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Abstract. We characterize when the intersection of a set-packing and a
set-covering polyhedron or of their corresponding minors has a noninte-
ger vertex. Our result is a common generalization of Lovász’s characteri-
zation of ‘imperfect’ and Lehman’s characterization of ‘nonideal’ systems
of inequalities, furthermore, it includes new cases in which both types of
inequalities occur and interact in an essential way. The proof specializes
to a conceptually simple and short common proof for the classical cases,
moreover, a typical corollary extracting a new case is the following: if
the intersection of a perfect and an ideal polyhedron has a noninteger
vertex, then they have minors whose intersection’s coefficient matrix is
the incidentce matrix of an odd circuit graph.

1 Introduction

Let A≤ and A≥ be 0–1-matrices (meaning that each entry is 0 or 1) with
n columns. We will study the integrality of the intersection P (A≤, A≥) :=
P≤(A≤) ∩ P≥(A≥) of the set-packing polytope P≤(A≤) = {x ∈ IRn : A≤ x ≤
1, x ≥ 0} and the set-covering polyhedron P≥(A≥) = {x ∈ IRn : A≥ x ≥ 1, x ≥
0}. We will speak about (A≤, A≥) as a system of inequalities, or simply system.

Obviously, one can suppose that both the rows of A≤ and those of A≥ are
incidence (‘characteristic’) vectors of a clutter, that is of a family of sets none
of which contains the other. The sets in the clutters and their 0–1 incidence
vectors will be confused, and with the same abuse of terminology, clutters and
their matrix representations (where the rows are the members of the clutter) will
not be distinguished. If A≤ and A≤ do not have equal rows, that is (explicit)
equalities, we will say that (A≤, A≥) is simple.

The constraints defining P≤(A≤) will be called of packing type, and those
defining P≥(A≥) of covering type. A vertex of P (A≤, A≥) can also be classified
to be of packing type, of covering type, or of mixed type, depending on whether
all nonequality constraints containing the vertex are of packing type, of covering
type, or both types occur.
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The blocker of a clutter A≥ (or the antiblocker of A≤) is the set of inclu-
sionwise minimal (resp. maximal) integer vectors in P≥(A≥) (resp. P≤(A≤) ).
These are 0–1-vectors and define another clutter.

A polyhedron in this paper is the set of all (real) solutions of a system of
linear inequalities with integer coefficients. A polytope is a bounded polyhedron.
For basic definitions and statements about polyhedra we refer to Schrijver [11],
and we only repeat now shortly the definition of the terms we are using directly.
A face of a polyhedron is a set we get if we replace certain defining inequalities
with the equality so that the resulting polyhedron is nonempty. A polyhedron is
integer if each of its faces contains an integer point, otherwise it is noninteger.

If X ⊆ IRn, we will denote by r(X) the (linear) rank of X , and by dim(X)
the dimension of X , meaning the rank of the differences of pairs of vectors in
X , that is, dim(X) := r

({x − y : x, y ∈ X}).
If P is a polyhedron, then its faces of dimension dim(P )−1 are called facets ,

and its faces of dimension 0, vertices. All (inclusionwise) minimal faces of P have
the same dimension. We say that P has vertices , if this dimension is 0.

It is easy to see that P (A≤, A≥) has vertices for all A≤, A≥. (If a minimal face
is not of dimension 0, it contains an entire line, contradicting some non-negativity
constraint.) So P (A≤, A≥) is integer if and only if it has integer vertices.

A vertex of a full dimensional polyhedron is simplicial , if it is contained in
exactly n facets. A simplicial vertex has n neighbouring vertices. Neighbours
share n − 1 facets.

If A≤ is empty, a combinatorial coNP characterization of the integrality of
P (A≤, A≥) is well-known (Lovász [8], Padberg [9]). If A≥ is empty, a recent
result of Lehman solves the problem (Lehman [6], Seymour [12]). A common
generalization of these could be a too modest goal: if for every i ∈ {1, . . . , n}
either the i-th column of A≤ or that of A≥ is 0, then the nonintegrality of
P (A≤, A≥) can be separated to the two ‘classical’ special cases. Such systems
(A≤, A≥) contain both special cases, but nothing more. There are less trivial
examples where P≤(A≤) and P≥(A≥) do not really interact in the sense that
all fractional vertices of P≤(A≤, A≥) are vertices of P≤(A≤) or of P≥(A≥).

In this work we characterize when the intersection of a set-packing and a set-
covering polyhedron or that of any of their corresponding minors is noninteger.
The results contain the characterizations of perfect and ideal polyhedra and new
cases involving mixed vertices. The special cases are not used and are not treated
separately by the proof: a common proof is provided for them instead.

Graphs G = (V, E) are always undirected, V = V (G) is the vertex-set,
E = E(G) the edge-set; 1 is the all 1 vector of appropriate dimension.

If x ∈ IRn, the projection of x parallel to the i-th coordinate is the vector xi =
(x1, . . . , xi−1, xi+1, . . . , xn). Let us fix the notation V := {1, . . . , n}. If X ⊆ IRn,
the projection parallel to the i-th coordinate of the set X is X i := {xi : x ∈ X};
if I ⊆ V , XI is the result of successively projecting parallel to i ∈ I (the order
does not matter).

Let P := P≤(A≤) or P := P≥(A≥), and I, J ⊆ V , I ∩ J = ∅. A minor of P
is a polyhedron P \ I/J := (P ∩ {x : xi = 0 if i ∈ I})I∪J . The set I is said to be
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deleted, whereas J is contracted. For set-packing polyhedra the contraction of J
is the same as the deletion of J .

It is easy to see that P≤ \ I/J = P≤(A′≤), and P≥ \ I/J = P≥(A′≥), where
A′≤, A′≥ arise from A≤, resp. A≥ in a simple way: delete the columns indexed by
I, and then delete those rows that are no more maximal, resp. minimal; for A≤

do the same with J ; for A≥ delete the columns indexed by J and also delete all
the rows having a 1 in at least one of these columns. Hence minors of set-packing
or set-covering polyhedra are of the same type.

