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Abstract. We give a 17
12

-approximation algorithm for the following NP-
hard problem:

Given a simple undirected graph, find a 2-edge connected span-
ning subgraph that has the minimum number of edges.

The best previous approximation guarantee was 3
2
. If the well known TSP

4
3

conjecture holds, then there is a 4
3
-approximation algorithm. Thus our

main result gets half-way to this target.

1 Introduction

Given a simple undirected graph, consider the problem of finding a 2-edge con-
nected spanning subgraph that has the minimum number of edges. The problem
is NP-hard, since the Hamiltonian cycle problem reduces to it. A number of
recent papers have focused on approximation algorithms 1 for this and other
related problems, [2]. We use the abbreviation 2-ECSS for 2-edge connected
spanning subgraph.

Here is an easy 2-approximation algorithm for the problem:

Take an ear decomposition of the given graph (see Section 2 for defini-
tions), and discard all 1-ears (ears that consist of one edge). Then the
resulting graph is 2-edge connected and has at most 2n− 3 edges, while
the optimal subgraph has ≥ n edges, where n is the number of nodes.

1 An α-approximation algorithm for a combinatorial optimization problem runs in
polynomial time and delivers a solution whose value is always within the factor α
of the optimum value. The quantity α is called the approximation guarantee of the
algorithm.
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Khuller & Vishkin [8] were the first to improve on the approximation guarantee
of 2. They gave a simple and elegant algorithm based on depth-first search that
achieves an approximation guarantee of 1.5. In an extended abstract, Garg, San-
tosh & Singla [6] claimed to have a 1.25-approximation algorithm for the prob-
lem. No proof of this claim is available; on the other hand, there is no evidence
indicating that achieving an approximation guarantee of 1.25 in polynomial time
is impossible.

We improve Khuller & Vishkin’s 18
12 -approximation guarantee to 17

12 . If the
well known TSP 4

3 conjecture holds, then there is a 4
3 -approximation algorithm,

see Section 5. Thus our main result gets half-way to this target.
Let G = (V, E) be the given simple undirected graph, and let n and m denote

|V | and |E|. Assume that G is 2-edge connected.
Our method is based on a matching-theory result of András Frank, namely,

there is a good characterization for the minimum number of even-length ears
over all possible ear decompositions of a graph, and moreover, an ear decom-
position achieving this minimum can be computed efficiently, [4]. Recall that
the 2-approximation heuristic starts with an arbitrary ear decomposition of G.
Instead, if we start with an ear decomposition that maximizes the number of
1-ears, and if we discard all the 1-ears, then we will obtain the optimal solution.
In fact, we start with an ear decomposition that maximizes the number of odd-
length ears. Now, discarding all the 1-ears gives an approximation guarantee of
1.5 (see Proposition 8 below). To do better, we repeatedly apply “ear-splicing”
steps to the starting ear decomposition to obtain a final ear decomposition such
that the number of odd-length ears is the same, and moreover, the internal nodes
of distinct 3-ears are nonadjacent. We employ two lower bounds to show that
discarding all the 1-ears from the final ear decomposition gives an approximation
guarantee of 17

12 . The first lower bound is the “component lower bound” due to
Garg et al [6, Lemma 4.1], see Proposition 4 below. The second lower bound
comes from the minimum number of even-length ears in an ear decomposition
of G, see Proposition 7 below.

After developing some preliminaries in Sections 2 and 3, we present our
heuristic in Section 4. Section 5 shows that the well known 4

3 conjecture for the
metric TSP implies that there is a 4

3 -approximation algorithm for a minimum-
size 2-ECSS, see Theorem 18. Almost all of the results in Section 5 are well
known, but we include the details to make the paper self-contained. Section 6
has two examples showing that our analysis of the heuristic is tight. Section 6
also compares the two lower bounds with the optimal value.

A Useful Assumption

For our heuristic to work, it is essential that the given graph be 2-node con-
nected. Hence, in Section 4 of the paper where our heuristic is presented, we
will assume that the given graph G is 2-node connected. Otherwise, if G is not
2-node connected, we compute the blocks (i.e., the maximal 2-node connected
subgraphs) of G, and apply the algorithm separately to each block. We compute
a 2-ECSS for each block, and output the union of the edge sets as the edge set of



128 Joseph Cheriyan et al.

a 2-ECSS of G. The resulting graph has no cut edges since the subgraph found
for each block has no cut edge, and moreover, the approximation guarantee for
G is at most the maximum of the approximation guarantees for the blocks.

