
On Combinatorial Properties of Binary Spaces 

Beth Novick 1 and Andrgs Seb6 2 

1 Clemson University, Clemson, South Carolina 29634-1907, USA 
2 CNRS, IMAG, ARTEMIS, Universit~ Fourier Grenoble 1, France 

Abs t rac t .  A binary clutter is the family of inclusionwise minimal supports of vec- 
tors of affine spaces over GF(2). Binary clutters generalize various objects studied 
in Combinatorial Optimization, such as paths, Chinese Postman Tours, multiflows 
and one-sided circuits on surfaces. The present work establishes connections among 
three matroids associated with binary clutters, and between any of them and the 
binary clutter. These connections are then used to compare well-known classes of 
binary clutters; to provide polynomial algorithms which either conf~m the mem- 
bership in subclasses, or provide a forbidden clutter-minor; to reformulate and 
generalize a celebrated conjecture of Seymour on ideal binary clutters in terms of 
multiflows in matroids, and to exhibit new cases of its validity. 

1 I n t r o d u c t i o n  

A clutter is a family of subsets of a finite ground set S, none of which contains any 
other. We will also suppose that  every e E S is contained in at least one set of 
the family. A clutter ,4 is ~deal (has the max-flow-rain-cut property) if its blocking 
polyhedron, tha t  is the polyhedron {x E ~{~_ : x(A) :> 1 for all A C `4}, has only 
integer vertices. Clearly, a clutter is ideal precisely when the set of vertices of its 
blocking polyhedron are exactly the characteristic vectors of its blocker. The blocking 
clutteror blockerof the clutter .4 C 2 s, denoted by b(A), is defined to be the family 
of minimal elements of {B _C S :  IB N At _> 1 for all A E A}. b(b(A)) = A [4]. 

When it causes no confusion, we will speak interchangeably about a subset of S 
and its incidence vector considered as a member of GF(2)s; similarly, a family of 
subsets and a 0-1 matrix are interchangeable, as well as the mad 2 sum of vectors and 
their "symmetric difference". Both operations will be simply denoted by a ' + '  sign. 
The linear independence, rank, span, orthogonality etc. is understood over GF(2) s. 
This abuse of notat ion corresponds well to the purposes of the paper: we will be 
studying the combinatorial properties of a ffine subspaces. 

A binary clutter is the family of (inclusionwise) minimal supports of elements of 
affine subspaces (shifts of linear subspaces) of vector spaces over GF(2). Equivalently, 
given At, A 2 , . . . ,  Ak C 2 s, linearly independent with (k < ISI), a binary clutter is 
the set of all minimal supports of elements obtained by summing an odd number 
of vectors from {A1, A2 . . . .  ,Ak}. For results on binary spaces and binary clutters 
see in [2I], [23], [7], [8]. I t  is easy to see that  the blocker of a binary clutter .4 is 
b(A) = {B C S : tB A At - I mad  2 for all A E ,4, B minimal }. It follows that  b(A) 
is also a binary clutter (see [21]; also see Section 2 below). The result of deleting or 
contracting e E S in a binary clutter 7t is denoted by ~ \ e ,  and 7/ /e  respectively, 
and defined by 7/ \e  := {A G 7/ : e ~ A}, and 7//e := the minimal elements of 
{A - {e} : A E S(7/)}. 7 / \ X / Y  denotes the the result of deleting the elements of 
X and then contracting those of Y and is called a minor. The order in which the 
deletions and contractions are effectuated does not affect the resulting minor. It  is 
easy to see that  b(7/\e) = b(7/)/e, b(7//e) = b(7/)\e. 
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As with matroids, a class of clutters is minor-closed if all minors of every clutter 
in the class are also in the class. It is easy to see that  the class of ideal binary 
clutters is minor-closed. The core of a minimal non-ideal clutter ~ is the family of  
its minimal cardinality elements. 

For us, matrmd will mean "binary matroid" --- one representable over GF(2)  - -  
and will be a pair M = (S, C), where C is the set of its circuits. The linear space gen- 
erated by C is called the cycle-space of M.  The linear space orthogonal to C is called 
cocycle space, its elements are the cocgcles, its (inclusionwise) minimal elements are 
the coeireuits. The matroid M* = (S, C*), where C* is the set of cocircnits of M is 
the dual matroid of M If the columns of a matrix represent a binary matroid, then 
the rows generate the cocycle space of the matroid. The ground-set S of a matroid  
M or of a chltt.er ?t will be referred to as S(M)  or S(~L). The rank function of the 
matroid is denoted by r :-- r(M) := r(S). 

For more on the basic notions and simple facts related to binary clutters and 
matroids, in the introductions of [21], [23], [24], [25], [7], [8]. We will focus next on 
some concepts, used throughout the paper, which we wish to ctariS' and consolidate. 

T h r e e  M a t r o l d s  A s s o c i a t e d  w i t h  e a c h  B i n a r y  C l u t t e r .  Let 74 be a binary 
clutter. We define the down matro~d of 7~ to be M0('~) := (b ~, C0), where Co consists 
of the minimal non-empty subsets of S that  can be written as the sum of an even 
number of elements of'h{. The clutter 7t is called a. 5ft of M0(?{). The up matro~d of 
7 / i s  defined by MI (7/) "= (S, Cx), where Ct is the set of minimal non-empty elements 
of the linear space generated by 7/. 

(1.1) If  0 # 74 # {0}, then Co generates a subspace ofcorank = r (C1)-  r(Co) = 1 
of Ci, and ?~ = C1 \Co. 
We deleted for this volmne the proofs of the t.hree simple claims of tills section 

One gets Mi from 310 by "undeleting" and contracting an element, and the 
matroid one gets in the intermediate step is uniquely determined: 

(1 .2)  If (~ r 7{ r {~}, there exists a umquely determined matroid M2, and 
t e s(~,&) s.c.h that _~z~(.~)\~ = Mo(.4), ~~2(.~)/ t  = M~(.4). 

M2 wilt be called the port matrozd of ~ .  Clearly, M2(7/) -- (S Ut,C2), (t ~ S) is 
connected: since we assumed that  every e E S is contaiued in some E E ?/, and since 
E U t E C~ contains both e and t, ever), e C b" is in the same component  of M~(? 0 
as t. Given our assumption that  ~ r ?t 5~ {0}, M0, M1, M~ are of course uniquely 
determined by ?t. Conversely, the pair (M0,M1) or the pair (M~,t), t E S(M2) 
uniquely determines ?{. We will refer to any A E A as a t-join, of M0, or a t-port of 
M~. A lift of a matroid is in fact the same as a t-join for some t. A set B E b(A) will 
be called a t-cut of M0. In Section 2 we justify this terminology. 

