hold.

5. Summary and comments

First we summarize the algorithm. We shall also indicate improvements arising
from Propositions 2.1 and 2.2. ((2.1), (2.2) and (2.3) will not be assumed to hold

automatically.)

Main algorithm
Input: A bipartite tower (G, t).
Output: A minimum t~-join for each x c V(G), and a system @.
0. For all x e V (G) determine a tX-join F x. go to 1.
1. While there exists e~ E (G) which is an improving path, improve. Afterwards

(2.1) holds (Proposition 2.1). Determine the system @ ~ @(rr), ~r(x)~ [Fx[(for

all x c V(G)) .
I f (ii) of the optimality criterion is true, stop. Otherwise, one of the following

two conditions holds:
If there exists a ~ D e @, cd ~ F ~ n 6(D) (c ~ D, d c D), then go to 2.
I f x ~ D ~ ~ implies F ~ n 6(D) = 0 but there exists a, D, a ~ D c 9, cd r c'd' c
F a c~ 6 (D) (c, c '~ D; d, d '~ D), then go to 3.

2. Determine an (a, d) path Q c D and call the subroutine BUBBLE(a, Q, cd).

Then go to 1.
3. Determine an (a, d) path P c F a A F a. Check whether there exists p ~ V(P) such

that P(a, p) or P(d, p) is an FV-improving path.
If yes, then improve and go to 1.
If no, then (2.2) and (2.3) hold with a, d in the role of x, y (Proposition 2.2).
Call the subroutine STRAW(a, P, cd, c'd'); then go to 1.

end

132 A. Seb5 / Finding tQoins

The summary of the subroutines follows now. We do not repeat the conditions
that must be satisfied by their parameters. Everything true in the calling environment
is supposed to hold true.

BUBBLE(a, Q, cd)
1. If IQI =0 , then the edge cd is an improving path.

Improve and stop.
Otherwise, go to 2.

2. If I Q I > 0 , then let abcQ.
I f 7r(b) = 7r(a) + 1, then go to 2.1.
If 7r(b) = 7r(a) - 1, then go to 2.2.

2.1. F b ~ F a w { a b } and call BUBBLE(b, Q(b, d), cd). Then stop. (ab~ F ~, since

abc F ~ would imply that ab is an improving path, contradicting 1 of the main
algorithm.)

2.2. If ab ~ F a, then F h ~- Fa\{ab}. Call BUBBLE(b, Q(b, d), cd). stop. If ab r F",

then consider an (a, b) path P c F a A F b. C ~ P w {ab}. Check whether there
exists p ~ V(P) such that either of the two distinct (a, p) subpaths of C is
improving.

If yes, then improve and stop.
If no, then F ~ ' ~ F " A P . Call BUBBLE(b, Q(b, d), cd). stop.

end

Clearly, the subroutine BUBBLE finds an improving path after at most]QI
recursive calls.

STRAW(a, P, cd, c'd')
1. Let p ~ V(P) be the first vertex of P in D, starting from a. One of the following

alternatives holds. (I f P(a, p) were an improving path, we would have improved
in 3 of the main algorithm.)

If] F " A P (a , p)] = F p, then F P e - F " A P (a , p) . Call BUBBLE(p,Q, cd (or
c'd')), where Q is a (p, d) path (or (p, d ') path), Q c D. Then stop. (I f the
last edge of P(a, p) is cd, d = p, then after the above assignment cd ~ F p c~ 6(D),
and we have to call BUBBLE with c'd'.) Otherwise go to 2.

2. I f IF a A P(a, p)] > IVI, then determine the (d, p) path Q c F d A F p. It turns out

that P(a, p) and Q only have their endpoint p in common, and P(a, p) w Q is
an Fa-improving (d, a) path. Improve and stop.

end

Let us now estimate the running time of the algorithm. I f a t~-join contains a
circuit, then deleting this circuit we obtain a r ' - join with smaller cardinality. Thus
F ~ (xe V(G)) can be assumed to be a forest in the beginning, and consequently
0 ~< 7r(x) ~< n - 1. Thus 0 ~< ~ x~ vl G I rr(x) ~< n 2. It follows that the number of improving

A. Seb6 / Finding t-joins 133

steps is at most n 2. It is easy to see that each subroutine finds an improving path
in O(n 2) time. Thus the algorithm has O(n 4) worst-case running time.