We do not use the terms ‘contraction’ or ‘deletion’ for matrices (or clutters),
because that would be confusing here for several reasons, one of which being that
these operations do not only depend on the matrix (or clutter) itself. But we
define the minors of the ordered pair (A≤, A≥): (A≤, A≥) \ I/J := (A′≤, A′≥),
where I, J , A′≤, A′≥ are as defined above. The polyhedra P≤(A′≤) and P≥(A′≥)
will be called corresponding minors of the two polyhedra P≤(A′≤) and P≥(A′≥).
Parallelly, for a clutter (matrix) A and v ∈ V we define the clutter A − v :=
{A ∈ A : v /∈ A} on V \ {v}.

If P = P≤(A≤) is integer, then P and A≤ are called perfect, whereas if
P = P≥(A≥) is integer, P and A≥ are called ideal. All minors of perfect and ideal
matrices are also ideal or perfect respectively. If a matrix is not perfect (not ideal)
but all its proper minors are, then it is called minimal imperfect, or minimal
nonideal respectively. It is easy to see that the family Hn−1

n of the n − 1-tuples
of an n-set is minimal imperfect, and it is also an easy and well-known exercise
to show that matrices not containing such a minor (or equivalently having the
‘dual Helly property’) can be represented as the (inclusionwise) maximal cliques
of a graph. We will call Hn−1

n (n = 3, 4, . . . , ) minimal nongraph clutters. The
degenerate projective plane clutters Fn =

{{1, . . . , n−1}, {1, n}, {2, n}, . . . , {n−
1, n}}, (n = 3, 4, . . .) are minimal nonideal.

It is easy to show that the blocker of the blocker is the original clutter. The
antiblocker of the antiblocker of Hn−1

n is not itself, and this is the only exception:
it is another well-known exercise to show that the antiblocker of the antiblocker
of a clutter that has no Hn−1

n minor (dual Helly property), is itself.
A graph G is called perfect or minimal imperfect if its clique-matrix is so. It

is said to be partitionable, if it has n = αω + 1 vertices (α, ω ∈ IN), and for all
v ∈ V (G), G − v can be partitioned both into α cliques and into ω stable-sets.
Lovász [8] proved that minimal imperfect graphs are partitionable and Padberg
[9] proved further properties of partitionable graphs.

Analogous properties have been proved for nondegenerate minimal nonideal
clutters by Lehman [6], from which we extract: a pair of clutters (A,B), where
B is the blocker or the antiblocker of A will be called partitionable, if they
are defined on V := {1, . . . , n}, n = rs − µ + 1, (r, s ∈ IN, µ ∈ ZZ, 0 ≤ µ ≤
min{r, s}), µ 6= 1, and for all v ∈ V there exist sets A1, . . . , As ∈ A and sets
B1, . . . , Br ∈ B such that v ∈ A1, . . . , Aµ, B1, . . . , Bµ and both {A1 \ v, . . . , Aµ \
v, Aµ+1, . . . , As} and {B1 \v, . . . , Bµ \v, Bµ+1, . . . , Br} are partitions of V \{v}.
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Remark 1. The clique matrix of a partitionable graph is a partitionable clutter
with ω = r, α = s, µ = 0.

Supposing that (A,B) is partitionable, it is easy to see that they are an-
tiblockers of each other if and only if µ = 0, and they are blockers of each other
if and only if µ ≥ 2. Indeed, if (A,B) are partitionable it can be shown (Pad-
berg [9], [10]) that A and B have exactly n members and these can be indexed
A1, . . . , An, B1, . . . , Bn so that |Ai ∩ Bj | is 1 if i 6= j and is µ if i = j. These
properties will be proved directly for general ‘minimal noninteger systems’.

We will call A partitionable, if (A,B) is partitionable, where B is the blocker
or the antiblocker of A – we will always make clear which of the two is meant.

Let A be partitionable. Clearly, 1/r1 ∈ P≤(A) if µ = 0, and 1/r1 ∈ P≥(A)
if µ ≥ 2 (it is actually the unique full support noninteger vertex of P≤ or P≥,
for minimal nonideal or minimal imperfect polyhedra, it is the unique fractional
vertex). Let us call this the regular vertex of P≤(A), or of P≥(A). The regular
vertex of Fn and that of Hn−1

n is defined as their unique fractional vertex.
The idea of this work originates in the frustrating similarities between min-

imal imperfect and minimal nonideal matrices and the proofs of the results.
This similarity becomes fascinating when comparing Seymour’s proof [12] of
Lehman’s, and Gasparyan’s direct proof [3] of Lovász’s and Padberg’s theorems.

Despite these similarities, the generalization has to deal with several new
phenomena, for instance P (A≤, A≥) can be empty, and its dimension can also
vary. (Antiblocking and blocking polyhedra are trivially full dimensional !) We
will meet many other difficulties that oblige us to generalize the notions and
arguments of the special cases – without making the solution much more compli-
cated. The proof synthesizes polyhedral and combinatorial arguments, moreover
a lemma involving the divisibility relations between the parameters will play a
crucial role when mixed fractional vertices occur.

We show now an example with mixed vertices. Surprisingly, this will be
the only essential (‘minimal noninteger’) new example where the two types of
inequalities interact in a nontrivial way. In a sense, a kind of ‘Strong Perfect
Graph Conjecture’ is true for mixed polyhedra.

If A≤ ∪A≥ = E(C2k+1) ⊆ 2V (G) (k ∈ IN), and neither A≤ nor A≥ is empty,
then P (A≤, A≥) will be called a mixed odd circuit polyhedron, and (A≤, A≥)
will be called a mixed odd circuit . The unique fractional vertex of a mixed odd
circuit polyhedron is 1/21.

