On Integer Multiflows and Metric Packings in Matroids

e-mail: [Karina.Marcus, Andras.Sebo] ©imag.fr
ARTEMIS IMAG, Université Joseph Fourier, BP 53
38041 Grenoble Cedex 9, France

Abstract

Seymour [10] has characterized graphs and more generally matroids in which the simplest possible necessary condition, the "cut condition", is also sufficient for multiflow feasibility. In this work we exhibit the next level of necessary conditions, three conditions which correspond in a well-defined way to minimally non-ideal binary clutters. We characterize the subclass of matroids where the presented conditions are also sufficient for multiflow feasibility, and prove the existence of integer multifiows for Eulerian weights. The theorem we prove uses results from Seymour[10] and generalizes those results and those in Schwärzler, Sebő [7]. We then study the polar of the considered multiflow problems, and characterize the subclass where the integer metric packing theorem holds for bipartite weights; surprisingly, unlike for most of the known multiflow theorems this subclass is not the same as the class where integer multiflow theorems hold for bipartite weights, but is essentially smaller.

1 Introduction

Let M be a binary matroid defined on the finite set $E(M)$ and p a function assigning integer values to the elements of $E(M)$. We think of the negative values of p as representing demands and of the nonnegative values as representing capacities. Define $F(p)=\{e \in E(M): p(e)<0\}$. A flow problem is a pair (M, p). It has a solution if there exists a multiflow, that is a function $\Phi: \mathcal{C}_{P}(M) \rightarrow \mathbb{R}_{+}$ defined on the set $\mathcal{C}_{P}(M)$ of all circuits C of M with $|C \cap F(p)|=1$ such that

$$
\sum_{C \in \mathcal{C}_{P}, C \ni e} \Phi(C)\left\{\begin{aligned}
p(e), & \text { if } e \in E(M)-F(p) \\
=-p(e), & \text { if } e \in F(p)
\end{aligned}\right.
$$

A function $m: E(M) \rightarrow \mathbb{R}_{+}$is a metric if $m(e) \leq m(C-\{e\})$ for all circuits C of M and all elements e of C. (We use the notation $m(X)=\sum_{e \in X} m(e)$ for subsets X of $E(M)$.) Δ is a family of metrics if for every binary matroid M, $\Delta(M)$ is a set of metrics defined on $E(M)$. For $A \subseteq \mathbb{R}_{+}$, we will denote the family of all metrics $m: E(M) \rightarrow A$ by $\Delta_{A}(M)$, or simply by Δ_{A}. A metric m is bipartite if $m(C)$ is even for all circuits C of M. The extreme rays of the cone $\left(\Delta_{A}(M)\right)$ are called primitive.

Let Δ be a family of metrics, and (M, p) be a flow problem. Consider the condition

$$
\begin{equation*}
m \cdot p \geq 0 \text { for all } m \in \Delta(M) \tag{1}
\end{equation*}
$$

It follows easily from LP duality that (1) is necessary for the existence of multiflows, even if $\Delta(M)$ is the set of all metrics on M, and, in this case, (1) is also sufficient. The question that arises is then the following one: When is (1) being true for a specific family of metrics sufficient to imply that (1) is true for all metrics?

A binary matroid M for which the condition (1) is sufficient for the existence of a solution of (M, p) for arbitrary functions p, will be called flowing with respect to Δ. A flow problem (M, p) is Eulerian if $p(D)$ is even for all cocircuits D of M. If (1) is sufficient for the existence of an integer solution for all Eulerian problems (M, p), then M is called cycling with respect to Δ.

A well known and easy fact to be used throughout (it is a consequence of Farkas' Lemma):

Fact 1. [7] Let M be a matroid and $A \subseteq \mathbb{Z}_{+} . M$ is flowing with respect to Δ_{A} if and only if $\Delta_{\mathbb{Z}_{+}} \subseteq$ cone $\left(\Delta_{A}(M)\right)$.