2 Preliminaries

Except in Section 5, all graphs are simple, that is, there are no loops nor multi-
edges. A closed path means a cycle, and an open path means that all the nodes
are distinct.

An ear decomposition of the graph G is a partition of the edge set into open
or closed paths, P0 + P1 + . . . + Pk, such that P0 is the trivial path with one
node, and each Pi (1 ≤ i ≤ k) is a path that has both end nodes in Vi−1 =
V (P0) ∪ V (P1) ∪ . . . ∪ V (Pi−1) but has no internal nodes in Vi−1. A (closed
or open) ear means one of the (closed or open) paths P0, P1, . . . , Pk in the ear
decomposition, and for a nonnegative integer `, an `-ear means an ear that has `
edges. An `-ear is called even if ` is an even number, otherwise, the `-ear is called
odd. (The ear P0 is always even.) An open ear decomposition P0 + P1 + . . . + Pk

is one such that all the ears P2, . . . , Pk are open.

Proposition 1 (Whitney [12]).

(i) A graph is 2-edge connected if and only if it has an ear decomposition.
(ii) A graph is 2-node connected if and only if it has an open ear decomposition.

An odd ear decomposition is one such that every ear (except the trivial path
P0) has an odd number of edges. A graph is called factor-critical if for every node
v ∈ V (G), there is a perfect matching in G − v. The next result gives another
characterization of factor-critical graphs.

Theorem 2 (Lovász [9], Theorem 5.5.1 in [10]). A graph is factor-critical
if and only if it has an odd ear decomposition.

It follows that a factor-critical graph is necessarily 2-edge connected. An open
odd ear decomposition P0 + P1 + . . . + Pk is an odd ear decomposition such that
all the ears P2, . . . , Pk are open.

Theorem 3 (Lovász & Plummer, Theorem 5.5.2 in [10]). A 2-node con-
nected factor-critical graph has an open odd ear decomposition.

Let ε(G) denote the minimum number of edges in a 2-ECSS of G. For a graph
H , let c(H) denote the number of (connected) components of H . Garg et al [6,
Lemma 4.1] use the following lower bound on ε(G).

Proposition 4. Let G = (V, E) be a 2-edge connected graph, and let S be a
nonempty set of nodes such that the deletion of S results in a graph with c =
c(G − S) ≥ 2 components. Then ε(G) ≥ |V | + c − |S|.
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Proof. Focus on an arbitrary component D of G−S and note that it contributes
≥ |V (D)|+ 1 edges to an optimal 2-ECSS, because every node in D contributes
≥ 2 edges, and at least two of these edges have exactly one end node in D.
Summing over all components of G − S gives the result. ut

For a set of nodes S ⊆ V of a graph G = (V, E), δ(S) denotes the set of
edges that have one end node in S and one end node in V −S. For the singleton
node set {v}, we use the notation δ(v). For a vector x : E→IR, x(δ(S)) denotes∑

e∈δ(S) xe.

3 Frank’s Theorem and a New Lower Bound for ε

For a 2-edge connected graph G, let ϕ(G) (or ϕ) denote the minimum number
of even ears of length ≥ 2, over all possible ear decompositions. For example:
ϕ(G) = 0 if G is a factor-critical graph (e.g., G is an odd clique K2`+1 or an
odd cycle C2`+1), ϕ(G) = 1 if G is an even clique K2` or an even cycle C2`, and
ϕ(G) = `− 1 if G is the complete bipartite graph K2,` (` ≥ 2). The proof of the
next result appears in [4], see Theorem 4.5 and Section 2 of [4].

Theorem 5 (A. Frank [4]). Let G = (V, E) be a 2-edge connected graph. An
ear decomposition P0 + P1 + . . . + Pk of G having ϕ(G) even ears of length ≥ 2
can be computed in time O(|V | · |E|).