Let now (A≤, A≥) be a simple odd circuit. Let us define Bi to be the (unique)
subset of vertices of the graph C2k+1 having exactly one common vertex with
every edge of C2k+1 except with (i, i + 1); the number of common vertices of
Bi with the edge (i, i + 1) is required to be zero or two depending on whether
its incidence vector is in A≤ or A≥ respectively (i = 1, . . . , 2k + 1, i + 1 is
understood mod n = 2k + 1). The neighbors of the vertex 1/21 on P (A≤, A≥)
are the characteristic vectors of the Bi, (i = 1, . . . , n = 2k+1). Follow these and
other remarks on C7:

Example 1. (an odd circuit polyhedron) Let us define P (A≤, A≥) ⊆ IR7 with:
xi + xi+1 ≤ 1 (i = 1, 2, 3, 4), xi + xi+1 ≥ 1 (i = 5, 6, 7; for i = 7 , i + 1 := 1).
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This polyhedron remains noninteger after projecting 1: indeed, the inequality
x7 − x2 ≥ 0 is a sixth facet-inducing inequality (containing the vertex 1/2 1)
besides the five remaining edge-inequalities. These six inequalities are linearly
independent ! (The projection of a vertex is still a vertex if and only if the
projection is parallel to a coordinate which is nonzero both in some set-packing
and some set-covering facet containing the vertex.) But the new inequality is not
0–1 ! However, a study of nonintegrality should certainly include this example.

The vertices of P (A≤, A≥) are, besides (1/2)1, the sets Bi, (i = 1, . . . , 7).
These are the shifts of B2 := {1, 4, 6} by ±1 and 0, 2, and of B6 := {2, 4, 6, 7}
by 0,±1. Note that the vector (0, 1, 1, 1, 0,−1,−1) is orthogonal to all the Bi

(i = 1, . . . , 7), whence the 7 × 7 matrix B whose rows are these, is singular !
In general, if (A≤, A≥) is a simple mixed odd circuit, and A≤ has one more

row than A≥, then 1T A≤ − 1T A≥ (defines a Chvátal-Gomory cut and) is or-
thogonal to all the Bi-s (i = 1, . . . , 2k + 1), so they are linearly dependent !

Linear independence of the neighbors of fractional vertices play a funda-
mental role in the special case of Padberg [9],[10], Lehman[6], and also in Gas-
paryan [3],[4]. Mixed odd circuits show that we have to work here without this
condition. As a consequence we will not be able to stay within matrix terms, but
will have to mix combinatorial and polyhedral arguments: Lemma 8 is mostly
a self-contained lemma on matrices, where the polyhedral context, through
Lemma 7 brings in a stronger combinatorial structure: ‘r = 2’. The matricial
part of Lemma 8 reoccurs in papers [4] and [5], studying the arising matrix equa-
tions. The latter avoids the ‘nonsingularity assumption’ replacing Lemma 7 by
combinatorial (algebraic) considerations.

This paper is organized as follows: Section 2 states the main result, its corollaries,
and reformulations. The proof of the main result is provided in sections 3 and
4. Section 5 is devoted to some more examples and other comments.

2 Results

When this does not cause missunderstanding, we will occasionnally use the
shorter notations P≤ := P≤(A≤), P≥ := P≥(A≥), P := P (A≤, A≥) = P≤∩P≥.
Recall that the polyhedra P≤(A′≤) := P≤ \ I/J and P≥(A′≥) := P≥ \ I/J ,
(I, J ⊆ V := {1, . . . , n}, I ∩ J = ∅) are called corresponding minors, and
(A′≤, A′≥) =: (A≤, A≥)\ I/J is a minor of (A≤, A≥). (Note that two minors are
corresponding if and only if the two I ∪ J are the same, since for set-packing
polyhedra deletion is the same as contraction.) Furthermore, if for all such I, J
the polyhedron (P≤(A≤) \ I/J) ∩ (P≥(A≥) \ I/J) is integer, then the system
(A≤, A≥) will be called fully integer.

Theorem 1. Let A≤ and A≥ be 0–1-matrices with n columns. Then (A≤, A≥)
is not fully integer if and only if it has a minor (A′≤, A′≥) for which at least one
of the following three statements holds:
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– A′≤ is a minimal nongraph clutter, or it is partitionable with µ = 0, moreover
in either case the regular vertex of P≤(A′≤) is in P≥(A′≥), and it is the
unique packing type fractional vertex of P≤(A′≤) ∩ P≥(A′≥).

– A′≥ is a degenerate projective plane, or it is partitionable with µ ≥ 2, more-
over in either case the regular vertex of P≥(A′≥) is in P≤(A′≤), and it is
the unique covering type fractional vertex of P≤(A′≤) ∩ P≥(A′≥).

– (A′≤, A′≥) is a mixed odd circuit.

Lovász’s NP-characterization of imperfect graphs [8] (with the additional
properties proved by Padberg[10]), follow:

Corollary 1. Let A≤ be a 0–1-matrix with n columns. Then A≤ is imperfect
if and only if it has either a minimal nongraph or a partitionable minor A′≤,
moreover P (A′≤) has a unique fractional vertex.

Specializing Theorem 1 to set-covering polyhedra one gets Lehman’s celebrated
result [6], see also Seymour [12]:

Corollary 2. Let A≥ be a 0–1-matrix with n columns. Then A≥ is nonideal if
and only if it has either a degenerate projective plane or a partitionable minor
A′≥, moreover P (A′≥) has a unique fractional vertex.

The following two consequences are stated in a form helpful for coNP char-
acterization theorems (see Section 5):

Corollary 3. Let A≤ and A≥ be 0–1-matrices with n columns. Then (A≤, A≥)
is not fully integer if and only if at least one of the following statements holds:

– A≤ has a minimal nongraph or a partitionable, furthermore minimal imper-
fect minor with its regular vertex in the corresponding minor of P≥(A≥),

– A≥ has a degenerate projective plane or a partitionable minor with its regular
vertex in the corresponding minor P≤(A′≤) of P≤(A≤), where A′≤ is perfect.