The polar problem of the multiflow problem could be seen as the packing of a metric m into a set of primitive metrics $\Delta_{A}(M)$, that is we want to write m as $\lambda_{1} m_{1}+\ldots+\lambda_{k} m_{k}, \lambda_{i} \in \mathbb{Z}_{+}, m_{i} \in \Delta_{A}(M), 1 \leq i \leq k$. From Fact 1 it follows that if M is flowing with respect to Δ_{A}, then a metric m on $E(M)$ may be always written as a fractional - sum of metrics in A. So now we are interested in a packing with integer coefficients, but with no further hypotheses this seems to be too restrictive. So we ask an integer packing whenever a given metric m is bipartite (see the analogy with "cycling"); if a binary matroid M has this property for all bipartite metrics, then we say that it is packing with respect to Δ_{A}. If the coefficients in the packing are integer multiples of $1 / 2$, we say that M is half packing.

The problem of packing metrics in graphs has been raised in several papers in the past: For the case of cut-metrics, Karzanov [2] and Schrijver ([5], [6]) have proved the existence of integer "polars" of several well-known multiflow theorems, and Karzanov in [4] proves the existence of an integer packing of bip(2,3)-metrics and cuts for graphs with a demand-set adjacent to at most five vertices. Given an undirected graph $G=(V, E)$ and a partition of V in 5 possibly classes A_{1}, A_{2} and B_{1}, B_{2}, B_{3}, such that $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2} \cup B_{3}$ are non-empty, define a metric $m: E \rightarrow \mathbb{Z}_{+}$, a bip(2,3)-metric, as follows:

$$
m(x, y)= \begin{cases}1, & \text { if } x \in A_{i}, y \in B_{j} \\ 2, & \text { if } x \in A_{i}, y \in A_{j}(i \neq j) \text { or } x \in B_{i}, y \in B_{j}(i \neq j) \\ 0, & \text { if } x, y \in A_{i} \text { or } x, y \in B_{i}\end{cases}
$$

We shall denote by $\mathcal{C}(M)$ the set of cycles (that is, disjoint union of circuits) of the matroid M and by $\mathcal{C}^{*}(M)$ the set of cocycles. We refer to Welsh [11] for the basic concepts and facts of matroid theory.

In section 2 we give an overview of the multiflow problem in binary matroids and its relation to metrics; in section 3 we study the K_{5} - and F_{7}-metrics, showing that both are primitive and that the condition (1) restricted to $K_{5^{-}}$and $F_{7^{-}}$ metrics is sufficient for the existence of a multiflow in a certain class of matroids.

In section 4 we show that $M\left(K_{5}\right)$ and F_{7} are packing and that under certain hypotheses we can get a half packing matroid out of a special 2 -sum of packing matroids - and that is the best that we can get.

2 Multiflows

The incidence vector χ_{D} of a cocycle D of M is called a cut-metric, and $\Delta_{(C C)}(M)$ denotes the set of all cut-metrics of the binary matroid M. We say that (M, p) satisfies the so-called cut-condition if and only if

$$
\begin{equation*}
m \cdot p \geq 0 \text { for all } m \in \Delta_{(C C)}(M) \tag{CC}
\end{equation*}
$$

Seymour's following result (see [10]) tells us that the metrics in $\Delta_{(C C)}$ are sufficient to describe the flowingness with respect to $\Delta_{\{0,1\}}$ and characterizes the related class of matroids.

Theorem 2. For a binary matroid M the following are equivalent:
(i) M is cycling with respect to $\Delta_{(C C)}$;
(ii) M is flowing with respect to $\Delta_{\{0,1\}}$;
(iii) M has no F_{7}, R_{10} or $M\left(K_{5}\right)$ minor.
F_{7} is the Fano matroid on 7 elements, $M\left(K_{5}\right)$ is the graphic matroid of the complete graph on 5 nodes, and R_{10} is a special matroid on 10 elements used to characterize regular matroids [8], that can be represented by the node-edge incidence matrix of the complete bipartite graph $K_{3,3}$, plus a column of 1.