(1.3) Let A C 2 s be a binary clutter, and let B be its blocker. For e E S, if 
.4\e # ~ and ,4/e # {~), the~ M,(~4\e) = M,(A)\~ a~d M,(,4/e) = M,(~4)/e, 
(i = 0, 1,2). Moreover, the matroids Mi(A), M~ (B) (i = 0, 1,2) relate as follows: 

(i) M~(A) \ t  = M0 (,4), M ~ ( , 4 ) / t  = M~ (,4). 
(ii) ~'~5(~) = M~(A).  
(iii) Mo (13) = M~ (~4). 

We make the convention that  the down, up and port  matroids of the clutter M = 0 
is an arbitrary triple of matroids M0 = (S, Co), M1 = (S, Ct), M2 = (S U {t},C2), 



214 

where t is a coloop in M2 and M1 = M2/t. Accordingly, the down, up and port  
matroid  of B = {0}(= b(A)) is any triple where t is a loop in M2 and M0 = -~h\t. 

It follows from (ii) that  B E b(A) is also a t-port of M~ (.,4), and from (iii) that  
A C A is a t-cut of  M{(A),  etc, (see Section 2 for an account of similar remarks), 
and furthermore that,  given our convension above, that  the claims of (1.3) hold for 
the blocking pair of clutters 0 and {0} as well. 

F u r t h e r  P r e l i m i n a r i e s .  Let us state now some further preliminaries, among them 
an important  open problem about binary clutters. $.7 will denote the clutter consist- 
ing of the lines of Fano plane. FT will denote the Fano matroid, that  is the matroid 
whose cycle-space is generated by the lines of the Fano plane. AG(2,3) is the matroid 
represented by the eight 4-dimensional vectors having 1 as last coordinate. K5 de- 
notes the set of odd circuits of the complete graph Ks. The cycle matroids of K5 and 
Ka,a will also be denoted, respectively, by K5 and K3,3. R12 is the "3-sum" of K3,3 
and its dual K~,a, see [25]. Ss is also defined in [25]. M0(Y7) = F~, MI(YT) = FT, 
M2(YT) = AG(2, 3). M0(~5) = R10. (R10 is defined to be the matroid represented 
by the matrix whose colunms are all ten 0-1 vectors of length five having three l 's,  
see [24]). M1 (Ks) = lfb. 

S e y m o u r ' s  C o n j e c t u r e :  A binary clutter is ideal if  and only if it contains none of  
K~, b(Kb) or $.7 as minors. 

Compare the three excluded minors of this conjecture to the infinite set of min- 
imal non-ideal clutters, see [3], [15]. 

We will use the notation S := {Ks, b(Kb), $'7} throughout the paper. Seymour 
has stated several variants of his conjecture ([23] page 200, [25] (9.2), (11.2)) whose 
equivalence can be easily understood using the equivalence of binary clutters to ports 
and their relation to multiflows (see Section 2). Gerards [8] surveys a wide range of 
multiflow theorems which are special cases of Seymour's  conjecture. 

In Section 2 we present the most well-known particular classes of binary clutters. 
The basis of the classification is the down up and port  matroid. We next axiomatize 
binary clutters based on these. 

In Section 3 we solve the recognition problem for path, t-join, t-cut, one-sided 
path, odd circuit and signing clutters, and some sub- and superclasses of these. All 
of these classes can be defined e2ther m terms of thezr down up or port matroids. 

Defining a refinement of "ideal clutters", we arrive at a property which is easier 
to handle with the well-known sum operations: 

We decompose binary clutters in three dzfferent wags applying Seymour's 1-, 2- 
and 3-surns to the down-, up- and port matroids a. Excluded clutter-minor charac- 
terizations follow for the subclasses, generalizing Seymour's characterization [22] of 
path clutters of graphs. Polynomial recognition algorithms 4 __ which either con- 
firm membership in the subclasses, or provide a forbidden clutter-minor - -  will be 
reduced to matroid  recognition algorithms. 

3 The 3-sum applied to the up matroid is not the same as the 3-sum applied to the down 
matroid M of the blocker: it correspods to a "dual a-sum" on M. 

4 We suppose that a clutter is given as the set of minimum supports of equations M:c ~ t, 
that is, as a t-port of some binary matroid M (t E S(M)) whose representation is known. 
If more generally, the binary clutter is given with a "containment oracle", a beautiful 
recent result of Coullard and Hellerstein [2] reconstructs a representation of the port 
matroid of the clutter (see Section 3). 
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Section 4 is devoted to ideal binary clutters. A further tool is introduced: metrics, 
which provide conditions for multiflow problems. With  the help of general conditions 
for mat ro id  flow feasibility ( [17], [t9I, [14]) we extend the connection between the 
Cut  Condition and i d e a  clutters (largely exploited in [25], [7], [8]), refine Seymour 's  
conjecture, and prove it for a new set of cases. 

2 Representations of Binary C l u t t e r s  

Sections 2 and 3 wish to provide basic facts about  binary clutters in a similar way as 
introductions to matroid theory do: first several equivalent definitions are presented 
by analogy with various notions of graph theory, then subclasses are defined and 
their interrelations are studied. As for matroids,  it will be comfortable  to pick-up 
always the most  suitable definition, and to be able to switch easily between them. 
Proofs of the stated claims in these sections are not difficult, and are, for the most  
part., equivalent to wen-known facts (see [12], [211, [23], [7]). 

T h e  M o s t  W e l l - K n o w n  Clas se s  o f  B i n a r y  C l u t t e r s .  All of these originate in 
graph theory. Let G = (V, E) be an undirected graph. For r, s E V, the collection of 
(r, s) paths and its blocker, the collection of minimal  (r, s) cuts, are binary clutters, 
special cases of the following. Let t : V ~-+ {0, 1}. A subset A of E is a t-join if 
dega(A)(V) =-- t (v) rood2.  If X C V(G) and t(X) is odd, the cut {xy E E(G)  : x E 
X, y E V(G)\X]  is called a t-cut. The  collection of minimal  t-joins of G and that  
of minimal  t-cuts of G is a blocking pair of binary clutters. We say that  7l is a 3ore 
(cut) clutter if there exist a graph G and t : V ~-+ {0, 1} such that  the elements of 7i 
are the minimal  t-joins (t-cuts) of G. When ~ , e v  t(v) = 2, we say tha t  7/ is path 
clutter; its blocker a one-cut clutter. 

The  collection of all odd circuits of an undirected graph and its blocker are binary 
clutters. More generally, a szgned graph is (G, R), where G = (V, E) is an undirected 
graph, and R C E(G). We define the pair of binary clutters 

A(G,A) : = {A : IANR I is odd, A a circuit of G}. 

B(G, R) : = {B = / { +  Q : Q is a eocycle of G, B minimal  non-empty}.  

M(G,/~) is called an odd cwcu~t clutter, and B(G,R.),  the blocker of M(G, R), a 
s,gnmg clutter. It. is easy to see that  A(G, R) and B(G, t~) form a blocking pair of 
clutters. Signed graphs and the related binary clutters are studied by Gerards in [7], 
[8], who gives a topological meaning to part icular  cases of binary clutters [8]. 