– (A≤, A≥) has a mixed odd circuit minor.

If we concentrate on the structural properties of the matrices A≤ and A≥ implied
by the existence of a fractional vertex we get the following.This statement is not
reversible: if A≤ consists of the maximal stable-sets of an odd antihole, and A≥

of one maximal but not maximum stable-set, then (A≤, A≥) is fully integer,
although A≤ is minimal imperfect !

Corollary 4. Let A≤ and A≥ be 0–1-matrices with n columns and assume that
P≤(A≤) ∩ P≥(A≥) is a noninteger polyhedron. Then

– either A≤ has a minimal imperfect minor,
– or A≥ has a degenerate projective plane, or a partitionable minor,
– or (A≤, A≥) has a mixed odd circuit minor.

Note the asymmetry between ‘minimal imperfect’ in the first, and ‘partitionable’
in the second case (for an explanation see 5.2).

The results certainly provide a coNP characterization in the following case:
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Corollary 5. Let A≤ be a perfect, and A≥ an ideal 0–1-matrix with the same
number of columns. Then (A≤, A≥) is fully integer if and only if it has no mixed
odd circuit minor.

These results provide a certificate for the intersection of a set-covering poly-
hedron and a set-packing polytope or of their corresponding minors to be nonin-
teger. This certificate can be checked in polynomial time in the most interesting
cases (see Section 5). We will however prove Theorem 1 in the following, slightly
sharper form which leaves the possibility to other applications open – and cor-
responds better to our proof method:

We call (A≤, A≥) combinatorially minimal noninteger , if P := P (A≤, A≥) is
noninteger, but (P≤ \ i) ∩ (P≥ \ i) and (P≤/i)∩ (P≥/i) are fully integer for all
i = 1, . . . , n. Clearly, mixed odd circuits have this property.

Note the difference with the following definition which takes us out of 0–1
constraints: P is polyhedrally minimal noninteger, if it is noninteger, but P∩{x ∈
IRn : xi = 0} and P i are integer for all i ∈ V .

Both the combinatorial and the polyhedral definitions require that the inter-
section of P with each hyperplane xi = 0 (i ∈ V ) is integer.

The two definitions are different only in what they require from projections,
and this is what we are going to generalize now. When we are contracting an
element, combinatorially minimal noninteger systems require the integrality of
P≤(A≤)i ∩ P≥(A≥)i instead of the integrality of

[
P≤(A≤) ∩ P≥(A≥)

]i in the
polyhedral definition, and this is the only difference between the two. It is easy
to see that P≤(A≤)i ∩ P≥(A≥)i ⊇ [

P≤(A≤) ∩ P≥(A≥)
]i, and we saw (see

Example 1) that the equality does not hold in general, so the integrality of
P≤(A≤)i∩P≥(A≥)i and that of

[
P≤(A≤)∩P≥(A≥)

]i are seemingly independent
of each other. The combinatorial definition looks actually rather restrictive, since
it also requires that fixing a variable to 1 in P≥(A≥), and fixing the same variable
to 0 in P≤(A≤) the intersection of the two polyhedra we get is integer.

Note however, that surprisingly, the results confirm the opposite: the com-
binatorial definition is less restrictive, since besides partitionable, minimal non-
graph and degenerate projective clutters, it also includes mixed odd circuit poly-
hedra, which are not polyhedrally minimal noninteger !

Our proofs will actually not use more about the projections than the fol-
lowing simple sandwich property of P which is clearly implied by both com-
binatorial and polyhedral minimal nonintegrality (Qi can be chosen to be the
polyhedron on the left hand side or the one on the right hand side respectively):

for all i = 1, . . . , n, there exists an integer polyhedron Qi such that[
P≤(A≤) ∩ P≥(A≥)

]i ⊆ Qi ⊆ P≤(A≤)i ∩ P≥(A≥)i
.

Let us call the system (A≤, A≥) minimal noninteger, if

– P is noninteger, and
– P ∩{x ∈ IRn : xi = 0}(= P≤ ∩{x ∈ IRn : xi = 0}∩P≥ ∩{x ∈ IRn : xi = 0})

is an integer polyhedron for all i ∈ V , and
– P has the sandwich property.
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Theorem 2. If (A≤, A≥) is minimal noninteger, simple, and w ∈ P is a frac-
tional vertex, then P is full dimensional, w is simplicial, and at least one of the
following statements hold:

– w is of packing type, and then A≤ is either a minimal nongraph clutter, or
the clique-matrix of a partitionable graph,

– w is of covering type, and then A≥ is either a degenerate projective plane or
a partitionable clutter, µ ≥ 2,

– w is a mixed vertex, and then (A≤, A≥) is a mixed odd circuit.

Moreover, P has at most one fractional vertex of covering type, at most one
of packing type, and if it has a vertex of mixed type, then that is the unique
fractional vertex of P .

Note that Theorem 2 sharpens Theorem 1 in two directions: first, the con-
straint of Theorem 2 does not speak about all minors, but only about the dele-
tion and contraction of elements; second, the integrality after the contraction of
elements is replaced by the sandwich property.

The corollaries about combinatorial and polyhedral minimal nonintegrality
satisfy the condition of Theorem 2 for two distinct reasons. In the combinatorial
case simplicity does not necessarily hold, but deleting the certain equalities from
A≥, the system remains combinatorially minimal noninteger (see 5.2).

Corollary 6. If (A≤, A≥) is combinatorially minimal noninteger, then at least
one of the following statements holds:

– A≤ is a minimal nongraph or a partitionable clutter with µ = 0, furthermore
it is minimal imperfect, and the regular vertex of P≤(A≤) is the unique
packing type fractional vertex of P≤(A≤) ∩ P≥(A≥).