Proposition 6. Let G be a 2-node connected graph. An open ear decomposition
P0 +P1 + . . . +Pk of G having ϕ(G) even ears of length ≥ 2 can be computed in
time O(|V | · |E|).
Proof. Start with an ear decomposition having ϕ(G) even ears of length ≥ 2 (the
ears may be open or closed). Subdivide one edge in each even ear of length ≥ 2 by
adding one new node and one new edge. The resulting ear decomposition is odd.
Hence, the resulting graph G′ is factor critical, and also, G′ is 2-node connected
since G is 2-node connected. Apply Theorem 3 to construct an open odd ear
decomposition of G′. Finally, in the resulting ear decomposition, “undo” the
ϕ(G) edge subdivisions to obtain the desired ear decomposition P0+P1+. . .+Pk

of G. ut
Frank’s theorem gives the following lower bound on the minimum number of

edges in a 2-ECSS.

Proposition 7. Let G = (V, E) be a 2-edge connected graph. Then ε(G) ≥
|V | + ϕ(G) − 1.

Proof. Consider an arbitrary 2-ECSS of G. If this 2-ECSS has an ear decom-
position with fewer than ϕ(G) + 1 even ears, then we could add the edges of
G not in the 2-ECSS as 1-ears to get an ear decomposition of G with fewer
than ϕ(G) + 1 even ears. Thus, every ear decomposition of the 2-ECSS has
≥ ϕ(G) + 1 even ears. Let P0 + P1 + . . . + Pk be an ear decomposition of the 2-
ECSS, where k ≥ ϕ(G). It is easily seen that the number of edges in the 2-ECSS
is k + |V | − 1 ≥ ϕ(G) + |V | − 1. The result follows. ut
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The next result is not useful for our main result, but we include it for com-
pleteness.

Proposition 8. Let G = (V, E) be a 2-edge connected graph. Let G′ = (V, E′) be
obtained by discarding all the 1-ears from an ear decomposition P0+P1+ . . .+Pk

of G that has ϕ(G) even ears of length ≥ 2. Then |E′|/ε(G) ≤ 1.5.

Proof. Let t be the number of internal nodes in the odd ears of P0+P1+ . . .+Pk.
(Note that the node in P0 is not counted by t.) Then, the number of edges
contributed to E′ by the odd ears is ≤ 3t/2, and the number of edges contributed
to E′ by the even ears is ≤ ϕ+|V |−t−1. By applying Proposition 7 (and the fact
that ε(G) ≥ |V |) we get, |E′|/ε(G) ≤ (t/2+ϕ+ |V |−1)/ max(|V |, ϕ+ |V |−1) ≤
(t/2|V |) + (ϕ + |V | − 1)/(ϕ + |V | − 1) ≤ 1.5. ut

4 Approximating ε via Frank’s Theorem

For a graph H and an ear decomposition P0 + P1 + . . . + Pk of H , we call an
ear Pi of length ≥ 2 pendant if none of the internal nodes of Pi is an end node
of another ear Pj of length ≥ 2. In other words, if we discard all the 1-ears from
the ear decomposition, then one of the remaining ears is called pendant if all its
internal nodes have degree 2 in the resulting graph.

Let G = (V, E) be the given graph, and let ϕ = ϕ(G). Recall the assumption
from Section 1 that G is 2-node connected. By an evenmin ear decomposition of
G, we mean an ear decomposition that has ϕ(G) even ears of length ≥ 2. Our
method starts with an open evenmin ear decomposition P0 +P1 + . . .+Pk of G,
see Proposition 6, i.e., for 2 ≤ i ≤ k, every ear Pi has distinct end nodes, and the
number of even ears is minimum possible. The method performs a sequence of
“ear splicings” to obtain another (evenmin) ear decomposition Q0+Q1+. . .+Qk

(the ears Qi may be either open or closed) such that the following holds:

Property (α)
(0) the number of even ears is the same in P0 + P1 + . . . + Pk and in Q0 + Q1 +

. . . + Qk,
(1) every 3-ear Qi is a pendant ear,
(2) for every pair of 3-ears Qi and Qj , there is no edge between an internal node

of Qi and an internal node of Qj, and
(3) every 3-ear Qi is open.

Proposition 9. Let G = (V, E) be a 2-node connected graph with |V | ≥ 4. Let
P0 + P1 + . . . + Pk be an open evenmin ear decomposition of G. There is a
linear-time algorithm that given P0 + P1 + . . . + Pk, finds an ear decomposition
Q0 + Q1 + . . . + Qk satisfying property (α).