Schwärzler and Sebö [6] have shown that extending the cut condition to a larger class of metrics, called $C C 3$-metrics, a statement similar to Seymour's holds for a larger class of matroids. We will deduce the following sharper form in Sect. 3, where CC3 is replaced by the cut-condition or either of two conditions which correspond to the only primitive metrics in $C C 3$.

Theorem 3. For a binary matroid M the following are equivalent:
(i) M is cycling with respect to $\Delta_{\left(C C, F_{7}, K_{5}\right)}$;
(ii) M is flowing with respect to $\Delta_{\{0,1,2\}}$;
(iii) M has no $A G(2,3), S_{8}, R_{10}, M\left(H_{6}\right), M\left(K_{5}\right) \bigoplus_{2} F_{7}, M\left(K_{5}\right) \bigoplus_{2} M\left(K_{5}\right)$, $F_{7} \bigoplus_{2} F_{7}$ minor.

Here H_{6} is the graphic matroid in Figure 1 (a), $A G(2,3)$ is the representation of a projective plane and S_{8} can be represented as the node-edge incidence matrix of the graph in Figure 1 (b), with a column with the circled elements. The definition of 2-sum $M_{1} \oplus M_{2}$ of binary matroids is given in [10].

3 The two conditions

Let $\Delta_{K_{s}}(M)$ (respectively $\Delta_{F_{7}}(M)$) be the class of metrics $m \in \Delta_{\{0,1,2\}}$ such that, if we contract the elements e with $m(e)=0$, we obtain a $M\left(K_{5}\right)$ (respectively F_{7}), probably with some parallel elements, with the weights on each

Fig. 1. H_{6} and S_{8}
element of a parallel class defined below. For the K_{5}, if we denote by $\{1,2,3,4,5\}$ the set of vertices, and by $i j$ the edge between the vertices i and j, then we have

$$
m(i j)= \begin{cases}2, & \text { if } i j \in\{12 ; 23,13,45\} \\ 1, & \text { otherwise }\end{cases}
$$

If C is a three-element circuit of $\mathcal{C}\left(F_{7}\right)$, then we define

Fig. 2. K_{5} - and F_{7}-metrics

$$
m(e)= \begin{cases}2, & \text { if } e \in C \\ 1, & \text { otherwise }\end{cases}
$$

Lemma 4. The K_{5} - and F_{7}-metrics are primitive.
Proof. We will show that the F_{7}-metric is an extreme ray of the cone $\Delta_{\mathbb{Z}_{+}}$ (for K_{5} the proof works in the same way, and is well known, see for example Karzanov [3]). If it is not primitive, then m can be decomposed in a sum of primitive metrics, and the equalities $m(C-e)=m(e), e \in C \in \mathcal{C}\left(F_{7}\right)$, satisfied by the F_{7}-metric, must be satisfied by any primitive metric in the decomposition. We check that the only solution to the system formed by these equalities is the F_{7}-metric, and its positive multiples.

To facilitate our task, let x_{i} denote the value of the function x on the element i, following Figure 2. Then we have the equalities:

$$
\left.\begin{array}{l}
x_{1}=x_{4}+x_{7}=x_{5}+x_{6} \\
x_{2}=x_{5}+x_{7}=x_{4}+x_{6}
\end{array}\right\} \Rightarrow x_{5}=x_{4}, \quad x_{6}=x_{7}
$$

and in the same way we obtain that $x_{4}=x_{7}, x_{5}=x_{6}$ and so $x_{4}=x_{5}=x_{6}=$ x_{7} and $x_{1}=x_{2}=x_{3}=2 x_{4}$, and this corresponds to the F_{7}-metric, proving that it is the only primitive metric in the decomposition.

Now we prepare the proof of the implication (iii) \Rightarrow (i) of the Theorem 3. A twofold application of Seymour's 'Splitter Theorem' gives the following [10].

Proposition5. Every binary matroid with no $A G(2,3), S_{8}, R_{10}$ or $M\left(H_{6}\right)$ minor may be obtained by 1-and 2-sums from matroids cycling with respect to $\Delta_{(C C)}$ and copies of F_{7} and $M\left(K_{5}\right)$.

