An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs

Joseph Cheriyan ${ }^{1}$, András Sebő ${ }^{2}$, and Zoltán Szigeti ${ }^{3}$
${ }^{1}$ Department of Combinatorics and Optimization University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
jcheriyan@@dragon.uwaterloo.ca
${ }^{2}$ Departement de Mathematiques Discretes CNRS, Laboratoire LEIBNIZ (CNRS,INPG,UJF)-IMAG 46 Avenue Felix Viallet, 38000 Grenoble Cedex, France Andras.Sebo@@imag.fr
${ }^{3}$ Equipe Combinatoire, Université Paris VI
4 place Jussieu, Couloir 45-46 3e, 75252 Paris, France
Zoltan.Szigeti@@ecp6.jussieu.fr

Abstract

We give a $\frac{17}{12}$-approximation algorithm for the following NPhard problem:

Given a simple undirected graph, find a 2 -edge connected spanning subgraph that has the minimum number of edges. The best previous approximation guarantee was $\frac{3}{2}$. If the well known TSP $\frac{4}{3}$ conjecture holds, then there is a $\frac{4}{3}$-approximation algorithm. Thus our main result gets half-way to this target.

1 Introduction

Given a simple undirected graph, consider the problem of finding a 2-edge connected spanning subgraph that has the minimum number of edges. The problem is NP-hard, since the Hamiltonian cycle problem reduces to it. A number of recent papers have focused on approximation algorithms 1 for this and other related problems, [2]. We use the abbreviation 2-ECSS for 2-edge connected spanning subgraph.

Here is an easy 2-approximation algorithm for the problem:
Take an ear decomposition of the given graph (see Section 2 for definitions), and discard all 1-ears (ears that consist of one edge). Then the resulting graph is 2 -edge connected and has at most $2 n-3$ edges, while the optimal subgraph has $\geq n$ edges, where n is the number of nodes.

[^0]Khuller \& Vishkin [8] were the first to improve on the approximation guarantee of 2 . They gave a simple and elegant algorithm based on depth-first search that achieves an approximation guarantee of 1.5. In an extended abstract, Garg, Santosh \& Singla [6] claimed to have a 1.25 -approximation algorithm for the problem. No proof of this claim is available; on the other hand, there is no evidence indicating that achieving an approximation guarantee of 1.25 in polynomial time is impossible.

We improve Khuller \& Vishkin's $\frac{18}{12}$-approximation guarantee to $\frac{17}{12}$. If the well known TSP $\frac{4}{3}$ conjecture holds, then there is a $\frac{4}{3}$-approximation algorithm, see Section 5 Thus our main result gets half-way to this target.

Let $G=(V, E)$ be the given simple undirected graph, and let n and m denote $|V|$ and $|E|$. Assume that G is 2 -edge connected.

Our method is based on a matching-theory result of András Frank, namely, there is a good characterization for the minimum number of even-length ears over all possible ear decompositions of a graph, and moreover, an ear decomposition achieving this minimum can be computed efficiently, 4]. Recall that the 2-approximation heuristic starts with an arbitrary ear decomposition of G. Instead, if we start with an ear decomposition that maximizes the number of 1-ears, and if we discard all the 1-ears, then we will obtain the optimal solution. In fact, we start with an ear decomposition that maximizes the number of oddlength ears. Now, discarding all the 1-ears gives an approximation guarantee of 1.5 (see Proposition 8 below). To do better, we repeatedly apply "ear-splicing" steps to the starting ear decomposition to obtain a final ear decomposition such that the number of odd-length ears is the same, and moreover, the internal nodes of distinct 3 -ears are nonadjacent. We employ two lower bounds to show that discarding all the 1-ears from the final ear decomposition gives an approximation guarantee of $\frac{17}{12}$. The first lower bound is the "component lower bound" due to Garg et al [6, Lemma 4.1], see Proposition 4 below. The second lower bound comes from the minimum number of even-length ears in an ear decomposition of G, see Proposition 7 below.

After developing some preliminaries in Sections 2 and 3 we present our heuristic in Section 4. Section 5 shows that the well known $\frac{4}{3}$ conjecture for the metric TSP implies that there is a $\frac{4}{3}$-approximation algorithm for a minimumsize 2-ECSS, see Theorem [18, Almost all of the results in Section 5 are well known, but we include the details to make the paper self-contained. Section 6 has two examples showing that our analysis of the heuristic is tight. Section 6 also compares the two lower bounds with the optimal value.