Proof. The proof is by induction on the number of ears. The result clearly holds
for k = 1. Suppose that the result holds for (j−1) ears P0 +P1 + . . .+Pj−1. Let
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Q′
0 +Q′

1 + . . .+Q′
j−1 be the corresponding ear decomposition that satisfies prop-

erty (α). Consider the open ear Pj , j ≥ 2. Let Pj be an `-ear, v1, v2, . . . , v`, v`+1.
Possibly, ` = 1. (So v1 and v`+1 are the end nodes of Pj , and v1 6= v`+1.)

Let T denote the set of internal nodes of the 3-ears of Q′
0 + Q′

1 + . . . + Q′
j−1.

Suppose Pj is an ear of length ` ≥ 2 with exactly one end node, say, v1 in T .
Let Q′

i = w1, v1, w3, w4 be the 3-ear having v1 as an internal node. We take
Q0 = Q′

0, . . . , Qi−1 = Q′
i−1, Qi = Q′

i+1, . . . , Qj−2 = Q′
j−1. Moreover, we take

Qj−1 to be the (`+2)-ear obtained by adding the last two edges of Q′
i to Pj , i.e.,

Qj−1 = w4, w3, v1, v2, . . . , v`, v`+1, and we take Qj to be the 1-ear consisting of
the first edge w1v1 of Q′

i. Note that the parities of the lengths of the two spliced
ears are preserved, that is, Qj−1 is even (odd) if and only if Pj is even (odd),
and both Qj and Q′

i are odd. Hence, the number of even ears is the same in
P0 + P1 + . . . + Pj and in Q0 + Q1 + . . . + Qj.

Now, suppose Pj has both end nodes v1 and v`+1 in T . If there is one 3-ear
Q′

i that has both v1 and v`+1 as internal nodes (so ` ≥ 2), then we take Qj−1

to be the (` + 2)-ear obtained by adding the first edge and the last edge of Q′
i

to Pj , and we take Qj to be the 1-ear consisting of the middle edge v1v`+1 of
Q′

i. Also, we take Q0 = Q′
0, . . . , Qi−1 = Q′

i−1, Qi = Q′
i+1, . . . , Qj−2 = Q′

j−1.
Observe that the number of even ears is the same in P0 + P1 + . . . + Pj and in
Q0 + Q1 + . . . + Qj .

If there are two 3-ears Q′
i and Q′

h that contain the end nodes of Pj , then we
take Qj−2 to be the (`+4)-ear obtained by adding the last two edges of both Q′

i

and Q′
h to Pj , and we take Qj−1 (similarly, Qj) to be the 1-ear consisting of the

first edge of Q′
i (similarly, Q′

h). (For ease of description, assume that if a 3-ear
has exactly one end node v of Pj as an internal node, then v is the second node
of the 3-ear.) Also, assuming i < h, we take Q0 = Q′

0, . . . , Qi−1 = Q′
i−1, Qi =

Q′
i+1, . . . , Qh−2 = Q′

h−1, Qh−1 = Q′
h+1, . . . , Qj−3 = Q′

j−1. Again, observe that
the number of even ears is the same in P0+P1+. . .+Pj and in Q0+Q1+. . .+Qj .

If the end nodes of Pj are disjoint from T , then the proof is easy (take
Qj = Pj). Also, if Pj is a 1-ear with exactly one end node in T , then the proof
is easy (take Qj = Pj).

The proof ensures that in the final ear decomposition Q0 + Q1 + . . . + Qk,
every 3-ear is pendant and open, and moreover, the internal nodes of distinct 3-
ears are nonadjacent. We leave the detailed verification to the reader. Therefore,
the ear decomposition Q0 + Q1 + . . . + Qk satisfies property (α). ut

Remark 10. In the induction step, which applies for j ≥ 2 (but not for j = 1),
it is essential that the ear Pj is open, though Q′

i (and Q′
h) may be either open

or closed. Our main result (Theorem 12) does not use part (3) of property (α).