For the topological definitions, see for instance [8]. If  a graph is embedded in a 
non-orientable surface of genus k the one-sided cwcu,ts of the graph form a binary 
clutter. If, for a binary clutter H, there exists a graph G and an embedding in a non- 
orientable surface of genus k such tha t  ~ is the set of one-sided circuits of G, then 

will be called a k-clutter. If  7t is a k-clutter a n d / {  E b(7/), then 7l = A(G,  R), so 
k-clutters are signed graph clutters for every k. 

If  a graph G is embedded in a compact  surface, then a cycle of G is called 0- 
homologzc if it is the symmetr ic  difference of face-bounding circuits of G. Two cycles 
C1 and C2 are called homolog,c if C1 + C2 is 0-homologic. Clearly, the homology 
relation of cycles is an equivalence relation, and the minimal  cycles of fixed non-0 
homology type form a binary clutter. If  G is embedded in a non-orientable surface 
of this clutter will be called a homology clutter. If  the genus of the surface is k 
and the fixed homology type is orienting ( that  is "goes through all the cross-caps"), 
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we say that  it is a k-homology clutter. We know already that  k-homology clutters 
are all signing clutters. It is easy to prove that  7-l is a k-clutter if and only if b(~) 
is a k-homology clutter. (Indeed, with an arbitrary R E b(7/), as noticed above 
7/ = .A(G, R), b(~) = B(G,R).  Let G be the surface dual of G. R is a cycle of 
G, because every face of G (and the faces generate the cuts of G) is in the down- 
space of H, whence its intersection with every B E b(~) is even. On the other hand 
the above definition of B(G, R) shows that B(G, R) is exactly the set of minimal 
cycles homologic to R in G, and the claim is proved.) Since the projective planar 
graphs contain only one non-0 honaology type of circuits 1-clutters are the same 
as 1-homology clutters. Note that every odd circuit (signing) clutter is a k-clutter 
(k-homology clutter) for some k. 1- and 2-clutters are ideal according to results of 
Lins [13] and Schrijver [18]. Seymour's conjecture is open for k-clutters, k >_ 3. 

A.  M a t r o i d  P o r t s .  Matroid ports were introduced by Seymour [20]. Let M = 
(S,C) be a binary matroid, t E S. P is called a t-port of M,  if P = C \ t ,  C E C, 
t E C. Clearly, t-ports generalize (r, s)-paths in graphs: the (r, s)-paths of G are 
exactly the rs-ports of G U rs. The set of t-ports of M will be denoted by C(M, t). 

(2 .A.1)  The l-ports of a binary matroid form a binary clutter, and every binary 
clutter is the set of t-ports  of some matroid M (t E S(M)) .  The t-ports of  M and 
those of  M* form a blocking pair of binary clutters. 

(2 .A.2)  The matroid M and t E S(M)  so that A is the set of t-ports of M is 
uniquely determined, name/y M = M2(A), (and M* = M2(B)). 

(2 .A.3)  Let M be a binary matroid, t E M.  I f  e E S(M)  \ t, then C(M, t) \ e = 
e (M \ e,t), and = e( ,we , t ) .  

B.  t - jo ins  a n d  t - cu t s  o f  m a t r o l d s .  Every binary clutter A can be written as the 
set of minimal support solutions of the equation A'z - t rood 2, where A is a 0-1 
matrix.  By analogy to graphs we can call each A E A a t-join of the matroid M 
represented by A; a t-cut B of M is a cocycle of M which is the rood2 sum of some 
rows of A (cocycles of M) an odd number of which is "t-odd". Mo(A) = M,  and 
the new definitions of t-joins and t-cuts are in accordance with those of Section 1. t 
can also be defined independently of the representation, as a linear function on the 
cocycle space of M; then a t-cut is a cocycle whose t-value is 1. 

(2 .B .1)  The set oft-cuts (t-joins) of a binary matroid form a binary clutter, and 
every binary clutter is the set oft-cuts (t-joins) of  some uniquely determined binary 
matroid M; The t-cuts and t-joins of a matroid M are a blocking pair of binary 
clutters. 

Let A be the clutter oft-joins of matroid M,  and let B be its blocker. 

(2 .B.2)  I~ is the clutter oft-cuts of M. Mo(A) = M,  the circuits of  M~(A) are 
the circuits and t-joins of M. 

Suppose that  ,4 is the set of t-joins of M, and e E S. 

(2.13.3) A \ e  and A / e  is the set oft-joins 5 of M\e ,  M / e  respectively. 

5 Contractions change the cocycle-space, and consequently the basis of cocycles which 
provides the rows of the matrix representing the matroid, changes. So the representation 
of the t-column after a contraction of e E S(M) changes accordingly, similarly to "t- 
contractions" of graphs ! Still, since for us t is an element of a matroid, and not a vector, 
we can and will keep the notation t after the contraction. 
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C. S i g n e d  M a t r o i d s .  Let M = (E, C) be a binary matroid and /~  C S(M).  Define 
A (M,  R) := {A E C:  [A N Rf is odd}. B(M, R) := {B = R+Q : Q is a cocycle of M, 
B minimal non-empty}, see [8]. Clearly, R E B(M, R). Following Gerards, let us call 
(M, R) a signed matroid, and note the following: 

(2 .C .1 )  A(M~ R) is a binary clutter, and every binary clutter ,4 is equal to 
A(M,  R) for some uniquely determined b/nary matroid M, and arbitrary R E b(A); 
the same is true for B(M, R); A(M,  R) and B(M, R) are the blocker of each other. 

(2 .C .2 )  I rA  is an arbitrary" binary clutter, then A = A(M,  R), B = B(M, R) with 
M = Mx (My, and arbitrary" R E b(A). 

The fact tha t  the sets A = A(M,  R), B = B(M, R), and e E S(M)  do not change 
if we replace R by any R t E B, ( that  is, by R +  C where C is an arbitrary cut), is 
used in the following claim: 

(2 .C .3 )  A \ e  = M(/lJ\e, R); A / e  = .A(/l~r/e, R'), where t[' E B, e ~ R', or i fe E R' 
for aI1 R' E B, then A / e  = {0}. 

3 The  Map of Classes 
In this section we study the question of deciding whether a given binary clutter is in 
one of the well-known subclasses introduced in Section 2. We show good characteri- 
zation theorems - -  involving excluded minors and decompositions - -  for membership 
in the classes; this helps in comparing the classes with each other and with the class 
of ideal binary clutters. 