A Useful Assumption

For our heuristic to work, it is essential that the given graph be 2-node connected. Hence, in Section 4 of the paper where our heuristic is presented, we will assume that the given graph G is 2-node connected. Otherwise, if G is not 2 -node connected, we compute the blocks (i.e., the maximal 2 -node connected subgraphs) of G, and apply the algorithm separately to each block. We compute a 2-ECSS for each block, and output the union of the edge sets as the edge set of
a 2-ECSS of G. The resulting graph has no cut edges since the subgraph found for each block has no cut edge, and moreover, the approximation guarantee for G is at most the maximum of the approximation guarantees for the blocks.

2 Preliminaries

Except in Section 5, all graphs are simple, that is, there are no loops nor multiedges. A closed path means a cycle, and an open path means that all the nodes are distinct.

An ear decomposition of the graph G is a partition of the edge set into open or closed paths, $P_{0}+P_{1}+\ldots+P_{k}$, such that P_{0} is the trivial path with one node, and each $P_{i}(1 \leq i \leq k)$ is a path that has both end nodes in $V_{i-1}=$ $V\left(P_{0}\right) \cup V\left(P_{1}\right) \cup \ldots \cup V\left(P_{i-1}\right)$ but has no internal nodes in V_{i-1}. A (closed or open) ear means one of the (closed or open) paths $P_{0}, P_{1}, \ldots, P_{k}$ in the ear decomposition, and for a nonnegative integer ℓ, an ℓ-ear means an ear that has ℓ edges. An ℓ-ear is called even if ℓ is an even number, otherwise, the ℓ-ear is called odd. (The ear P_{0} is always even.) An open ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ is one such that all the ears P_{2}, \ldots, P_{k} are open.

Proposition 1 (Whitney [12]).

(i) A graph is 2-edge connected if and only if it has an ear decomposition.
(ii) A graph is 2-node connected if and only if it has an open ear decomposition.

An odd ear decomposition is one such that every ear (except the trivial path P_{0}) has an odd number of edges. A graph is called factor-critical if for every node $v \in V(G)$, there is a perfect matching in $G-v$. The next result gives another characterization of factor-critical graphs.

Theorem 2 (Lovász [9], Theorem 5.5.1 in [10]). A graph is factor-critical if and only if it has an odd ear decomposition.

It follows that a factor-critical graph is necessarily 2 -edge connected. An open odd ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ is an odd ear decomposition such that all the ears P_{2}, \ldots, P_{k} are open.

Theorem 3 (Lovász \& Plummer, Theorem 5.5.2 in [10]). A 2-node connected factor-critical graph has an open odd ear decomposition.

Let $\varepsilon(G)$ denote the minimum number of edges in a 2-ECSS of G. For a graph H, let $c(H)$ denote the number of (connected) components of H. Garg et al [6, Lemma 4.1] use the following lower bound on $\varepsilon(G)$.

Proposition 4. Let $G=(V, E)$ be a 2-edge connected graph, and let S be a nonempty set of nodes such that the deletion of S results in a graph with $c=$ $c(G-S) \geq 2$ components. Then $\varepsilon(G) \geq|V|+c-|S|$.

Proof. Focus on an arbitrary component D of $G-S$ and note that it contributes $\geq|V(D)|+1$ edges to an optimal 2-ECSS, because every node in D contributes ≥ 2 edges, and at least two of these edges have exactly one end node in D. Summing over all components of $G-S$ gives the result.

For a set of nodes $S \subseteq V$ of a graph $G=(V, E), \delta(S)$ denotes the set of edges that have one end node in S and one end node in $V-S$. For the singleton node set $\{v\}$, we use the notation $\delta(v)$. For a vector $x: E \rightarrow \mathbb{R}, x(\delta(S))$ denotes $\sum_{e \in \delta(S)} x_{e}$.

3 Frank's Theorem and a New Lower Bound for ε

For a 2-edge connected graph G, let $\varphi(G)$ (or φ) denote the minimum number of even ears of length ≥ 2, over all possible ear decompositions. For example: $\varphi(G)=0$ if G is a factor-critical graph (e.g., G is an odd clique $K_{2 \ell+1}$ or an odd cycle $C_{2 \ell+1}$), $\varphi(G)=1$ if G is an even clique $K_{2 \ell}$ or an even cycle $C_{2 \ell}$, and $\varphi(G)=\ell-1$ if G is the complete bipartite graph $K_{2, \ell}(\ell \geq 2)$. The proof of the next result appears in 4], see Theorem 4.5 and Section 2 of [4].
Theorem 5 (A. Frank [4]). Let $G=(V, E)$ be a 2-edge connected graph. An ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of G having $\varphi(G)$ even ears of length ≥ 2 can be computed in time $O(|V| \cdot|E|)$.