Our approximation algorithm for a minimum-size 2-ECSS computes the ear
decomposition Q0 +Q1 + . . .+Qk satisfying property (α), starting from an open
evenmin ear decomposition P0 + P1 + . . . + Pk. (Note that Q0 + Q1 + . . . + Qk

is an evenmin ear decomposition.) Then, the algorithm discards all the edges
in 1-ears. Let the resulting graph be G′ = (V, E′). G′ is 2-edge connected by
Proposition 1.
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Let T denote the set of internal nodes of the 3-ears of Q0+Q1 + . . .+Qk, and
let t = |T |. (Note that the node in Q0 is not counted by t.) Property (α) implies
that in the subgraph of G induced by T , G[T ], every (connected) component
has exactly two nodes. Consider the approximation guarantee for G′, i.e., the
quantity |E′|/ε(G).

Lemma 11. ε(G) ≥ 3t/2.

Proof. Apply Proposition 4 with S = V −T (so |S| = n− t) and c = c(G−S) =
t/2 to get ε(G) ≥ n − (n − t) + (t/2). ut

Theorem 12. Given a 2-edge connected graph G = (V, E), the above algorithm
finds a 2-ECSS G′ = (V, E′) such that |E′|/ε(G) ≤ 17

12 . The algorithm runs in
time O(|V | · |E|).
Proof. By the previous lemma and Proposition 7,

ε(G) ≥ max(n + ϕ(G) − 1, 3t/2) .

We claim that

|E′| ≤ t

4
+

5(n + ϕ(G) − 1)
4

.

To see this, note that the final ear decomposition Q0 + Q1 + . . . + Qk satisfies
the following: (i) the number of edges contributed by the 3-ears is 3t/2; (ii) the
number of edges contributed by the odd ears of length ≥ 5 is ≤ 5q/4, where q is
the number of internal nodes in the odd ears of length ≥ 5; and (iii) the number
of edges contributed by the even ears of length ≥ 2 is ≤ ϕ(G) + (n− t − q − 1),
since there are ϕ(G) such ears and they have a total of (n − t − q − 1) internal
nodes. (The node in Q0 is not an internal node of an ear of length ≥ 1.)

The approximation guarantee follows since

|E′|
ε(G)

≤ t/4 + 5(n + ϕ(G) − 1)/4
ε(G)

≤ t/4 + 5(n + ϕ(G) − 1)/4
max(n + ϕ(G) − 1, 3t/2)

≤ t

4
2
3t

+
5(n + ϕ(G) − 1)

4
1

n + ϕ(G) − 1

=
17
12

.

ut

5 Relation to the TSP 4
3

Conjecture

This section shows that the well known 4
3 conjecture for the metric TSP (due

to Cunningham (1986) and others) implies that there is a 4
3 -approximation al-

gorithm for a minimum-size 2-ECSS, see Theorem 18. Almost all of the results
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in this section are well known, except possibly Fact 13, see [1,3,5,7,11,13]. The
details are included to make the paper self-contained.

In the metric TSP (traveling salesman problem), we are given a complete
graph G′ = Kn and edge costs c′ that satisfy the triangle inequality (c′vw ≤
c′vu + c′uw, ∀v, w, u ∈ V ). The goal is to compute c′TSP , the minimum cost of a
Hamiltonian cycle.

Recall our 2-ECSS problem: Given a simple graph G = (V, E), compute ε(G),
the minimum size of a 2-edge connected spanning subgraph. Here is the multiedge
(or uncapacitated) version of our problem. Given G = (V, E) as above, compute
µ(G), the minimum size (counting multiplicities) of a 2-edge connected spanning
submultigraph H = (V, F ), where F is a multiset such that e ∈ F =⇒ e ∈ E.
(To give an analogy, if we take ε(G) to correspond to the f -factor problem, then
µ(G) corresponds to the f -matching problem.)

Fact 13. If G is a 2-edge connected graph, then µ(G) = ε(G).

Proof. Let H = (V, F ) give the optimal solution for µ(G). If H uses two copies
of an edge vw, then we can replace one of the copies by some other edge of G
in the cut given by H − {vw, vw}. In other words, if S is the node set of one of
the two components of H − {vw, vw}, then we replace one copy of vw by some
edge from δG(S) − {vw}. ut

Remark 14. The above is a lucky fact. It fails to generalize, both for minimum-
cost (rather than minimum-size) 2-ECSS, and for minimum-size k-ECSS, k ≥ 3.

Given an n-node graph G = (V, E) together with edge costs c (possibly c
assigns unit costs), define its metric completion G′, c′ to be the complete graph
Kn = G′ with c′vw (∀ v, w ∈ V ) equal to the minimum-cost of a v-w path in G, c.