– A≥ is a degenerate projective plane, or a partitionable clutter with µ ≥ 2,
while A≤ is perfect, and the regular vertex of P≥(A≥) is in P≤(A≤).

– (A≤, A≥) is a mixed odd circuit, and 1/21 is its unique fractional vertex.

This easily implies Theorem 1 and its corollaries using the following remark.
(it is particularly close to Corollary 3), while the next corollary does not have
similar consequences. This relies on the following:

– If P is noninteger, (A≤, A≥) does contain a combinatorially minimal nonin-
teger minor. (Proof: In both P≤ and P≥ delete and contract elements so that
the intersection is still noninteger. Since the result has still 0–1 constraints
this can be applied successively until arriving at a combinatorially minimal
noninteger system.)

– If P is noninteger, one does not necessarily arrive at a polyhedrally minimal
noninteger polyhedron with deletions and restrictions of variables. (Coun-
terexample: Example 1.)

Corollary 7. If P≤(A≤)∩P≥(A≥) is polyhedrally minimal noninteger, then at
least one of the following statements holds:
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– either A≤ is a minimal nongraph or a partitionable clutter with µ = 0, and
the regular vertex of P≤(A≤) is the unique packing type fractional vertex of
P≤(A≤) ∩ P≥(A≥).

– or A≥ is a degenerate projective plane, or a partitionable clutter with µ ≥ 2,
and the regular vertex of P≥(A≥) is in P≤(A≤).

Proof. Express wi as a convex combination of vertices of P i. Replacing the
vectors in this combination by their lift, we get a vector which differs from w
exactly in the i-th coordinate (i = 1, . . . , n) – if it did not differ, w would be the
convex combination of integer vertices of P . So the i-th unit vector is in the linear
space generated by P for all i = 1, . . . , n, proving that P is full dimensional, in
particular, simple. So Theorem 2 can be applied, and its third alternative cannot
hold (see Example 1). ut

Gasparyan [4] has deduced this statement by proving that in the polyhedral
minimal case the matrices involved in the matrix equations are nonsingular (see
comments concerning nonsingularity in Example 1).

The main frame of the present paper tries to mix (the polar of) Lehman’s
polyhedral and Padberg’s matricial approaches so as to arrive at the simplest
possible proof. Lemmas 1–4 and Lemma 7 are more polyhedral, Lemma 5,
Lemma 6 and Lemma 8 are matricial and combinatorial. When specializing
these to ideal clutters, their most difficult parts fall out and quite short variants
of proofs of Lehman’s or Padberg’s theorem are at hand.

3 From Polyhedra to Combinatorics

The notation A, B will be used for families of sets. (We will also use the notation
A for the matrices whose rows are the members of A.) The degree dA(v) of v in
A is the number of A ∈ A containing v.

Given w ∈ P , let Aw be the set of those rows A of A≥ or of A≤ for which
w(A) = 1. (We do not give multiplicites to the members of Aw, regardless of
whether some of its elements are contained in both A≥ and A≤ !) We also define
these if the polyhedron also has non-0–1-constraints. Then A≥ and A≤ denote
the set-covering and set-packing inequalities in the defining system.

If P is integer, we define Bw as the family of those 0–1 vectors (vertices of P )
which are on the minimal face of P containing w. (Equivalently, Bw is the set of
vertices having a nonzero coefficient in some convex combination expressing w.)
If A ∈ Aw, and B ∈ Bw, then |A∩B| = 1. Clearly, r(Aw)+r(Bw) = dimP +1. If
it is necessary in order to avoid misunderstanding, we will write Aw(P ), Bw(P ).

The following lemma is based on the polar (in the sense of interchanging ver-
tices and facets) of a statement implicit in arguments of Lehman’s and Seymour’s
work (see Seymour [12] ).

Lemma 1. If Q is a polyhedron with 0–1 vertices (and not necessarily 0–1-
constraints) and w ∈ Q, w > 0, then

⋃
B∈Bw

B = V , and
r(Bw) ≥ max

{|A| : A ∈ Aw

}
, r(Aw) ≤ n − max

{|A| : A ∈ Aw

}
+ 1.
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Proof. Indeed, since Q is integer, w is the convex combination of 0–1 vertices in
Bw, whence

⋃
B∈Bw

B = V . In particular, for A ∈ Aw and all a ∈ A there exists
Ba ∈ Bw, such that a ∈ Ba.

Since A ∈ Aw, and Ba ∈ Bw, we have |A ∩ Ba| = 1, and consequently
A ∩ Ba = {a}. Thus {Ba : a ∈ A} consists of |A| linearly independent sets of
Bw, whence r(Bw) ≥ |A|. ut

Remark 2. Compare Lemma 1 with Fonlupt, Sebő [2]: a graph is perfect if and
only if the linear rank of the maximum cliques (as vertex-sets) in every induced
subgraph is at most n− ω + 1 where ω is the size of the maximum clique in the
subgraph; the equality holds if and only if the subgraph is uniquely colorable.

We note and use in the sequel without reference that if P is minimal non-
integer, then w > 0 for all fractional vertices w of P (wi = 0 would imply that
(P≤ \ i) ∩ (P≥ \ i) is also noninteger).

In sections 3 and 4 I will denote the identity matrix, J the all 1 matrix
of appropriate dimensions; A is called r-regular, if 1A = r1, and r-uniform if
A1 = r1; Ac :=

{
V \ A : A ∈ A}

. A is said to be connected if V cannot be
partitioned into two nonempty classes so that every A ∈ A is a subset of one of
the two classes. There is a unique way of partitioning A and V into the connected
components of A.

Lemma 2. If (A≤, A≥) is minimal noninteger, w is a fractional vertex of P :=
P (A≤, A≥), and A ⊆ Aw is a set of n linearly independent members of Aw,
then every connected component K of Ac is n− rK-regular and n− rK -uniform
(rK ∈ IN), and r(A− v) = n − dA(v).