Proposition 6. Let G be a 2-node connected graph. An open ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of G having $\varphi(G)$ even ears of length ≥ 2 can be computed in time $O(|V| \cdot|E|)$.
Proof. Start with an ear decomposition having $\varphi(G)$ even ears of length ≥ 2 (the ears may be open or closed). Subdivide one edge in each even ear of length ≥ 2 by adding one new node and one new edge. The resulting ear decomposition is odd. Hence, the resulting graph G^{\prime} is factor critical, and also, G^{\prime} is 2-node connected since G is 2 -node connected. Apply Theorem 3 to construct an open odd ear decomposition of G^{\prime}. Finally, in the resulting ear decomposition, "undo" the $\varphi(G)$ edge subdivisions to obtain the desired ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of G.

Frank's theorem gives the following lower bound on the minimum number of edges in a 2-ECSS.
Proposition 7. Let $G=(V, E)$ be a 2-edge connected graph. Then $\varepsilon(G) \geq$ $|V|+\varphi(G)-1$.

Proof. Consider an arbitrary 2-ECSS of G. If this 2-ECSS has an ear decomposition with fewer than $\varphi(G)+1$ even ears, then we could add the edges of G not in the 2-ECSS as 1-ears to get an ear decomposition of G with fewer than $\varphi(G)+1$ even ears. Thus, every ear decomposition of the 2-ECSS has $\geq \varphi(G)+1$ even ears. Let $P_{0}+P_{1}+\ldots+P_{k}$ be an ear decomposition of the $2-$ ECSS, where $k \geq \varphi(G)$. It is easily seen that the number of edges in the 2-ECSS is $k+|V|-1 \geq \varphi(G)+|V|-1$. The result follows.

The next result is not useful for our main result, but we include it for completeness.

Proposition 8. Let $G=(V, E)$ be a 2-edge connected graph. Let $G^{\prime}=\left(V, E^{\prime}\right)$ be obtained by discarding all the 1-ears from an ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of G that has $\varphi(G)$ even ears of length ≥ 2. Then $\left|E^{\prime}\right| / \varepsilon(G) \leq 1.5$.

Proof. Let t be the number of internal nodes in the odd ears of $P_{0}+P_{1}+\ldots+P_{k}$. (Note that the node in P_{0} is not counted by t.) Then, the number of edges contributed to E^{\prime} by the odd ears is $\leq 3 t / 2$, and the number of edges contributed to E^{\prime} by the even ears is $\leq \varphi+|V|-t-1$. By applying Proposition 7 (and the fact that $\varepsilon(G) \geq|V|)$ we get, $\left|E^{\prime}\right| / \varepsilon(G) \leq(t / 2+\varphi+|V|-1) / \max (|V|, \varphi+|V|-1) \leq$ $(t / 2|V|)+(\varphi+|V|-1) /(\varphi+|V|-1) \leq 1.5$.

4 Approximating ε via Frank's Theorem

For a graph H and an ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of H, we call an ear P_{i} of length ≥ 2 pendant if none of the internal nodes of P_{i} is an end node of another ear P_{j} of length ≥ 2. In other words, if we discard all the 1-ears from the ear decomposition, then one of the remaining ears is called pendant if all its internal nodes have degree 2 in the resulting graph.

Let $G=(V, E)$ be the given graph, and let $\varphi=\varphi(G)$. Recall the assumption from Section 1 that G is 2-node connected. By an evenmin ear decomposition of G, we mean an ear decomposition that has $\varphi(G)$ even ears of length ≥ 2. Our method starts with an open evenmin ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$ of G, see Proposition6, i.e., for $2 \leq i \leq k$, every ear P_{i} has distinct end nodes, and the number of even ears is minimum possible. The method performs a sequence of "ear splicings" to obtain another (evenmin) ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$ (the ears Q_{i} may be either open or closed) such that the following holds:

Property (α)
(0) the number of even ears is the same in $P_{0}+P_{1}+\ldots+P_{k}$ and in $Q_{0}+Q_{1}+$ $\ldots+Q_{k}$,
(1) every 3 -ear Q_{i} is a pendant ear,
(2) for every pair of 3 -ears Q_{i} and Q_{j}, there is no edge between an internal node of Q_{i} and an internal node of Q_{j}, and
(3) every 3 -ear Q_{i} is open.

Proposition 9. Let $G=(V, E)$ be a 2-node connected graph with $|V| \geq 4$. Let $P_{0}+P_{1}+\ldots+P_{k}$ be an open evenmin ear decomposition of G. There is a linear-time algorithm that given $P_{0}+P_{1}+\ldots+P_{k}$, finds an ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$ satisfying property (α).