Fact 15. Let G be a 2-edge connected graph, and let c assign unit costs to the
edges. The minimum cost of the TSP on the metric completion of G, c, satisfies
c′TSP ≥ µ(G) = ε(G).

Proof. Let T be an optimal solution to the TSP. We replace each edge vw ∈
E(T ) − E(G) by the edges of a minimum-cost v-w path in G, c. The resulting
multigraph H is obviously 2-edge connected, and has c′TSP = c(H) ≥ µ(G). ut

Here is the subtour formulation of the TSP on G′, c′, where G′ = Kn. This
gives an integer programming formulation, using the subtour elimination con-
straints. There is one variable xe for each edge e in G′.

c′TSP = minimize c′ · x
subject to x(δ(v)) = 2, ∀v ∈ V

x(δ(S)) ≥ 2, ∀S ⊂ V, ∅ 6= S 6= V
x ≥ 0,
x ∈ ZZ .
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The subtour LP (linear program) is obtained by removing the integrality con-
straints, i.e., the x-variables are nonnegative reals rather than nonnegative in-
tegers. Let zST denote the optimal value of the subtour LP. Note that zST is
computable in polynomial time, e.g., via the Ellipsoid method. In practice, zST

may be computed via the Held-Karp heuristic, which typically runs fast.

Theorem 16 (Wolsey [13]). If c′ is a metric, then c′TSP ≤ 3
2
zST .

TSP 4
3 Conjecture. If c′ is a metric, then c′TSP ≤ 4

3
zST .

To derive the lower bound zST ≤ ε(G), we need a result of Goemans &
Bertsimas on the subtour LP, [7, Theorem 1]. In fact, a special case of this result
that appeared earlier in [11, Theorem 8] suffices for us.

Proposition 17 (Parsimonious property [7]). Consider the TSP on G′ =
(V, E′), c′, where G′ = K|V |. Assume that the edge costs c′ form a metric, i.e.,
c′ satisfies the triangle inequality. Then the optimal value of the subtour LP
remains the same even if the constraints {x(δ(v)) = 2, ∀v ∈ V } are omitted.

Note that this result does not apply to the subtour integer program given
above.

Let z2CUT denote the optimal value of the LP obtained from the subtour LP
by removing the constraints x(δ(v)) = 2 for all nodes v ∈ V . The above result
states that if c′ is a metric, then zST = z2CUT . Moreover, for a 2-edge connected
graph G and unit edge costs c = 1l, we have z2CUT ≤ µ(G) = ε(G), since µ(G) is
the optimal value of the integer program whose LP relaxation has optimal value
z2CUT . (Here, z2CUT is the optimal value of the LP on the metric completion of
G, c.) Then, by the parsimonious property, we have zST = z2CUT ≤ ε(G). The
main result in this section follows.

Theorem 18. Suppose that the TSP 4
3 conjecture holds. Then

zST ≤ ε(G) ≤ c′TSP ≤ 4
3
zST .

A 4
3 -approximation of the minimum-size 2-ECSS is obtained by computing

4
3zST on the metric completion of G, c, where c = 1l.

The Minimum-Cost 2-ECSS Problem

Consider the weighted version of the problem, where each edge e has a nonnega-
tive cost ce and the goal is to find a 2-ECSS (V, E′) of the given graph G = (V, E)
such that the cost c(E′) =

∑
e∈E′ ce is minimum. Khuller & Vishkin [8] pointed

out that a 2-approximation guarantee can be obtained via the weighted matroid
intersection algorithm. When the edge costs satisfy the triangle inequality (i.e.,
when c is a metric), Frederickson and Ja’Ja’ [5] gave a 1.5-approximation algo-
rithm, and this is still the best approximation guarantee known. In fact, they
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proved that the TSP tour found by the Christofides heuristic achieves an approx-
imation guarantee of 1.5. Simpler proofs of this result based on Theorem 16 were
found later by Cunningham (see [11, Theorem 8]) and by Goemans & Bertsimas
[7, Theorem 4].