D e f i n i n g  C l u t t e r s  w i t h  t h e i r  M a t r o i d s .  We shall see that  each class of binary 
clutters discussed in Section 2 is minor-closed. This important  property will be one 
of  the consequences of the crucial fact that  each class can be defined w~th ~ts down, 
up or port matrmds, that  is, each class consists of all clutters whose down, up or 
por t  matroids are in a well-known class of matroids. The following facts are easy: 

(3 .1)  7{ is a path clutter if and only" i f  M.~('H) is graphic; ?t is a one-cut clutter 
if  and only if  M2(?/) is cographic. 

Path and one-cut clutters are ideal according to the max-flow-rain-cut theorem 
of Ford and Fulkerson (this is a special case of (3.3) below). 

(3 .2)  7{ is a join clutter if  and only i f  Mo(T{) is graphic; 7{ is a cut clutter if  and 
only if  MI(Ti) is cographic. 

The following statement is Edmonds and Johnson's  result [5]. 

(3 .3)  Join clutters and cut clutters are ideal. 
Signed graph and signing clutters are not necessarily ideal, in fact it is easy to 

see that  K5 is a 3-clutter. According to Schrijver, [I8] 2-clutters are ideal. They can 
all be defined with their up matroids: 

(3 .4)  ?t is an odd circuit clutter If and only i f  M1 (?f) is graphic; 
?t is a signing clutter if and only if  Mo('R) is cographic. 

(3 .5)  7 / i s  a k-clutter if and onIy if  M1 ( H ) is graphic and embeddable on a non- 
orientabIe surface of genus k; ?t is a k-homoIogy clutter if  and only i f  Mo(?t) is 
cographic and the graph representing ll/f~ (?t) is embeddable to a surface of genus k. 

The minor-closed property as well as the excluded minor characterizations of all 
these classes of clutters follows from the next four general claims: 
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The minor of a ma t ro id  M, t E S(M) containing t will be called a t-minorof M. 

(3 .6)  If71 is a binary clutter, then 71' is a minor o f t t  if and only if M2(7~') is a 
t-minor of M~ (71), where the '~" of the two matroids coincide. 

P r o o f .  hnmed ia t e  from 2.A.3. [] 

(3.7) Let 34 be a set of binary matroids, and denote by s the class of clutters 7t 
for which Mo(71) does not contain any minor  in Ad. Then 7/ E s i f  and only if71 
does not contain a Bft of some M E M as clutter-minor. 

P r o o f .  Immedia te  from the first par t  of (1.3) [] 

(3 .8)  Let ,~4 be a set of binary matroids, and denote by f2 the class of clutters 
for which M1(71) does not  contain any minor  in 34.  Then 71 E s if and only if it 
does not contain the blocker of a lift of  some M*, where M E 34,  as clutter minor.  

P r o o f .  Apply  the previous claim to the blocker. [] 

The following s ta tement  is equivalent to Seymour 's  theorem on rounded classes 
of matroids  [22] to which we give a simple proof 6. 

(3 .9)  Let ./M be a set of binary matroids, and denote by f) the class of clutters 
for which 11,f2(71 ) does not contain any minor in 34. Then 7/ E s if and only if 
it contains neither a port of some M E 34, nor a lift of some ll/i E 34, nor b(71) 
contains the lift of  ll,f* (llJ 6 .hi) as a minor. 

P r o o f .  A minor  of -]PI2(71) is either a t-minor,  and its relat ion to clutter  minors  
was settled in (3.6), or it  is a minor of either M0 or M~, and we can then apply  (3.7), 
or (3.8) respectively. [] 

Some lifts may contain some ports  as minors, and can thus be omit ted.  

R e c o g n i z i n g  S u b c l a s s e s  o f  B i n a r y  C l u t t e r s .  In the a lgor i thmic results we sup- 
pose tha t  b inary  mat ro ids  are given with their  representation,  and binary  clutters  
are given with the representat ion of their por t  matroids  (with a par t icular  element),  
or equivalently as the min imal  support  solutions of an equation Mx - t rood 2. If s 
is a class of binary clut ters  (matroids),  then recognizing ~2 means deciding whether 
a clutter  (matroid)  given as input  is in the class f2. If 7- is a set of b inary  clut ters  
(matroids) ,  then testing for 7,-minors means deciding whether a b inary  clut ter  (ma- 
troid) given as input  contains 7/ E 3- as a c lut ter-minor  (minor) ,  and if yes, finding 
such a minor.  From (3.6)-(3.9) we can easily conclude: 

T h e o r e m  3.1 Let 34 be a set of  matroids and i E {0, 1, 2}. The class of binary 
clutters 71 for which Mi (71) has no minor in A,t is minor-dosed, and has a finite set 7- 
of  excluded minors provided ./M is finite. Moreover binary clutters can be tested for 
7.-minors in polynomial time, provided binary matroids can be tested for 34-minors 
in polynomial time. [:] 

C o r o l l a r y  3.2 The following classes of clutters can be recognized in polynomial 
time: path clutters, one-cut clutters; join clutters, cut clutters; odd circuit clutters, 
signing clutters; k-clutter for fixed k, and k-homology clutters for fixed k. All of  
these classes of clutters are minor-dosed and have a finite number  of excluded clutter 

6 The easiness of (3.9) can be due to the fact that M2 (A) is always connected for A := 7/ 
as well as for its clutter minors, which makes the main difficulty of [22] disappear. 
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minors  which can be tested in polynomial  time. I f  k is part  o f  the input  it  is NP-  
comple te  to decide whether 7/ is a k-clutter; as well as to decide whether i t  is a 
k -homology  clu t t e l  

The proof consists of piecing together known algorithms via the down, up and 
port matroids. (See the "general framework of an algorithm" below.) The state- 
ments about k-clutters and ]e-homology clutters follow in the same way from the 
finite number of excluded minors and the polynomial solvability of the "graph genus 
problem" for fixed k (see [16]). For the NP-completeness of this problem, if k is part  
of the input, (see [28]). 

The characterization of path clutters has already been known from Seymour [22]. 
If now the clutter 7i C 2 s is given with a containment oracle, which, for any 

X _C S as input tells whether there exists E E ~ such that, X _D E, yes or no, then 
the above argmnents fail to work. However, according to the recent breakthrough 
of Coullard and Hellerstein [2] there exists a polynomial algorithm which given a 
containment  oracle of  a port clutter 7t of  a connected binary matrmd M ,  a matr~J: 
representing the matrozd M can be constructed m polynomial time. Since M2(7/) 
is always connected, a representation of M2(7/), and consequently of M0(7/) and 
M1 (71) can be found in polynomial time ! Using this result, the algorithmic remarks 
of Theorem 3 1 and Corollary 3.2 remain valid for this more general computational 
model. 

Let, us sketch a general framework of an algorithm which works for every class of 
binary clutters studied in this paper: 
t. If the clutter is given with a containment oracle then use Coullard and Hellerstein's 
algorithm in order to reconstruct a representation of the port matroid of the clutter. 
2. Use Bixby and Cunningham's algorithm [t] to decompose the up down or port 
matroid. 
3. Use known testing membership algorithms for t.he bricks of the decomposition 
([27] or [16] for the above classes of clutters). 