Proof. The proof is by induction on the number of ears. The result clearly holds for $k=1$. Suppose that the result holds for $(j-1)$ ears $P_{0}+P_{1}+\ldots+P_{j-1}$. Let
$Q_{0}^{\prime}+Q_{1}^{\prime}+\ldots+Q_{j-1}^{\prime}$ be the corresponding ear decomposition that satisfies property (α). Consider the open ear $P_{j}, j \geq 2$. Let P_{j} be an ℓ-ear, $v_{1}, v_{2}, \ldots, v_{\ell}, v_{\ell+1}$. Possibly, $\ell=1$. (So v_{1} and $v_{\ell+1}$ are the end nodes of P_{j}, and $v_{1} \neq v_{\ell+1}$.)

Let T denote the set of internal nodes of the 3 -ears of $Q_{0}^{\prime}+Q_{1}^{\prime}+\ldots+Q_{j-1}^{\prime}$. Suppose P_{j} is an ear of length $\ell \geq 2$ with exactly one end node, say, v_{1} in T. Let $Q_{i}^{\prime}=w_{1}, v_{1}, w_{3}, w_{4}$ be the 3 -ear having v_{1} as an internal node. We take $Q_{0}=Q_{0}^{\prime}, \ldots, Q_{i-1}=Q_{i-1}^{\prime}, Q_{i}=Q_{i+1}^{\prime}, \ldots, Q_{j-2}=Q_{j-1}^{\prime}$. Moreover, we take Q_{j-1} to be the $(\ell+2)$-ear obtained by adding the last two edges of Q_{i}^{\prime} to P_{j}, i.e., $Q_{j-1}=w_{4}, w_{3}, v_{1}, v_{2}, \ldots, v_{\ell}, v_{\ell+1}$, and we take Q_{j} to be the 1-ear consisting of the first edge $w_{1} v_{1}$ of Q_{i}^{\prime}. Note that the parities of the lengths of the two spliced ears are preserved, that is, Q_{j-1} is even (odd) if and only if P_{j} is even (odd), and both Q_{j} and Q_{i}^{\prime} are odd. Hence, the number of even ears is the same in $P_{0}+P_{1}+\ldots+P_{j}$ and in $Q_{0}+Q_{1}+\ldots+Q_{j}$.

Now, suppose P_{j} has both end nodes v_{1} and $v_{\ell+1}$ in T. If there is one 3 -ear Q_{i}^{\prime} that has both v_{1} and $v_{\ell+1}$ as internal nodes (so $\ell \geq 2$), then we take Q_{j-1} to be the $(\ell+2)$-ear obtained by adding the first edge and the last edge of Q_{i}^{\prime} to P_{j}, and we take Q_{j} to be the 1-ear consisting of the middle edge $v_{1} v_{\ell+1}$ of Q_{i}^{\prime}. Also, we take $Q_{0}=Q_{0}^{\prime}, \ldots, Q_{i-1}=Q_{i-1}^{\prime}, Q_{i}=Q_{i+1}^{\prime}, \ldots, Q_{j-2}=Q_{j-1}^{\prime}$. Observe that the number of even ears is the same in $P_{0}+P_{1}+\ldots+P_{j}$ and in $Q_{0}+Q_{1}+\ldots+Q_{j}$.

If there are two 3 -ears Q_{i}^{\prime} and Q_{h}^{\prime} that contain the end nodes of P_{j}, then we take Q_{j-2} to be the $(\ell+4)$-ear obtained by adding the last two edges of both Q_{i}^{\prime} and Q_{h}^{\prime} to P_{j}, and we take Q_{j-1} (similarly, Q_{j}) to be the 1-ear consisting of the first edge of Q_{i}^{\prime} (similarly, Q_{h}^{\prime}). (For ease of description, assume that if a 3-ear has exactly one end node v of P_{j} as an internal node, then v is the second node of the 3 -ear.) Also, assuming $i<h$, we take $Q_{0}=Q_{0}^{\prime}, \ldots, Q_{i-1}=Q_{i-1}^{\prime}, Q_{i}=$ $Q_{i+1}^{\prime}, \ldots, Q_{h-2}=Q_{h-1}^{\prime}, Q_{h-1}=Q_{h+1}^{\prime}, \ldots, Q_{j-3}=Q_{j-1}^{\prime}$. Again, observe that the number of even ears is the same in $P_{0}+P_{1}+\ldots+P_{j}$ and in $Q_{0}+Q_{1}+\ldots+Q_{j}$.

If the end nodes of P_{j} are disjoint from T, then the proof is easy (take $Q_{j}=P_{j}$). Also, if P_{j} is a 1-ear with exactly one end node in T, then the proof is easy (take $Q_{j}=P_{j}$).