And we can use it to prove that
Proposition 6. Any 2-sum $M_{1} \bigoplus_{2} M_{2}$ of a matroid M_{1} cycling with respect to $\Delta_{\left(C C, K_{s}, F_{7}\right)}$ and a matroid M_{2} cycling with respect to $\Delta_{(C C)}$ is cycling with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$.

Proof. Let $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{f\}$ and $M=M_{1} \bigoplus_{2} M_{2}$. Choose $p: E(M) \rightarrow \mathbb{Z}$ such that (M, p) is Eulerian and (CC, K_{5}, F_{7}) is satisfied. We define functions $p_{i}: E\left(M_{i}\right) \rightarrow \mathbb{Z}(i \in\{1,2\})$ in the following way:

$$
p_{i}(e)= \begin{cases}p(e), & \text { if } e \in E\left(M_{i}\right)-f \\ (-1)^{i-1} q, & \text { if } e=f\end{cases}
$$

where $q=\min \left\{p(D-f): f \in \dot{D} \in \mathcal{C}^{*}\left(M_{2}\right)\right\}$. Let D_{0} be a cocycle of M_{2} with $p\left(D_{0}-f\right)=q$.

Claim 1. $p_{i}(i \in\{1,2\})$ is an Eulerian function.
Proof. Let D_{i} be a cocycle of M_{i}. If $f \notin D_{i}$, then $p_{i}\left(D_{i}\right)=p\left(D_{i}\right) \equiv \bmod 2$, because D_{i} is also a cocycle of M. If $f \in D_{i}$, then

$$
\begin{aligned}
p_{i}\left(D_{i}\right) & =p_{i}\left(D_{i}-f\right)+p_{i}(f) \\
& \equiv p\left(D_{i}-f\right)+p\left(D_{0}-f\right) \equiv p\left(D_{i} \triangle D_{0}\right) \bmod 2
\end{aligned}
$$

because $D_{i} \Delta D_{0}$ is a cocycle of M.
Claim 2. (M_{2}, p_{2}) satisfies (CC).
Proof. Let $D \in \mathcal{C}^{*}\left(M_{2}\right)$. If $f \notin D$, then again D is a cocycle of M and $p_{2}(D)=$ $p(D) \geq 0$, because we assumed that $\left(C C, K_{5}, F_{7}\right)$ and so in particular ($C C$) is satisfied for (M, p). If $f \in D$, then the definition of q implies the following inequality: $p_{2}(D)=p_{2}(D-f)+p_{2}(f)=p(D-f)-p\left(D_{0}-f\right) \geq 0$.

Claim 3. ($\left.M_{1}, p_{1}\right)$ satisfies $\left(C C, K_{5}, F_{7}\right)$.
Proof. We have to show that $p m_{1} \geq 0$ for every choice of $m_{1} \in \Delta_{\left(C C, K_{5}, F_{7}\right)}\left(M_{1}\right)$. If m_{1} is a $C C$-metric, then everything works as in Claim 2. Otherwise we associate to m_{1} a metric $m \in \Delta_{\left(C C, K_{\mathrm{s}}, F_{T}\right)}(M)$ defined as

$$
m(e)= \begin{cases}m_{1}(e), & \text { if } e \in E\left(M_{1}\right)-f \\ m_{1}(f), & \text { if } e \in D_{0} \\ 0, & \text { otherwise }\end{cases}
$$