Clearly, when the algorithm stops, the system ~ is identical to @(7r), where
w(x) := r(G, tx). It follows that the output ~ does not depend on the algorithm,
only on ((5, t). Luckily enough, (iii)b of the optimality criterion implies that
{6(D): D e @, x~ D} is a maximum packing of tX-cuts. (See the proof of (i i i)~ (i)
of the optimality criterion.) Theorem 1.2 immediately follows, and with little work
the tighter Theorems 1.3 and 1.4 can also be proved. (To prove Theorem 1.4 choose

:= {{x 6 D: rr(x) = maxy~D or(y)} c~ A: D ~ ~}.) Note that this maximum packing
of tX-cuts is also defined with (G, t) only.

We have thus made a particular system @(G, t) correspond to each tower (G, t).
We call { D e @(G, t): x ~ D} a canonicalpacking of tX-cuts in the tower (G, t). In
[12] and [13] properties characterizing @ (G, t) are mentioned. One of these proper-
ties is that the set of minimum t*-joins can be described in terms of the system
@(G, t). The essential part of this description is that (iii) of the optimality criterion
holds.

The algorithm and the system ~(G, t) are also new in the special case of postman
tours and minimum weight paths in graphs without negative circuits (cf. [12]).
Specializing them to matchings (see the reduction in [6, 12, or 13]), the bubble step
becomes a step of Lov~isz's algorithm, and the system ~(G, t) gives the Gallai-
Edmonds decomposition of graphs. Thus it does not give a new algorithm in this
case, although it provides some simplifications.

Further applications are mentioned in [13] with more details.

Acknowledgment

I wish to express my thanks to Andrfis Frank, who encouraged me to do this
work. He and t~va Tardos helped me a lot with their useful remarks. I am grateful
to the anonymous referees and J. Gyenese for improving'the clarity and accuracy
of the presentation.

References

[1] F. Barahona, R. Maynard, R. Rammal and J.P. Uhry, "Morphology of ground states of two-
dimensional frustration model," Journal of Physics A, Mathematical and General 15 (1982) 673-679.

[2] J. Edmonds, "Paths, trees and flowers," Canadian Journal of Mathematics 17 (1965) 449-467.
[3] J. Edmonds and E. Johnson, "Matching: a well solved class of integer linear programs," in: R.

Guy et al., eds., Combinatorial Structures and Their Applications (Gordon and Breach, New York,
1976) pp. 89-92.

[4] J. Edmonds, "The Chinese postman problem," Operations Research 13 Suppl. ! (1965) 373.
[5] J. Edmonds and E.L. Johnson, "Matching, Euler tours and the Chinese postman," Mathematical

Programming 5 (1973) 88-124.

134 A. Seb5 / Finding t-joins

[6] A. Frank, A. Seb6 and rS. Tardos, "Covering directed and odd cuts," Mathematical Programming
Study 22 (1984) 99-112.

[7] Mei Gu Guan, "'Graphic programming using odd or even points," Chinese Mathematics 1 (1962)
273-277.

[8] E. Korach, "'Packings of T-cuts and other aspects of dual integrality," Ph.D. thesis, Waterloo
University (1982).

[9] E. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart, and Winston, New
York, 1976).

[10] L. Lov~isz, "2-matchings and 2-covers of hypergraphs," Acta Mathematica, Academiae Scientiarum
Hungaricae, 26 (1975) 433-444.

[11] L. Lov~sz and M.D. Plummer, Matching Theory (Akad6miai Kiad6, to appear).
[12] A. Seb6, "'Undirected distances and the structure of odd joins," Journal of Combinatorial Theory,

to appear.
[13] A. Seb6, "The Chinese postman problem: Algorithms, structure and applications," Working Paper

MO/61 MTA SZTAKI (1985) Discrete Applied Mathematics, to appear.
[14] A. Seb6, "'A quick proof of Seymour's theorem on t-joins," Technical Report 85383-OR, Institut

f/Jr 0konometrie und Operations Research, University of Bonn (1985), to appear in Discrete
Mathematics.

[15] A. Seb6, "The Schrijver system of odd join polyhedra," Technical Report 85394-OR, Institut fiir
0konometrie und Operations Research, University of Bonn (1985), to appear in Combinatorica.

[16] P.D. Seymour, "On odd cuts and plane multicommodity flows," Proceedings of the London
Mathematical Society 3, 42 (1981) 178-192.