The proof ensures that in the final ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$, every 3 -ear is pendant and open, and moreover, the internal nodes of distinct 3 ears are nonadjacent. We leave the detailed verification to the reader. Therefore, the ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$ satisfies property (α).

Remark 10. In the induction step, which applies for $j \geq 2$ (but not for $j=1$), it is essential that the ear P_{j} is open, though Q_{i}^{\prime} (and Q_{h}^{\prime}) may be either open or closed. Our main result (Theorem (12) does not use part (3) of property (α).

Our approximation algorithm for a minimum-size 2-ECSS computes the ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$ satisfying property (α), starting from an open evenmin ear decomposition $P_{0}+P_{1}+\ldots+P_{k}$. (Note that $Q_{0}+Q_{1}+\ldots+Q_{k}$ is an evenmin ear decomposition.) Then, the algorithm discards all the edges in 1-ears. Let the resulting graph be $G^{\prime}=\left(V, E^{\prime}\right) . G^{\prime}$ is 2-edge connected by Proposition [1.

Let T denote the set of internal nodes of the 3 -ears of $Q_{0}+Q_{1}+\ldots+Q_{k}$, and let $t=|T|$. (Note that the node in Q_{0} is not counted by t.) Property (α) implies that in the subgraph of G induced by $T, G[T]$, every (connected) component has exactly two nodes. Consider the approximation guarantee for G^{\prime}, i.e., the quantity $\left|E^{\prime}\right| / \varepsilon(G)$.

Lemma 11. $\varepsilon(G) \geq 3 t / 2$.
Proof. Apply Proposition 4 with $S=V-T$ (so $|S|=n-t)$ and $c=c(G-S)=$ $t / 2$ to get $\varepsilon(G) \geq n-(n-t)+(t / 2)$.

Theorem 12. Given a 2-edge connected graph $G=(V, E)$, the above algorithm finds a 2-ECSS $G^{\prime}=\left(V, E^{\prime}\right)$ such that $\left|E^{\prime}\right| / \varepsilon(G) \leq \frac{17}{12}$. The algorithm runs in time $O(|V| \cdot|E|)$.

Proof. By the previous lemma and Proposition 7,

$$
\varepsilon(G) \geq \max (n+\varphi(G)-1,3 t / 2)
$$

We claim that

$$
\left|E^{\prime}\right| \leq \frac{t}{4}+\frac{5(n+\varphi(G)-1)}{4}
$$

To see this, note that the final ear decomposition $Q_{0}+Q_{1}+\ldots+Q_{k}$ satisfies the following: (i) the number of edges contributed by the 3 -ears is $3 t / 2$; (ii) the number of edges contributed by the odd ears of length ≥ 5 is $\leq 5 q / 4$, where q is the number of internal nodes in the odd ears of length ≥ 5; and (iii) the number of edges contributed by the even ears of length ≥ 2 is $\leq \varphi(G)+(n-t-q-1)$, since there are $\varphi(G)$ such ears and they have a total of $(n-t-q-1)$ internal nodes. (The node in Q_{0} is not an internal node of an ear of length ≥ 1.)

The approximation guarantee follows since

$$
\begin{aligned}
\frac{\left|E^{\prime}\right|}{\varepsilon(G)} & \leq \frac{t / 4+5(n+\varphi(G)-1) / 4}{\varepsilon(G)} \\
& \leq \frac{t / 4+5(n+\varphi(G)-1) / 4}{\max (n+\varphi(G)-1,3 t / 2)} \\
& \leq \frac{t}{4} \frac{2}{3 t}+\frac{5(n+\varphi(G)-1)}{4} \frac{1}{n+\varphi(G)-1} \\
& =\frac{17}{12}
\end{aligned}
$$

5 Relation to the TSP $\frac{4}{3}$ Conjecture

This section shows that the well known $\frac{4}{3}$ conjecture for the metric TSP (due to Cunningham (1986) and others) implies that there is a $\frac{4}{3}$-approximation algorithm for a minimum-size 2-ECSS, see Theorem 18, Almost all of the results
in this section are well known, except possibly Fact 13 see [1,3/57]11|13]. The details are included to make the paper self-contained.

In the metric TSP (traveling salesman problem), we are given a complete graph $G^{\prime}=K_{n}$ and edge costs c^{\prime} that satisfy the triangle inequality $\left(c_{v w}^{\prime} \leq\right.$ $\left.c_{v u}^{\prime}+c_{u w}^{\prime}, \forall v, w, u \in V\right)$. The goal is to compute $c_{T S P}^{\prime}$, the minimum cost of a Hamiltonian cycle.