Consider the minimum-cost 2-ECSS problem on a 2-edge connected graph
G = (V, E) with nonnegative edge costs c. Let the minimum cost of a simple 2-
ECSS and of a multiedge 2-ECSS be denoted by cε and cµ, respectively. Clearly,
cε ≥ cµ. Even for the case of arbitrary nonnegative costs c, we know of no exam-

ple where
cµ

zST
>

7
6
. There is an example G, c with

cµ

zST
≥ 7

6
. Take two copies of

K3, call them C1, C2, and add three disjoint length-2 paths P1, P2, P3 between
C1 and C2 such that each node of C1∪C2 has degree 3 in the resulting graph G.
In other words, G is obtained from the triangular prism C6 by subdividing once
each of the 3 “matching edges”. Assign a cost of 2 to each edge in C1 ∪ C2, and
assign a cost of 1 to the remaining edges. Then cε = cµ = 14, as can be seen by
taking 2 edges from each of C1, C2, and all 6 edges of P1 ∪ P2 ∪ P3. Moreover,
zST ≤ 12, as can be seen by taking xe = 1/2 for each of the 6 edges e in C1∪C2,
and taking xe = 1 for the remaining 6 edges e in P1 ∪ P2 ∪ P3.

6 Conclusions

Our analysis of the heuristic is (asymptotically) tight. We give two example
graphs. Each is an n-node Hamiltonian graph G = (V, E), where the heuristic
(in the worst case) finds a 2-ECSS G′ = (V, E′) with 17n/12 − Θ(1) edges.
The first example graph, G, is constructed by “joining” many copies of the
following graph H : H consists of a 5-edge path u0, u1, u2, u3, u4, u5, and 4 disjoint
edges v1w1, v2w2, v3w3, v4w4. We take q copies of H and identify the node u0

in all copies, and identify the node u5 in all copies. Then we add all possible
edges uivj , and all possible edges uiwj , i.e., we add the edge set of a complete
bipartite graph on all the u-nodes and all the v-nodes, and we add the edge
set of another complete bipartite graph on all the u-nodes and all the w-nodes.
Finally, we add 3 more nodes u′

1, u
′
2, u

′
3 and 5 more edges to obtain a 5-edge cycle

u0, u
′
1, u

′
2, u

′
3, u5, u0. Clearly, ε(G) = n = 12q + 5. If the heuristic starts with the

closed 5-ear u0,u′
1,u

′
2,u

′
3,u5,u0, and then finds the 5-ears u0,u1,u2,u3,u4,u5 in all

the copies of H , and finally finds the 3-ears u0vjwju5 (1 ≤ j ≤ 4) in all the
copies of H , then we have |E′| = 17q + 5.

Here is the second example graph, G = (V, E). The number of nodes is n =
3×5q, and V = {0, 1, 2, ..., 3×5q−1}. The “first node” 0 will also be denoted 3×
5q. The edge set E consists of (the edge set of) a Hamiltonian cycle together with
(the edge sets of) “shortcut cycles” of lengths n/3, n/(3 × 5), n/(3 × 52), . . . , 5.
In detail, E = {i(i+1) | ∀0 ≤ i ≤ q−1}∪{(3×5j × i)(3×5j ×(i+1)) | ∀0 ≤ j ≤
q−1, 0 ≤ i ≤ 5q−j−1}. Note that |E| = 3×5q+5q+5q−1+...+5 = (17×5q−5)/4.
In the worst case, the heuristic initially finds 5-ears, and finally finds 3-ears, and
so the 2-ECSS (V, E′) found by the heuristic has all the edges of G. Hence, we
have |E′|/ε(G) = |E|/n = 17/12− 1/(12 × 5q−1).
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How do the lower bounds in Proposition 4 (call it Lc) and in Proposition 7
(call it Lϕ) compare with ε? Let n denote the number of nodes in the graph.
There is a 2-node connected graph such that ε/Lϕ ≥ 1.5−Θ(1)/n, i.e., the upper
bound of Proposition 8 is tight. There is another 2-edge connected (but not 2-
node connected) graph such that ε/Lc ≥ 1.5−Θ(1)/n and ε/Lϕ ≥ 1.5−Θ(1)/n.
Among 2-node connected graphs, we have a graph with ε/Lc ≥ 4/3 − Θ(1)/n,
but we do not know whether there exist graphs that give higher ratios. There is
a 2-node connected graph such that ε/ max(Lc, Lϕ) ≥ 5/4−Θ(1)/n, but we do
not know whether there exist graphs that give higher ratios.
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