Proof. Recall that w > 0. If P is minimal noninteger, then for arbitrary i ∈ V the
sandwich property provides us Qi ⊆ IRV \{v}, wi ∈ [

P≤(A≤)∩P≥(A≥)
]i ⊆ Qi ⊆

P≤(A≤)i ∩ P≥(A≥)i, that is, wi ∈ Qi and wi > 0. Applying the inequality in
Lemma 1 to Qi and wi, and using the trivial but crucial fact that Awi(Qi) ⊇ A−i,
we get the inequality r(A − i) ≤ n − max

{|A| : A ∈ A− i
}
.

On the other hand, r(A) = n by assumption. One can now finish in a few
lines like Conway proves de Bruijn and Erdős’s theorem [7], which is actually
the same as Seymour [12, Lemma 3.2]:

Let H := Ac for the simplicity of the notation. What we have proved so far
translates as dH(v) ≤ |H | for all v ∈ H ∈ H. But then,

n =
∑

H∈H
1 =

∑

H∈H

∑

v∈H

1/|H | =
∑

v∈V

∑

H∈H,v∈H

1/|H | =
∑

v∈V

dH(v)/|H | ≤
∑

v∈V

1,

and the equality follows. ut

Remark 3. The situation of the above proof will be still repeated several times:
when applying Lemma 1, the 0–1 vectors that have an important auxiliary role
for bounding the rank of some sets are in Bw(Qi), and are not necessarily vertices
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of P . The reader can check on mixed odd circuits that the neighbors B =
{B1, . . . , Bn} of 1/21 are not suitable for the same task (unlike in the special
cases): the combinatorial ways that use B had to be replaced by this more general
polyhedral argument. Watch for the same technique in Lemma 7 !

The next lemma synthesizes two similar proofs occurring in the special cases:

Lemma 3. If (A≤, A≥) is minimal noninteger, w and w′ are fractional vertices
of P , then defining A and A′ to be a set of n linearly independent vectors from
Aw, Aw′ respectively, A and A′ cannot have exactly n − 1 common elements.

Proof. (Sketch) Apply Lemma 6 to both w and w′. With the exception of some
degenerate cases easy to handle, any member of an r-regular clutter can be
uniquely reconstructed from the others. ut

Lemma 4. If (A≤, A≥) is minimal noninteger and simple, and w is a fractional
vertex of P , then P := P (A≤, A≥) is full dimensional, w is simplicial, and the
vertices neighbouring w on P are integer.

The proof can be summarized with the sentence: a minimal noninteger system
cannot contain implicit equalities (only ‘explicit’ equalities).

Proof. Let us first prove that P is full dimensional. By Lemma 3 Aw is linearly
independent (recall that every member was included only once). Suppose 0 ∈ IRn

can be written as a nontrivial nonnegative linear combination of valid inequal-
ities. Clearly, all of these are implicit equalities (see [11]) of P . In particular
their coefficient vectors are in Aw. In this nontrivial nonnegative combination
there is no nonnegativity constraint xi ≥ 0, because otherwise P ⊆ {x : xi = 0},
contradicting w > 0. So everything participating in it is in Aw contradicting its
linear independence.

Since Aw is linearly independent, w is simplicial. If a neighbour w′ of w is
noninteger, we arrive at a contradiction with Lemma 3. ut

We will say that a polyhedron P is minimal noninteger if P = P (A≤, A≥)
for some simple, minimal noninteger system. (Since P is full dimensional by
Lemma 4, it determines (A≤, A≥) uniquely.)

Given a minimal noninteger polyhedron P and a fractional vertex w of P ,
fix A := A(w) := Aw and let B := B(w) denote the set of vertices neighboring
w in P .

Note that ∪n
i=1Bwi(P i) = B(w) holds in the polyhedrally minimal noninteger

case, but does not necessarily hold otherwise, and therefore we need essential
generalizations. Do not confuse Bw (which is just {w}) with B(w).

We will say that a vertex B ∈ B and a facet A ∈ A not containing it are asso-
ciates . By Lemma 4 w is simplicial, whence this relation perfectly matches A and
B. We will suppose that the associate of the i-th row Ai of A is the associate Bi of
Ai; µi := |Ai ∩ Bi|. Clearly, µi 6= 1 (i = 1, . . . , n). Denoting by diag(d1, . . . , dn)
the n × n diagonal matrix whose diagonal entries are d1, d2, . . . , dn, we have
proved:
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Lemma 5. ABT = J + diag(µ1 − 1, . . . , µn − 1), where µi 6= 1, (i = 1, . . . , n).

If µi does not depend on i, we will simply denote it by µ. (This notation is
not a coincidence: in this case (A,B) turns out to be partitionable where µ is
the identically denoted parameter.) By Lemma 5, µ 6= 1.

The main content of Lemma 3, 5, some aspects of Lemma 4 and most of
Lemma 6 are already implicitly present already in Padberg[9].

4 Associates and the Divisibility Lemma

The following lemma extracts and adapts to our needs well-known statements
from Lehman’s, Seymour’s and Padberg’s works, and reorganizes these into one
statement. It can also be deduced by combining results of Gasparyan [4], which
investigate combinatorial properties implied by matrix equations. For instance
the connectivity property of Lemma 6 below is stated in [4] in a general self-
contained combinatorial setting.

Lemma 6. If P is minimal noninteger, and w ∈ P is a fractional vertex of P ,
then A = A(w) is nonsingular and connected, moreover,

– if the clutter Ac is connected, then 1A = A1 = r1, r ≥ 2.
– if the clutter Ac has two components, then A is a degenerate projective plane.
– if the clutter Ac has at least three components, then A = Hn−1

n .

Proof. (Sketch) If Ac has at least two components, then any two sets whose
complements are in different components cover V . This, and the matrix equation
of Lemma 5 determine a degenerate combinatorial structure. (For instance one
can immediately see that the associate of a third set has cardinality at most two,
and it follows that all but at most one members of B have at most two elements.)