Recall our 2-ECSS problem: Given a simple graph $G=(V, E)$, compute $\varepsilon(G)$, the minimum size of a 2-edge connected spanning subgraph. Here is the multiedge (or uncapacitated) version of our problem. Given $G=(V, E)$ as above, compute $\mu(G)$, the minimum size (counting multiplicities) of a 2-edge connected spanning submultigraph $H=(V, F)$, where F is a multiset such that $e \in F \Longrightarrow e \in E$. (To give an analogy, if we take $\varepsilon(G)$ to correspond to the f-factor problem, then $\mu(G)$ corresponds to the f-matching problem.)

Fact 13. If G is a 2-edge connected graph, then $\mu(G)=\varepsilon(G)$.
Proof. Let $H=(V, F)$ give the optimal solution for $\mu(G)$. If H uses two copies of an edge $v w$, then we can replace one of the copies by some other edge of G in the cut given by $H-\{v w, v w\}$. In other words, if S is the node set of one of the two components of $H-\{v w, v w\}$, then we replace one copy of $v w$ by some edge from $\delta_{G}(S)-\{v w\}$.

Remark 14. The above is a lucky fact. It fails to generalize, both for minimumcost (rather than minimum-size) 2-ECSS, and for minimum-size k-ECSS, $k \geq 3$.

Given an n-node graph $G=(V, E)$ together with edge costs c (possibly c assigns unit costs), define its metric completion G^{\prime}, c^{\prime} to be the complete graph $K_{n}=G^{\prime}$ with $c_{v w}^{\prime}(\forall v, w \in V)$ equal to the minimum-cost of a $v-w$ path in G, c.

Fact 15. Let G be a 2-edge connected graph, and let c assign unit costs to the edges. The minimum cost of the TSP on the metric completion of G, c, satisfies $c_{T S P}^{\prime} \geq \mu(G)=\varepsilon(G)$.

Proof. Let T be an optimal solution to the TSP. We replace each edge $v w \in$ $E(T)-E(G)$ by the edges of a minimum-cost v-w path in G, c. The resulting multigraph H is obviously 2-edge connected, and has $c_{T S P}^{\prime}=c(H) \geq \mu(G)$.

Here is the subtour formulation of the TSP on G^{\prime}, c^{\prime}, where $G^{\prime}=K_{n}$. This gives an integer programming formulation, using the subtour elimination constraints. There is one variable x_{e} for each edge e in G^{\prime}.

$$
\begin{array}{rll}
c_{T S P}^{\prime}=\underset{\text { minimize }}{ } c^{\prime} \cdot x & & \\
\text { subject to } & x(\delta(v))=2, & \forall v \in V \\
& x(\delta(S)) \geq 2, & \forall S \subset V, \emptyset \neq S \neq V \\
& x & \geq 0, \\
& x & \in \mathbb{Z} .
\end{array}
$$

The subtour LP (linear program) is obtained by removing the integrality constraints, i.e., the x-variables are nonnegative reals rather than nonnegative integers. Let $z_{S T}$ denote the optimal value of the subtour LP. Note that $z_{S T}$ is computable in polynomial time, e.g., via the Ellipsoid method. In practice, $z_{S T}$ may be computed via the Held-Karp heuristic, which typically runs fast.

Theorem 16 (Wolsey [13]). If c^{\prime} is a metric, then $c_{T S P}^{\prime} \leq \frac{3}{2} z_{S T}$.
TSP $\frac{4}{3}$ Conjecture. If c^{\prime} is a metric, then $c_{T S P}^{\prime} \leq \frac{4}{3} z_{S T}$.
To derive the lower bound $z_{S T} \leq \varepsilon(G)$, we need a result of Goemans \& Bertsimas on the subtour LP, [7, Theorem 1]. In fact, a special case of this result that appeared earlier in [11, Theorem 8] suffices for us.

Proposition 17 (Parsimonious property [7]). Consider the TSP on $G^{\prime}=$ $\left(V, E^{\prime}\right), c^{\prime}$, where $G^{\prime}=K_{|V|}$. Assume that the edge costs c^{\prime} form a metric, i.e., c^{\prime} satisfies the triangle inequality. Then the optimal value of the subtour LP remains the same even if the constraints $\{x(\delta(v))=2, \forall v \in V\}$ are omitted.

Note that this result does not apply to the subtour integer program given above.