Note that while the recognition of the class of ideal clutters is open - -  and closely 
related to Seymour's conjecture - -  Hartvigsen and Wagner [11] have developed a 
polynomial algorithm recognizing the "strong max-flow-rain-cut property". 

At the end of this section and in Section 4 we will define sum operations which 
will it make possible to increase the known classes of ideal clutters. 

C o m p o s i t i o n s  of  C l u t t e r  Classes  and  C o n t a i n m e n t s .  We do not have enough 
spaze here to include our diagrams and charts about containment relations between 
subclasses of clutters. Let us mention, however, some containment relations which 
are not difficult to establish from (3.1)-(3.5): 

The class of k-clutters is contained in the class of k + 1-clutters, the union of 
these over all k is the class of odd circuit clutters. The class of k-homology clutters 
is contained in the class of k + 1-homology clutters, and their union over all k is 
the class of signing clutters. Join clutters and cut clutters can also be structured 
in the same way as odd circuit and signing clutters: according to/,he genus of the 
underlying graph. 

The intersection of the class of k-clutters and h-homology clutters consists of the 
1-clutters; these are also 1-homology clutters. The intersection of odd circuit and 
cut clutters is the class of cut clutters of planar graphs. 

The intersections of unrelated clutters are often small. Surprisingly though, the 
intersection of the cla~ss of join and of the class of cut clutters is quite rich and it led 
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us to develop the three kinds of sum operations - -  one related to each of the down 
up and port  matroids. 

A clutter 7/ will be called a 3ozn-and-cut clutter, if it can be represented as the 
family of t-joins of a graph G, and also as the family of tl-cuts of a graph G I. A 
binary clutter is join-and-cut if and only if its down matroid is graphic, and its up 
matroid is cographic. 

It came to our knowledge that Gerards, Lov~sz, Sehrijver, Seymour, Shih, Truem- 
per [10] contains a systematic study of binary spaces contained in one another 
with codinaension one, including a characterization of cographic spaces containing 
a graphic subspace of codimension one. (Another claim of this type occurs in the 
proof of Theorem 4.6.) The proof we sketch below illustrates the use of one of the 
sum operations, the one based on the decomposition of 3I~: 

L e m m a  3.3 Let 7 / C  2 v be a binary clutter, and let M = (E, C) be an arbitrary 
binary matroid, V f) E = {e}, where e is non-series and non-parallel to t 6 S(M2) .  
Then the set of t-ports  of  the 1-sum, or of  the 2-sum of]~I2(7/) and M with marker 
e is a join-and-cut clutter i f  and only i f  7/ is a join-and-cut clutter and M is the 
circuit matroid o f  a planar graph. 

P r o o f .  Let /fJ be the resulting 1- or 2-sum. The condition is necessary, because 
~-I \ t is graphic, and since t is not parallel to e, ~Q \ t contains both M2 \ t and M 
as a minors, whence both M o \ t and M are graphic; applying the same to the dual, 
since ~I / t  is cographic and t is non-series to e, both M2/t  and M are cographic. 
The only if part is proved. Conversely, if 7t is join-and-cut and M is planar, then, 
since the 2-sum of two graphic matroids and of two cographic matroids is graphic 
and cographic respectively, we get the right claim about M2 \ t, and M2/t.  [] 

T h e o r e m  3.4 Let G be a graph, t : V(G)  ~ {0, 1) and let 7/ be the clutter 
of t - joins of  G. Then 7/ is a join-and-cut clutter i f  and only i f  one of  the following 
(self-dual) conditions holds. 
(i) G is one of  K4 or A'3,3 with t(v) = 1 everywhere, or it is K2,3 and l(v) = 0 on a 
vertex o f  degree 3, and otherwise 1. 
(5) ~ e v ( c )  t(v) = 2, and the graph we get after identifying the two vertices v with 
t(v) = 1 is planar, or G is a planar graph and has a face F such that t(v) -- 0 i f  v is 
not on F.  
Oil) G is the 1- or 2-sum of  the graphs Gt and G2 and t(v) = 0 i f  v 6 V(r 
moreover the t-join clutter o f  G1 is join-and-cut and G2 is planar. 

P r o o f .  (Sketch) The if part  is easy to check: in (i) M2(7/) is F~, R,0 and F7 in 
order, M2(b(7/)) --- M:(7/)  is then FT, Rz0 and F-7 respectively, whence 7/ in these 
three cases is a if-cut in G', where the list of the (G', t ') is the list of the (G, t) in 
reverse order. In (ii) we suppose G is a planar graph where F is a face. {v :  t(v) = 1} 
splits up F into an even number of paths, let us number these in the order defined 
by F;  let the set of neighbors of F along the paths which got an even number be 
A, and those which are neighbouring F along a path that  got an odd number be B. 
Define now G'  by unshrinking F in the dual G* of G so that  if we shrink the arising 
two vertices {a,b} C V(G') we get F 6 V(G*),  and join a to A C V(G*) and b to 
B C_ V(G*).  It is easy to see that the t-cuts of G correspond exactly to the if-joins 
of G ~, where ff is 1 on a and b and 0 elsewhere. The converse of this construction 
shows what is (G',ff) in the second case listed in (ii). 
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For case (iii) the if part  of the s ta tement  follows from the if pa r t  of L e m m a  3.3. 
In order to prove the only if par t  suppose that  7 / c a n  be represented as the # - c u t  

clut ter  of a graph G'.  We suppose tha t  (iii) does not  hold and prove tha t  one of (i) 
or (ii) holds. 
C l a i m  1 If (ii) does not hold, l l ~ ( ~ )  has no 1- or 2-separation. 
C l a i m  2 M2 has no AG(2, 3), Ss or R12 minor. 
C l a i m  3 Either (ii) holds for M;,  or M~ is regular wi thout  /~10 minor.  
C l a i m  4 If (i) does not hold for M~, then (ii) holds. I::] 

Theorem 3.4 does not provide new classes of ideal clutters:  join clut ters  and cut 
c lut ters  (see (3.3)) are already ideal. 

Let us realize that  minor-closed conditions on M0 and M1 are more general than  
on M2. While  for jo in-and-cut  clutters the suitable decomposi t ion was tha t  of M2, 
in the next section, where the goal is to compose as large a class of (ideal) clut ters  
as possible, the decomposit ion of M0 and M1 is more appropr ia te .  

4 Ideal Clutters ,  Multif lows and Metrics  
Let M = (E,  g) be a matroid ,  rn : E ~-~ P~+ U {oo) is called a metric, if for every 
circuit  C E g and every e E C: re(e) _< m(C\e) ,  d : E ~ 1N is called a distance 
function if for some F _C E it is defined in the following way: for e E F, d(e) := 1, and 
for e ~ F d(e) := m m { l C \ e  I . C E C, {e} = C\F} .  It is easy to see tha t  a distance 
function is a metric and that  it is finite if and only if S ( M ) \ F  does not  contain a 
cut. This  metr ic  will be denoted by [M, F]. For instance an [M(A'a),  E(A'u,3)] metr ic  
is 1 on a K2,a subgraph of Ks, and 2 otherwise. 