If Ac has one component,then the uniformity and regularity of Ac claimed
by Lemma 2 implies that of A. ut

Recall that the nonsingularity of B cannot be added to Lemma 6 !
It is well-known that both for minimal imperfect and minimal nonideal ma-

trices the associates of intersecting sets are (almost) disjoint. In our case they
can also contain one another , and the proof does not fit into the combinatorial
properties we have established (namely Lemma 5). We have to go back to our
polyhedral context (established in the proof of Lemma 2, see also Remark 3):

Let us say that A with ABT = J + diag(µ1 − 1, . . . , µn − 1), where µi 6= 1
(i = 1, . . . , n) is nice, if for A1, A2 ∈ A, v ∈ A1 ∩A2 the associates B1, B2 ∈ B of
A1 and A2 respectively, either satisfy B1 ∩ B2 \ {v} = ∅ or B1 \ {v} = B2 \ {v}.
(In the latter case, since B1 and B2 cannot be equal, one of the two contains v.)

Lemma 7. Let P be minimal noninteger, and A = A(w), B = B(w) for some
noninteger vertex w ∈ P . Then A is nice.



Characterizing Noninteger Polyhedra with 0–1 Constraints 49

Check the statement for the mixed C7 of Example 1 ! (It can also be instructive
to follow the proof on this example. )

Proof. Let v ∈ A1, A2 ∈ A, and let B1, B2 ∈ B be their associates. Moreover
assume u ∈ B1 ∩ B2 \ {v}. Let A0 ∈ A, u ∈ A, v /∈ A0. (There exists such an
A0 ∈ A since for instance Lemma 6 implies that a column of A cannot dominate
another.) Since P is minimal noninteger, there exists an integer polyhedron Qv

such that
[
P≤(A≤) ∩ P≥(A≥)

]v ⊆ Qv ⊆ P≤(A≤)v ∩ P≥(A≥)v. Now because of
Awv (Qv) ⊇ A− i, the scalar product of the vertices of Bwv(Qv) with all vectors
in A− i is 1, and the proof method of Lemma 1 can be applied:

For every a ∈ A0 \ u fix some Ba ∈ Bwv(Qv) so that a ∈ Ba. Now {Ba :
a ∈ A0 \ u} ∪ {B1 \ v, B2 \ v} are r + 1 vectors in IRV \v all of which have
exactly one common element with each A ∈ A − v. On the other hand, by
Lemma 2 r(A − v) = n − r = (n − 1) − (r − 1), so there can be at most
r linearly independent sets with this property. Hence there exists a nontrivial
linear combination λ1(B1\v)+λ2(B2\v)+

∑
a∈A\u λaBa = 0. Since for a ∈ A0\u

the unique vector in this linear combination which contains a is Ba, one gets
that λa = 0 for all a ∈ A \ u. It follows that B1 \ v = B2 \ v, and λ1 = λ2. ut

Although the following statement is the heart of our proof, it is independent
of the other results. The very root of the statement is the simple observation
that n + dj is a multiple of r. Note that in order to deduce r = 2 we need more
than just the matrix equation !

Lemma 8. Assume that A, B are 0–1 matrices, 1A = A1 = r1, and
ABT = J + diag(µ1 − 1, . . . , µn − 1), µi 6= 1. Then

– either µ1 = . . . = µn =: µ, and then ABT = BTA = J + (µ − 1)I, BJ =
JB = sJ , (s = (n + µ − 1)/r),

– or {µ1, . . . , µn} = {0, r}, and if A is connected and nice, then r = 2.

Proof. If µ1 = µ2 = . . . = µn =: µ, then we finish easily, like [3]: since µ 6= 0,
A is invertible; since A commutes with I, and by assumption with J too, so
does its inverse; now expressing BT from ABT = J + (µ − 1)I we get that it
is the product of two matrices which commute with both A and J . So BT also
commutes with these matrices, proving the statement concerning this case. (The
matrices X and Y are said to commute, if XY = Y X .)

So suppose that there exist i, j ∈ V such that µi 6= µj .

Claim (1). r|Bj | = n + µj − 1, and 0 ≤ µj ≤ r, (j = 1, . . . , n).

Indeed, r1BT = (1A)BT = 1(ABT ) = 1
(
J + diag(µ1 − 1, . . . , µn − 1)

)
=

(n + µ1 − 1, . . . , n + µn − 1).
The inequality is obvious: 0 ≤ µj = |Aj ∩ Bj | ≤ |Aj | = r, (j = 1, . . . , n).

Claim (2). If there exist i, j ∈ V , µi 6= µj , then µj ∈ {0, r} for all j ∈ V .
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Indeed, according to Claim (1) we have n + µj − 1 ≡ 0 mod r, where µj

is in an interval of r + 1 consecutive integers representing every residue class
mod r exactly once, except 0, which is represented twice, by 0 and r. Hence if
{µ1, . . . , µn} contains two different values, then these values can only be 0 and
r as claimed.

Claim (3). If v ∈ A1 ∩ A2, µ1 = 0, µ2 = r, then B1 = B2 \ {v}.

Indeed, let u ∈ A2 ∩ B1. (Because of the matrix equation in the constraint,
we also know |A2 ∩B1| = 1.) We have |A1 ∩B1| = µ1 = 0, and since |A2 ∩B2| =
µ2 = r = |A2|, we also have A2 ⊆ B2.

Since v ∈ A1 and A1 ∩ B1 = ∅ : u 6= v. Because of A2 ⊆ B2 we have
u ∈ (B1 ∩B2) \ {v}. So we must have B1 \ {v} = B2 \ {v} by the condition, and
since v /∈ B1, v ∈ B2 : B1 = B2 \ {v}. The claim is proved.