Let $z_{2 C U T}$ denote the optimal value of the LP obtained from the subtour LP by removing the constraints $x(\delta(v))=2$ for all nodes $v \in V$. The above result states that if c^{\prime} is a metric, then $z_{S T}=z_{2 C U T}$. Moreover, for a 2-edge connected graph G and unit edge costs $c=\mathbb{1}$, we have $z_{2 C U T} \leq \mu(G)=\varepsilon(G)$, since $\mu(G)$ is the optimal value of the integer program whose LP relaxation has optimal value $z_{2 C U T}$. (Here, $z_{2 C U T}$ is the optimal value of the LP on the metric completion of G, c.) Then, by the parsimonious property, we have $z_{S T}=z_{2 C U T} \leq \varepsilon(G)$. The main result in this section follows.

Theorem 18. Suppose that the TSP $\frac{4}{3}$ conjecture holds. Then

$$
z_{S T} \leq \varepsilon(G) \leq c_{T S P}^{\prime} \leq \frac{4}{3} z_{S T}
$$

A $\frac{4}{3}$-approximation of the minimum-size 2-ECSS is obtained by computing $\frac{4}{3} z_{S T}$ on the metric completion of G, c, where $c=\mathbb{1}$.

The Minimum-Cost 2-ECSS Problem

Consider the weighted version of the problem, where each edge e has a nonnegative cost c_{e} and the goal is to find a 2 - ECSS $\left(V, E^{\prime}\right)$ of the given graph $G=(V, E)$ such that the $\operatorname{cost} c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c_{e}$ is minimum. Khuller \& Vishkin [8] pointed out that a 2 -approximation guarantee can be obtained via the weighted matroid intersection algorithm. When the edge costs satisfy the triangle inequality (i.e., when c is a metric), Frederickson and Ja'Ja' 5] gave a 1.5 -approximation algorithm, and this is still the best approximation guarantee known. In fact, they
proved that the TSP tour found by the Christofides heuristic achieves an approximation guarantee of 1.5 . Simpler proofs of this result based on Theorem 16 were found later by Cunningham (see [11] Theorem 8]) and by Goemans \& Bertsimas [7. Theorem 4].

Consider the minimum-cost 2-ECSS problem on a 2 -edge connected graph $G=(V, E)$ with nonnegative edge costs c. Let the minimum cost of a simple 2ECSS and of a multiedge 2-ECSS be denoted by c_{ε} and c_{μ}, respectively. Clearly, $c_{\varepsilon} \geq c_{\mu}$. Even for the case of arbitrary nonnegative costs c, we know of no example where $\frac{c_{\mu}}{z_{S T}}>\frac{7}{6}$. There is an example G, c with $\frac{c_{\mu}}{z_{S T}} \geq \frac{7}{6}$. Take two copies of K_{3}, call them C_{1}, C_{2}, and add three disjoint length-2 paths P_{1}, P_{2}, P_{3} between C_{1} and C_{2} such that each node of $C_{1} \cup C_{2}$ has degree 3 in the resulting graph G. In other words, G is obtained from the triangular prism $\overline{C_{6}}$ by subdividing once each of the 3 "matching edges". Assign a cost of 2 to each edge in $C_{1} \cup C_{2}$, and assign a cost of 1 to the remaining edges. Then $c_{\varepsilon}=c_{\mu}=14$, as can be seen by taking 2 edges from each of C_{1}, C_{2}, and all 6 edges of $P_{1} \cup P_{2} \cup P_{3}$. Moreover, $z_{S T} \leq 12$, as can be seen by taking $x_{e}=1 / 2$ for each of the 6 edges e in $C_{1} \cup C_{2}$, and taking $x_{e}=1$ for the remaining 6 edges e in $P_{1} \cup P_{2} \cup P_{3}$.

6 Conclusions

Our analysis of the heuristic is (asymptotically) tight. We give two example graphs. Each is an n-node Hamiltonian graph $G=(V, E)$, where the heuristic (in the worst case) finds a 2-ECSS $G^{\prime}=\left(V, E^{\prime}\right)$ with $17 n / 12-\Theta(1)$ edges. The first example graph, G, is constructed by "joining" many copies of the following graph H : H consists of a 5 -edge path $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$, and 4 disjoint edges $v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, v_{4} w_{4}$. We take q copies of H and identify the node u_{0} in all copies, and identify the node u_{5} in all copies. Then we add all possible edges $u_{i} v_{j}$, and all possible edges $u_{i} w_{j}$, i.e., we add the edge set of a complete bipartite graph on all the u-nodes and all the v-nodes, and we add the edge set of another complete bipartite graph on all the u-nodes and all the w-nodes. Finally, we add 3 more nodes $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}$ and 5 more edges to obtain a 5 -edge cycle $u_{0}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}, u_{0}$. Clearly, $\varepsilon(G)=n=12 q+5$. If the heuristic starts with the closed 5 -ear $u_{0}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}, u_{0}$, and then finds the 5 -ears $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ in all the copies of H, and finally finds the 3 -ears $u_{0} v_{j} w_{j} u_{5}(1 \leq j \leq 4)$ in all the copies of H, then we have $\left|E^{\prime}\right|=17 q+5$.