We define an [ ; I ,  F] metmc to be a function m on the elements of an a rb i t ra ry  
ma t ro id  such tha t  contracting the elements with m-value 0 we get the ma t ro id  M 
with the metr ic  [M, F] (up to isomorphism, after deleting loops and replacing paral lel  
elements by one element with m-value equal to the n~inimum of the m-values of the 
paral lel  class). 

A mult~flow problem, (;4, R, c), on a matroid  M = (S, C) is defined by a set of 
"demands"  R C__ S, and a function c : S ~-~ ~ + .  A rnultzflow is a function f : C ~-~ Q+, 
so tha t  if f (C)  > 0, then ICN RI = 1, and the sum of the f -va lues  of circuits 
containing a given e E $ is at most e(e), moreover equali ty holds here for e G R. For 
the most  basic facts about  nmltiflows in mat.roids we refer to [25]; for their  simple 
connection to binary clutters to [25] or [8]. If e E R, c(e) is called the demand of e, 
if e G S \ R  it is called the capacztg of e. 

The  connection between metrics and multiflows is provided by the following 
s ta tement ,  well-known for graphs, which is also easy from linear p rogramming  dual i ty  
(Farkas '  lemma)  for matroids.  

M e t r i c  C r i t e r i o n  For R C S(M) and c : S (M)  ~-+ IR+ there exists a multi- 
flow i f  and only i f  the following Metric Condit ion is satisfied: for every metric m, 
E~R ,~(e)c(e) _< ~s(M/\R rn(e)c(e). 

Clearly, distance flmctions are metrics and, for us, the only metr ics  which will 
p lay a role in the conditions of multiflow problems. 

The  Metric Condit ion specialized to a subclass # of metrics will be called the 
# Condit ion.  Incidence vectors of cocycles are metrics,  and the Metric  Cri ter ion 
specialized to them is called Cut Con&tio~ (see [25]). The mat ro id  M is called F -  
flowing ([25]) for F C S(; I ) ,  if for arbi rary  c : S ( M )  ~ if/+ for which the Cut 
Condi t ion  is satisfied there exists a multiflow. 
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A cocycle for which the Cut Condition holds with equality will be called a tight 
cocycle. It  is easy to see that  switching on a tight cocycle (that is interchanging the 
edges in R and those which are not in R), we get a multiflow problem which has an 
(integer) solution if and only if the original problem has one. If the Cut Condition 
holds then a tight cocycle is the disjoint union of tight cocircuits, and a sequence of  
switchings can be replaced by just  one switching on a tight cocycle. 

We state the following refinement of Seymour 's  conjecture: 

C o n j e c t u r e  Let M = (S, C) be a binary matroid, and R C S. Then exactly one 
of  the following possibilities is true: 
(i) For every c : S ~-+ ~ for which the Cut Condition holds there exists a multi f low 
in (M, R). 
(ii) There exists a c : S ~-~ 2g so that possibly after switching on a tight cocycle 
some [FT, F7 - L], [1<2, K2,3], [Rlo, RLo - C3] condition is not satisfied, but the Cut 
Condition is satisfied. 

L is a line of FT; C3 is a 3-element circuit of Rio, and RLo can be defined 
as Mo(Ks). (i) and (ii) trivially exclude each other. Papernov's multiflow problem 
(H6, R) shows why we have to allow switching on a tight cut: He is the graph one 
gets from Ks by uncontracting an edge ab so that  no series edges occur; _R consists 
of three edges ab, ~1x2 and Yly2 forming a matching of He, and such that  a is 
adjacent to both zl  and x2 and b is adjacent to both Yl and y~. Defining now c to 
be 1 everywhere, and e(ab) :=  2, it is easy to see that  the Cut Condition and the 
[Ks, K2,3] Condition are satisfied, but  that  there is no multiflow (the [H6, H6\R]- 
condition is not satisfied). On tile other hand the edges adjacent to a form a tight 
cut, switching on which the following [Ks, K~,3] Condition is violated: m(ab) := 0, 
re(e) := 1 for e E H 6 \ R '  and re(e) := 2 for e E R', where R' is the set of demand 
edges after the switching. 

Let. us also note that  Marcus and Seb6 [14] characterize matroids for which the 
Cut  Condition and the [F7, F7 - L] and [Ks, K2,3] conditions are necessary and 
sufficient for the existence of a multiflow. This implies the validity of the above 
conjecture for these matroids, and the corresponding class is contained in the classes 
provided by theorems 4.5 and 4.6 below. 

We define now a partial order on the set of Metric Conditions according to 
which the Cut Condition is the smallest metric, and the Conjecture is equivalent to 
asserting that  the only metrics on the following, "second lowest level" are [Fz, FT-L] ,  

R L o  - c3]: 
Given the metrics mL and m2 on M,  we say that  ml < m2, i f  for every (M,_R) 
(R C E ( M ) )  for which an m2-metric occurs as a non-satisfied condition for some 
multi f low problem (M, R ,c) ,  where c : S ( M )  ~ ~ + ,  ml  also occurs with some 
(maybe different) capacity function and possibly after switching on a tight cut. 
This induces a partial order on metric types and can be reformulated in terms of 
only m~ and m2 (without using "every (M, R)"). Some properties of this second 
level can be deduced from Lehman's  theorem [26] on minimal non-ideal clutters; 
these have to be omit ted here. 

If  in the matroid M = (E, C) for R _C E either (i) or (ii) of tlLe conjecture holds 
we will say that  M is settled with respect to R. M is settled if it is settled with 
respect to every R C_ E. The class of settled matroids is minor-closed. We say that  
for a binary clutter 7/ Seymour's conjecture holds, if it is ideal, or if it contains a 
minor in S. 
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Note also that our conjecture actually characterizes the following refinement of 
the notion of idealness. Let A C 2 s be a binary clutter, and let B be its blocker. We 
wilt say that A E A is ideal (with respect to A), or that A is (locally) ideal in A E M, 
if w : S ~+ ~ + ,  w(A) < w(A') for all A' E .A implies that there exist B1 , . . . ,  Bk and 
AI , . . . ,Ak E ~ +  such that g~=1 kiBi < w, and E i ~ ,  A, = w(A). 

Clearly, A is ideal, if and only if every A E A is ideal (with respect to A). In 
both K5 and its blocker the minimum cardinMity sets in the clutter (the core) are 
not, the other elements are ideal, and similarly for Yr. An explanation of this lies 
in the notion of "cores" (see [3]) related to Lehman's theorem. In the parlence of 
polyhedral combinatories, every A E A is a vertex of the polyhedron P = {x E A n : 
x(B)  >_ 1,.v > 0}, but O = cony(A) + gt. '~, Q c P, may be a proper subset; the 
idealness of A E .4 means that "locally" the two polyhedra are the same, that  is, 
the facets of Q containing the vertex A are the same as those of P. 