It is not difficult to see that if m_{1} is a K_{5} - or F_{7}-metric on M_{1}, then m is a K_{5} or F_{7}-metric on M. And so we have that

$$
\begin{aligned}
p_{1} m_{1} & =\sum_{e \in E\left(M_{1}\right)} p_{1}(e) m_{1}(e) \\
& =\sum_{e \in E(M)} p_{1}(e) m_{1}(e)+p_{1}(f) m(f) \\
& =\sum_{e \in E(M)-D_{0}} p(e) m(e)+p\left(D_{0}-f\right) m(f) \\
& =\sum_{e \in E(M)} p(e) m(e) \\
& \geq 0
\end{aligned}
$$

because (M, p) satisfies $\left(C C, K_{5}, F_{7}\right)$. Thus Claim 3 is proved.
As M_{1} (respectively M_{2}) was assumed to be cycling with respect to $\Delta_{\left(C C, K_{3}, F_{7}\right)}$ (respectively $\Delta_{(C C)}$), the above claims guarantee the existence of integer flows ϕ_{i} in $\left(M_{i}, p_{i}\right)(i \in\{1,2\}) . \phi_{i}$ consists of a list of cycles of $\mathcal{C}_{p_{i}}\left(M_{i}\right)$. Suppose without loss of generality that precisely the first k_{i} cycles of each list contain the element f. It follows from the definition of a flow that $k_{i} \leq q=k_{2}$. After deleting the first $k_{2}-k_{1}$ cycles from the second list ϕ_{2}, the union of the two lists contains exactly k_{1} cycles of $\mathcal{C}\left(M_{1}\right)$ and k_{1} cycles of $\mathcal{C}\left(M_{2}\right)$ passing through the element f. Build k_{1} pairs $\left(C_{1}, C_{2}\right)\left(C_{i} \in \mathcal{C}\left(M_{i}\right)\right)$ of the cycles passing through f and replace each pair by $C_{1} \Delta C_{2}$. It is easy to see that the list of cycles obtained in this way represents an integer flow of (M, p).

Proof. (of Theorem 3:)
(i) \Rightarrow (ii) trivial.
(ii) \Rightarrow (ii) There are several ways of proving this implication. [7] checks it by showing multiflow problems that have no solution, but whose multiflow functions satisfy (1) for $\Delta_{\{0,1,2\}}$. We show that there are primitive metrics for these matroids that are not in $\Delta_{\{0,1,2\}}$, which is a shorter and easier way of proving the implication.

Let S_{8}, R_{10} and $A G(2,3)$ be represented by the matrices in Figure 3. We will prove the result for the S_{8} case, the other ones follow similarly.

Fig. 3. Matrix representation of S_{8}, R_{10} and $A G(2,3)$.

Now let $m:=(2,1,1,1,1,1,1,3)$. For this metric m we have the following equalities arising from the inequality $m(e) \leq(C-e)$, where C is a circuit in S_{8} :

$$
\begin{array}{lll}
m_{1}=m_{2}+m_{5} & m_{1}=m_{3}+m_{6} & m_{1}=m_{4}+m_{7} \\
m_{8}=m_{2}+m_{3}+m_{7} & m_{8}=m_{2}+m_{4}+m_{6} & m_{8}=m_{3}+m_{4}+m_{5} \\
m_{8}=m_{5}+m_{6}+m_{7} . & &
\end{array}
$$

These equations are affinely independent and all solutions for this system are vectors of the form ($2 a, a, a, a, a, a, a, 3 a$) , $a \geq 0$, which is exactly the extreme ray of the cone of metrics $\Delta_{\mathbb{Z}_{+}}\left(S_{8}\right)$ defined by m. Therefore m is primitive, but is is not a $(0,1,2)$-vector, so, by Fact $1, S_{8}$ is not flowing with respect to $\Delta_{\{0,1,2\}}$.

In the same way we can show that $m=(3,3,1,1,3,1,1,1,1,1)$ and $m=$ $(1,1,1,4,1,1,1,1)$ define extreme rays of the cone of metrics $\Delta_{\mathbb{Z}_{+}}\left(R_{10}\right)$ and $\Delta_{\mathbb{Z}_{+}}(A G(2,3))$, respectively, proving that they are not flowing with respect to $\Delta_{\{0,1,2\}}$.

A primitive metric for H_{6} is represented in Figure 4, and one can check that it is primitive in the same way as in the cases above.