Here is the second example graph, $G=(V, E)$. The number of nodes is $n=$ 3×5^{q}, and $V=\left\{0,1,2, \ldots, 3 \times 5^{q}-1\right\}$. The "first node" 0 will also be denoted $3 \times$ 5^{q}. The edge set E consists of (the edge set of) a Hamiltonian cycle together with (the edge sets of) "shortcut cycles" of lengths $n / 3, n /(3 \times 5), n /\left(3 \times 5^{2}\right), \ldots, 5$. In detail, $E=\{i(i+1) \mid \forall 0 \leq i \leq q-1\} \cup\left\{\left(3 \times 5^{j} \times i\right)\left(3 \times 5^{j} \times(i+1)\right) \mid \forall 0 \leq j \leq\right.$ $\left.q-1,0 \leq i \leq 5^{q-j}-1\right\}$. Note that $|E|=3 \times 5^{q}+5^{q}+5^{q-1}+\ldots+5=\left(17 \times 5^{q}-5\right) / 4$. In the worst case, the heuristic initially finds 5 -ears, and finally finds 3 -ears, and so the 2-ECSS $\left(V, E^{\prime}\right)$ found by the heuristic has all the edges of G. Hence, we have $\left|E^{\prime}\right| / \varepsilon(G)=|E| / n=17 / 12-1 /\left(12 \times 5^{q-1}\right)$.

How do the lower bounds in Proposition 4 (call it L_{c}) and in Proposition 7 (call it L_{φ}) compare with ε ? Let n denote the number of nodes in the graph. There is a 2 -node connected graph such that $\varepsilon / L_{\varphi} \geq 1.5-\Theta(1) / n$, i.e., the upper bound of Proposition 8 is tight. There is another 2-edge connected (but not 2node connected) graph such that $\varepsilon / L_{c} \geq 1.5-\Theta(1) / n$ and $\varepsilon / L_{\varphi} \geq 1.5-\Theta(1) / n$. Among 2-node connected graphs, we have a graph with $\varepsilon / L_{c} \geq 4 / 3-\Theta(1) / n$, but we do not know whether there exist graphs that give higher ratios. There is a 2-node connected graph such that $\varepsilon / \max \left(L_{c}, L_{\varphi}\right) \geq 5 / 4-\Theta(1) / n$, but we do not know whether there exist graphs that give higher ratios.

References

1. R. Carr and R. Ravi. A new bound for the 2-edge connected subgraph problem. In R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado, editors, Integer Programming and Combinatorial Optimization: Proceedings of the 6th International Conference on Integer Programming and Combinatorial Optimization, LNCS, Vol. 1412, pages 110-123. Springer, 1998. This volume.
2. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs via matching. Proc. ${ }^{37}$ th Annual IEEE Sympos. on Foundat. of Comput. Sci., pages 292-301, 1996.
3. N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, G.S.I.A., Carnegie-Mellon Univ., Pittsburgh, PA, 1976.
4. A. Frank. Conservative weightings and ear-decompositions of graphs. Combinatorica, 13:65-81, 1993.
5. G. L. Frederickson and J. Ja'Ja'. On the relationship between the biconnectivity augmentation and traveling salesman problems. Theor. Comp. Sci., 19:189-201, 1982.
6. N. Garg, V. S. Santosh, and A. Singla. Improved approximation algorithms for biconnected subgraphs via better lower bounding techniques. Proc. 4 th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 103-111, 1993.
7. M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming relaxations and the parsimonious property. Mathematical Programming, 60:143166, 1993.
8. S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of the ACM, 41:214-235, 1994. Preliminary version in Proc. 24th Annual ACM STOC,pages 759-770, 1992.
9. L. Lovász. A note on factor-critical graphs. Studia Sci. Math. Hungar., 7:279-280, 1972.
10. L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986.
11. C. L. Monma, B. S. Munson, and W. R. Pulleyblank. Minimum-weight twoconnected spanning networks. Mathematical Programming, 46:153-171, 1990.
12. H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc., 34:339362, 1932.
13. L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study, 13:121-134, 1980.

[^0]: ${ }^{1}$ An α-approximation algorithm for a combinatorial optimization problem runs in polynomial time and delivers a solution whose value is always within the factor α of the optimum value. The quantity α is called the approximation guarantee of the algorithm.