(4.1) Let .A be a binary" clutter, 13 = b(.d). The following are equivalent: 
(i) A is ideal. 
(ii) .d is ideal in every A E A. 
(iii) I3 is ideal in every B E B. [3 

The following is a formulation of the com-~ection between the cut condition and 
the max-flow-rain-cut property pointed out by Seymour (for instance [25]). 

(4.2) Let .14 be a binary clutter, B = b(A). ~br the matroid 3/I := M1 (..4), c : 
S ~-~ ]R+ and R E B the Cut Condition is satisfied if  and only ire(R) <_ c(B) for aii 
B E 13. Moreover, B is ideal in B E 13 if  and only i f  tl/i1 (.A) ~s B-flowing. 

P r o o L  Let e : S ~ P~+. Since by 2.C.2 B = B(M, R), we know that B consists of 
the sets of mmmaal support of the form R + C, where C is a cut of M. Hence the 
cut condition holds for (M, R, c), that is c(Q A R) < c(Q\R) for every cut Q of M 
if and only if (adding c(R\Q) to both sides) e(R) < c(R + Q), that is c(R) < c(B) 
for all B E/3. 

Suppose now that M is B-flowing, and let us show that  B is ideal in B. Let 
c : S ~ 1t~+ be such that c(B) < c(B') for all B ~ E B. Since the circuits in a multiflow 
of M contain one edge of B each, they are all in A(M,  R) = .,4, and provide the 
packing proving that /3  is ideal in B. The proof of the converse is similar. (Each of 
the sets of A which are in the packing proving that B E/3 is ideal contains exactly 
one element of B, by complementary slackness.) [:] 

The following statement is a restatement of (4.1) and (4.2): 
(4.3) Let ,4 be a binary clutter,/3 = b(A). The following statements are equivalent: 
(i) A is ideal. 
(ii) M~ (A) is A-flowing for all A E A. 
(iii) M1 (A) is B-flowing for all B E/3. 

The following theorem shows that the conjecture above implies Seymour's con- 
jecture. (We do not see the converse.) 

T h e o r e m  4.1 For a binary clutter 74 C 2 s Seymour's conjecture holds if  and 
only if  M~ (~) is settled with respect to every E E 74. 

P roo f .  We know fi'om (4.1) that 7t is ideal if and only if it is locally ideal for every 
E E 74, and we know from (4.2) that this happens if and only if Ml(b(74)) = M~(7/) 
is E-flowing for every E E 7/. What remains to be proved is that  7/contains a clutter 
minor F E S ~f a,~d only ~f for M := Mg(7/) = /l~rl(b(~)) and some R E 7/ (iz) 
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of the con3ecture holds. Note that  the existence o f / g  for which (ii) holds is s imply 
equivalent to the existence of R and c for which some [Fr, F7 - L], [Ks, K2,3] or 
[R10, R10 - C3] condition is not satisfied, but the Cut  Condition is satisfied. (If this 
holds only after switching on a tight cocircuit Q of M,  we replace R by R + O. It  
follows fl'om 2.C.2 that  R + Q E 7-/(choose B := 7/).) 

To prove the only if part  of this s ta tement  suppose there exists X , Y  C S, 
X N Y = 0 such that  .T := ~ / X \ Y  E $. Then by (1.3) M~(~')  = M \ X / Y .  

0 i f e E X  
c(e) := ISI if e E V 

1 i f e E S - ( X U Y )  

let 
Let R C S be in the core of 5 v ( that  is, R is a minimal  cardinali ty set in Y) and 

! i f e  E Y 
re(e) = if e E X U R  

i fe  E S\ (X  U Y U R ) .  

It is not difficult to check now that  m is a [FT, FT-L], [Ks, K2,a] or JR10, Rlo-C3] 
metric depending on whether .T = ~-r, .T = /C~, $" = K~ respectively, and the Cut  
Condition is satisfied for the defined multiflow problem, but the Metric Condition 
with the metric m is not satisfied. 

To prove now the if part,  suppose tha t  M = M$(7/) is settled with respect to 
every E E 7/. Let and R E 7/ w : S ~-+ ~ +  be so tha t  w(R) < w(E) for all E E 7-/, 
but for a metric  in (ii), denote it by m : S ~+ Pt+, the Metric Condit ion is not 
satisfied. Suppose also that  7 / i s  (minorwise) minimah if not we apply the result to 
a minor by induction. 
C l a i m  re(e) > 0 for all e E S. 

Indeed, suppose re(e) = 0 for some e E S. Then R\e E 7//e and according 
to (1.3) M~(Tt/e)  = M~(7/) \e  = M\e. The restriction of m to S\e is a metric  
of M~(7~)\e: the Metric Condition does not hold for this metric,  whereas the cut 
condition for M\e, R\e) with the restriction of c to S\e follows from the cut condition 
for (M, n, ~). 

Since m is one of the metrics [FT, F7 - L], [Ks, K2,3], [R10, R10 - C3] it follows 
tha t  M~ (7t) is one of FT, Ks, R10. With  case checking one gets tha t  the only clutter 
7 / w i th  this property and also having an E E 7 / for  which (ii) of the conjecture holds 
is 5~7, K5 and b(Ks) respectively. [] 

Since Seymour 's  conjecture holds for A if and only if it holds for/3, Theorem 4.1 
means that  this happens concurrently when M~ (.A) = M~ (B) is settled with respect 
to every A E ..4 or M~ (A) = M~ (B) is settled with respect to every B E/3. 

Theorem 4.1 has two useful properties: first, it deals with settled instead of ideal 
clutters, the former being easier to work with; second, it reduces the globM property 
to local ones which are easier to "sum": 

L e m m a  4,2 If M is the 1-, 2-, or 3-sum of the two matroids M' and M '~, then 
M is settled if and only if both M' and M" are settled. 
P r o o f .  (Sketch) The only if par t  follows from the fact tha t  M '  and M "  are minors 
of  M,  and the class of settled matroids  is minor-closed. 
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In order to prove the if part  suppose that  M '  and/14" are settled let F C S(M) ,  
and c : S (M)  -+ ~ +  so that  (M, F, e) satisfies the Cut Condition. We define now 
F '  and c' : S(M')  -+ ~+,  F"  and e" : S(M")  ~ ~+, F"  by copying e and F for 
everything but the marker(s) and on the markers we define them as dictated by the 
Cut Condition. In lack of space we omit the details of this definition, and refer to [25] 
(7.2) and (7.3). In (M' ,  F', e') and ( M ' ,  F" ,  e") the Cut Condition is satisfied. We 
are going to prove that  either there exists a multiflow for (M, F, c), or there exists a 

: S (M)  ~ ~+ for which some [Fr, F7 - L], [Ks, I(2,a], [R10, Rio - Ca] condition is 
violated. 