Fig. 4. H_{6}

Now let $M\left(K_{5}\right) \oplus_{2} M\left(K_{5}\right)$ be as in Figure 5, the marker is indicated in dashed line, and let $m: E\left(M\left(K_{5}\right) \oplus_{2} M\left(K_{5}\right)\right) \rightarrow \mathbb{Z}$ be as follows

$$
m(x):= \begin{cases}4, & \text { if } x \in\{j, l, o, r\}, \\ 2, & \text { if } x \in\{a, c, i, k, m, n, p, q\}, \\ 1, & \text { otherwise. }\end{cases}
$$

Fig. 5. $M\left(K_{5}\right) \bigoplus_{2} M\left(K_{5}\right)$

The following are tight inequalities for m

$$
\begin{array}{llll}
r=p+q & r=m+k & j=n+q & j=k+f+d \\
j=k+g+h & l=p+n & l=m+f+d & l=m+g+h \\
o=k+q & o=p+m & o=n+f+d & o=g+h+n \\
a=f+e & a=h+b & i=b+g & i=d+e \\
c=e+b & c=f+h & c=d+g &
\end{array}
$$

and it is not difficult to find that the solutions for the system are

$$
s(x):= \begin{cases}4 \delta, & \text { if } x \in\{j, l, o, r\} \\ 2 \delta, & \text { if } x \in\{a, c, i, k, m, n, p, q\} \\ 1 \delta, & \text { otherwise }\end{cases}
$$

where $\delta \geq 0$.
Let $F_{7} \bigoplus_{2} M\left(K_{5}\right)$ and $F_{7} \bigoplus_{2} F_{7}$ be as in Figure 6, the markers are indicated by dashed lines, and $m_{1}: E\left(F_{7} \bigoplus_{2} M\left(K_{5}\right)\right) \rightarrow \mathbb{Z}$ and $m_{2}: E\left(F_{7} \bigoplus_{2} F_{7}\right) \rightarrow \mathbb{Z}$ be as follows

$$
\begin{aligned}
& m_{1}(x):= \begin{cases}4, & \text { if } x \in\{g, h, i, m\} \\
2, & \text { if } x \in\{e, f, j, k, l, n, o\} \\
1, & \text { otherwise. }\end{cases} \\
& m_{2}(x):= \begin{cases}4, & \text { if } x \in\{a, b, e\} \\
2, & \text { if } x \in\{c, d, f, l, m\} \\
1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

We can check in the same way as above that both metrics m_{1} and m_{2} are primitive, and as they are not ($0,1,2$)-vectors, and together with the Fact 1 they show that the matroids are not flowing with respect to $\Delta_{\{0,1,2\}}$.
(iii) \Rightarrow (i) Now we know that K_{5} and F_{7} are flowing with respect to $\Delta_{\left\{C C, K_{5}, F_{7}\right\}}$ (see [4] and [7]). Using these results with Proposition 6 we get easily the desired implication.

Fig. 6. $F_{7} \bigoplus_{2} M\left(K_{5}\right)$ and $F_{7} \bigoplus_{2} F_{7}$

4 Packing matroids

We prove now two statements showing that K_{5} and F_{7} are packing with respect to $\Delta_{\left\{C C, K_{3}, F_{7}\right\}}$. The first is in fact a consequence of a theorem of Karzanov ([4]), but for the sake of completeness and because of the analogy of our proof for K_{5} and F_{7} we include a simple proof. We say that we can subtract a metric m_{2} from m_{1} if $m_{1}-m_{2}$ is a metric. If both m_{1} and m_{2} are bipartite, then obviously $m_{1}-m_{2}$ is also bipartite.

Lemma 7. In the matroid $M\left(K_{5}\right)$ every bipartite metric can be expressed as a positive integer sum of metrics in $\Delta_{\left(C C, K_{5}\right)}\left(M\left(K_{5}\right)\right)$.