Now we finish the proof. Since there exist i, j ∈ V such that µi 6= µj , by
Claim (2) µj ∈ {0, r} for all j ∈ V . Since A is a connected clutter, there exists
v ∈ V so that v ∈ Ai ∩ Aj and µi = 0, µj = r. After possible renumbering, we
can assume i = 1, j = 2.

So let A1, A2 ∈ A = A(w), v ∈ A1 ∩ A2, µ1 = 0, µ2 = r and denote the
associates of A1, A2 by B1, B2 respectively.

By Claim (3), 1 = |A2 ∩ B1| = |A2 ∩ B2| − 1 = r − 1, so r = 2. ut

Proof of Theorem 2. (Sketch) Let (A≤, A≥) be minimal noninteger. Further-
more, let w ∈ P a fractional vertex of P . Let A := A(w) and B := B(w). Then
we have the matrix equation of Lemma 5.

Case 1. Ac is connected: according to Lemma 6 and Lemma 7 the conditions of
Lemma 8 are satisfied, and using Lemma 8 it is straightforward to finish.

Case 2. Ac has two components: by Lemma 6 A is a degenerate projective plane.
It can be checked then that either A = A≥ or A is not minimal noninteger. We
prove this with the following technique (and use similar arguments repeatedly
in the sequel): we prove first that there exist an i ∈ V so that (P≥/i)∩(P≤/i) is
noninteger. It turns out then that the maximum p of the sum of the coordiates of
a vector on (P≥/i)∩ (P≤/i) and the maximum q of the same objective function
on P i are close to each other: [p, q] does not contain any integer (we omit the
details). So for all Qi such that P i ⊆ Qi ⊆ (P≥/i) ∩ (P≤/i) the maximum of
the sum of coordinates on Qi must lie in the interval [p, q]. Thus Qi cannot be
chosen to be integer, whence P does not have the sandwich property.

Case 3. Ac has at least three components: by Lemma 6 A is the set of n − 1-
tuples of an n-set. If A = A≤, then we are done (again the first statement holds
in the theorem). In all the other cases P turns out not to be minimal noninteger
(with the above-described technique). ut
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5 Comments

5.1 Further Examples

A system (A≤, A≥) for which a P (A≤, A≥) ⊆ IR5 is integer, but (A≤, A≥) is
not fully integer: the rows of A≤ are (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0) and
(0, 0, 1, 1, 1); A≥ consists of only one row, (0, 0, 0, 1, 1).

We mention that a class of minimal noninteger simple systems (A≤, A≥) with
the property that (A≤, A≥) \ i (i ∈ V ) defines an integer, but not always fully
integer polyhedron, can be defined with the help of ‘circular’ minimal imperfect
and minimal nonideal systems (see Cornuéjols and Novick [1]): define A≤ := Cr

n,
A≥ := Cs

n, where r ≤ s and A≤ is minimal imperfect, A≥ is minimal nonideal.
Such examples do not have mixed vertices, so they also show that the first

two cases of our results can both occur in the same polyhedron.

5.2 A Polynomial Certificate

We sketch why Corollary 6 follows from Theorem 2. Note that Corollary 6 im-
mediately implies Corollary 3.

In a combinatorially minimal noninteger system (A≤, A≥), A≤ is in fact
minimal imperfect or perfect. This is a simple consequence of the following:

Claim. If P≤ := P≤(A≤) or P≥ := P≥(A≥) is partitionable with a regular
vertex w ∈ P := P≤ ∩ P≥, and P≤/I (I ⊆ V ) is partitionable with regular
vertex w′, then w′ ∈ P≥/I.

Indeed, suppose that w is the regular vertex of a polyhedron whose defining
clutter has parameters (r, s), and let the parameters of w′ be (r′, s′). So w := 1/r1
and w′ := 1/r′1.

Now r′ ≤ r, because the row-sums of the defining matrix of P≤/I (which is
a submatrix of A≤) do not exceed the row-sums of A≤. Since w ∈ P≤(A≤), the
row-sums of A≤ are at most r.

But then, if we replace in 1/r1 some coordinates by 1/r′ some others by 1
the vector w′′ we get majorates 1/r1 ∈ P≥(A≥) whence it is also in P≥(A≥).
Since w′ ∈ P≥/I is equivalent to the belonging to P≥ of such a vector w′′, the
claim is proved.

To finish the proof of Corollary 6 one can show that after deleting from A≥

an equality from ‘Aw’, the system remains minimal noninteger.
Using appropriate oracles, Corollary 3 provides a polynomial certificate. (For

the right assumptions about providing the data and certifying the parameters of
a partitionable clutter we refere to Seymour [12]. We need an additional oracle
for the set-covering part.)

The polynomial certificates can be proved from the Claim using the fact that
for partitionable clutters and perfect graphs the parameters can be certified in
polynomial time.

For the non-full-integrality of the intersection of perfect and ideal polyhedra
a simple polynomial certificate is provided by Corollary 5.
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5. G. Gasparyan and A. Sebő. Matrix equations in polyhedral combinatorics. 1998.
In preparation.

6. A. Lehman. The width-length inequality and degenerate projective planes. In
W. Cook and P. D. Seymour, editors, Polyhedral Combinatorics, DIMACS, Vol. 1,
pages 101–105, 1990.

7. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge Univer-
sity Press, 1992.

8. L. Lovász. A characterization of perfect graphs. J. of Comb. Theory B, 13:95–98,
1972.

9. M. Padberg. Perfect zero-one matrices. Math. Programming, 6:180–196, 1974.
10. M. Padberg. Lehman’s forbidden minor characterization of ideal 0–1 matrices.

Discrete Mathematics, 111:409–420, 1993.
11. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
12. P. D. Seymour. On Lehman’s width-length characterization. In Polyhedral Combi-

natorics, DIMACS, Vol. 1, pages 107–117, 1990.


	Introduction
	Results
	From Polyhedra to Combinatorics
	Associates and the Divisibility Lemma
	Comments