If  in (M' ,  F ' ,  c') there is no nmltiflow, then, since M '  is settled, after switching 
on a tight cut some [F7, F 7 -  L], [/~'5,/~'2,3], [/~t0, R10-0'3] condition is violated. It  is 
then easy to find the tight cut in (M, R, c) and extend the violated condition to M 
so tha t  the same type of condition shows the non-existence of a multiflow. The same 
hokls if in M s' with the demands F "  for some c '* : S(M')  ~ IR+ the cut condition 
is satisfied but there is no multiflow. 

We can thus suppose that  in both (M', R', c') and (M",  R", e") there exists a 
nmltiflow. But then it is easy to reconstruct a multiflow of M: in order to spare 
space we refer again to [25] (7 2) and (7.3). [] 

Using Theorem 4.1 this Lemma can be restated in terms of Seymour 's  conjecture: 

C o r o l l a r y  4 .a  l fSeymour ' s  conjecture holds for an arbitrary odd circuJt (}Jgning) 
clutter of M'  and M",  then it also holds for an arbitrary odd circuit (signing) clutter 
of M,  where M Is their I-, 2- or 3-sum. We cannot prove the same replacing odd 
circuit and signing clutters by clutters of t-cuts or t-joins. An odd circuit clutter of 
M '  is clutter of l-cuts of M'*,  and a signing clutter of M '  is clutter of t-joins of  M'* : 

C o r o l l a r y  4.4 I f  S~mour 's  conjecture holds for an arb/trary t-join (t-cut) clutter 
of M'  and M",  then it also holds for an arbitrary t-join (t-cut) clutter of M,  where 
M is their 1-, 2- or dual 3-sum. 

For the definition of the matroids AG(2, 3) Ss see [25]. 
In the proof of the following theorems we use Seymour's splitter theorem [24], the 

above Lemma and some extra work. Note that  neither of the conditions of Theorem 
4.5 or 4.6 imply that  7/ is ideal. We omit  the proof of Theorem 4.5, and write out 
full details of that  of Theorem 4.6 which we find more interesting: 

T h e o r e m  4.5 Let 7/ be a binary clutter. If  at least one of Mo(?g) and .M~(7/) 
have no AG(2, 3), Ss or H a minors, then Seymour's conjecture holds for 7/. 

Theorem 4.5 contains Edmonds and Johnson's  minimax theorem [5] on the ide- 
alness of join-clutters, whereas Theorem 4.6 contains Lins' theorem on one sided 
paths on proiective plane [13] and particular (but not simply trivial) instances of of 
Edmonds and Johnson's  theorem; on the other hand the proofs use these theorems. 
We stress, though, that  Theorems 4.5 and 4.6, concern matroids M whose t-joins 
are ideal for some t but  contain a minor in S for some other l'. 

Note the symmetr ic  role of the up and down matroids in the statement of Theo- 
rem 4.6. A trick in the proof is to decompose according to the down matroid  using 
the Lemma, and when we cannot any more, then we switch to the down matroid  of 
the blocking clutter. Since then the up matroid becomes the down matroid we can 
decompose again, and for the "bricks" we can prove the statement directly. 

T h e o r e m  4.6 Let 7/ be a binary clutter. I f  neither Mo(7/) nor M1(7/) have 
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AG(2, 3) or Ss minors, then Seymour's conjecture holds for 74. 

Proof .  Suppose 74 is a counterexample with [S(74)[ minimum. 
C la im 1 Both M0(74) and MI(H) are either graphic or cographic, or equal to t710. 

Indeed, it follows from Seymour's splitter theorem (see [25]) that Mo(74) is either 
graphic or cographic, or R10. Since AG(2, 3) and Ss are self-dual, the fact that  MI (7/) 
does not contain them as minors, implies that MI*(7{ ) = ~r0(b(7/)) also does not 
contain them as minors. Since R10 is also self-dual, It follows now in the same way 
as for 74 that M0(b(74)) (= M~*(74)) is also either graphic or cographic or R10 and 
since this set of minors is also self-dual, we finally get that M1 (74) is also either 
graphic or cographic or equal to R10. 
C la im  2 M0(7/) is cographic and M1 (7-/) is graphic. 

Indeed, by Claim 1 there are only three possibilities for each of )1]0(74) and 
M1(7/). If M0(74) is graphic, then regardless of M1(74), 7-/is ideal, since, then, 7/ 
is a join clutter. If M1 (74) is cographic, then regardless of Mo(74), 7t is ideal, since, 
then, 74 is a cut clutter. If M0(74) = RIo, then it is easy to check that 74 is ideal 
unless .~,11 (7/) = K~. If 21.I1 (74) = R10, then applying the previous sentence to b(7/) 
we get that 7/ is ideal unless Mo(7/) = K]. But we know from Section 2 that 
M0(?r = R10 M1(7/) = I(5 if and only i f T / =  Ks, and 3/I~ (74) = R~o, M0(7/) = K~ 
if and onty if 74 = b(K~). Since ideal clutters, K5 and b(K~) are all settled, and 7-/is 
a counterexampte, the claim is proved. 
C lahn  3 7 If M0(74) is cographie and MI(7/) is graphic, then 74 is either a 1-clutter, 
or the one-path clutter of a planar graph. 

Indeed, let G be a graph whose circuit matroid is M~(74). Assume M~(7/) is 
connected (G is a 2-connected graph), otherwise we proceed by components. 

Since M0(7/) is cographic it has a basis of circuits C0 so that every e E E(G) := 
S(74) is contained in exactly two circuits of C0. It follows that for every vertex v of 
G there exists a partition T'~ of the edges incident to v in such a way that every 
P E "Pv has a cyclical order so that for any two neighboring edges in this order there 
exist circuits in Co containing both. 
[Pvt <- 2 for every vertex v. 

Indeed, if for vertex v there are three different classes P1, P2, P3 E 7~v then let 
ei E P, (i = t, 2, 3). Since M1(74) is connected there exists a circuit C,j containing e~ 
and ej, (i y~ j E {1, 2, 3}). Since every cycle in the span of Co has an even number of 
edges in every equivalence class of each vertex, the circuits in the span of Co U {C12} 
do not span Cla, but then M1 (7/) cannot be the cycle matroid of G. 

To finish the proof now note that if I~oul = 2 then we get in a similar way 
that every circuit using edges from two different classes of IT'll uses edges from two 
different classes of every vertex v for which 17)vl = 2. Split up u into two vertices 
and let the edges of the two partition-classes be the stars of the two new vertices. 
The circuits of Co generate all the circuits of the obtained graph G~, whence Gu is 
both graphic and cographic, and the claim follows. Q 
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