Proof. Let m be a bipartite metric on $M\left(K_{5}\right)$. We want to write it as an integer sum of cuts and K_{5}-metrics. By Theorem 3 and Fact 1 we know that m can be expressed as $m=\nu_{1} \chi_{C_{1}}+\ldots+\nu_{n} \chi C_{n}+\lambda_{1} m_{1}+\ldots+\lambda_{k} m_{k}$, where C_{i} is a cut, m_{i} is a K_{5}-metric, and $\nu_{i}, \lambda_{i}>0$.

Claim 1. Let D be a cut on K_{5}. If $\left(m-\chi_{D}\right)(C-e)-\left(m-\chi_{D}\right)(e)<0$, for a circuit C and $e \in C$, then there exists a triangle T (a circuit of cardinality 3), and an element $f \in T$, such that $\left(m-\chi_{D}\right)(T-f)-\left(m-\chi_{D}\right)(f)<0$.

Proof. Let $l=m-\chi_{D}$. If $|C|=4$, then there exists a triangle T such that $|T \cap C|=2, T \backslash C=\{f\}, e \in T \cap C$. Let $T^{\prime}=C \Delta T$. Then $0>l(C-e)-l(e)=$ $l(T-e)-l(e)+l\left(T^{\prime}-f\right)-l(f)$ and so we have that either $l(T-e)-l(e)<0$ or $l\left(T^{\prime}-f\right)-l(f)<0$.

If $|C|=5$, then there exists a triangle $T,|T \cap C|=2, T \backslash C=\{f\}, e \in T \cap C$ and a circuit $C^{\prime}=C \Delta T,\left|C^{\prime}\right|=4$, such that $0>l(C-e)-l(e)=l(T-e)-$ $l(e)+l\left(C^{\prime}-f\right)-l(f)$. Now either we get directly the conclusion, or we use the previous case.

Claim 2. If C_{i} is a cocircuit, then χC_{i} can be subtracted from m.
Proof. If χc_{i} cannot be subtracted from m, then by Claim 1 , there is a triangle T and $e \in T$, such that

$$
\begin{equation*}
\left(m-\chi_{C_{i}}(T-e)-\left(m-\chi_{C_{i}}\right)(e)<0\right. \tag{*}
\end{equation*}
$$

As $m(T-e)-m(e)=0$ implies that $\chi_{C_{i}}(T-e)-\chi_{C_{i}}(e)=0$, we may suppose that $m(T-e)-m(e) \geq 2$. As $\chi_{C_{i}}(T-e)-\chi C_{i}(e) \leq 2$, we cannot have (*).

Claim 3. If m_{i} and m_{j} are different K_{5}-metrics, then $m_{i}+m_{j}$ can be written as a sum of cut-metrics.

Proof. The Figure 7 shows the sum of two K_{5}-metrics, which has the following cut decomposition (we use the numeration of Figure 2): $\{15,25,35,14,24,34\}$ $+\{15,25,45,13,23,34\}+\{12,13,15,24,34,45\}+\{12,14,15,23,34,35\}$. The other cases are similar.

Fig. 7. Sums of two K_{5}-metrics and two F_{7}-metrics

The three Claims above imply that we can obtain from a fractional decomposition for m an integer decomposition for m consisting on cut-metrics and K_{5}-metrics.

Lemma 8. In the F_{7} matroid every bipartite metric may be expressed as a positive integer sum of metrics in $\Delta_{\left(C C, F_{7}\right)}$.

Proof. Let m be a bipartite metric on F_{7}. We proof as above:

Claim 1. If C_{i} is a cocircuit, then $\chi_{C_{i}}$ can be subtracted from m.
Proof. $\chi_{C_{i}}$ may be subtracted from m if and only if

$$
m(C-e)-m(e) \geq \chi_{C_{i}}(C-e)-\chi_{C_{i}}(e), \text { for all } e \in C \in \mathcal{C}\left(F_{7}\right)
$$

$m(C-e)-m(e)=0$ implies that $\chi_{C_{i}}(C-e)-\chi_{C_{i}}(e)=0$. If $m(C-e)-$ $m(e) \geq 2$, then $\left|C_{i} \cap C\right| \equiv 0 \bmod 2$, because F_{7} is a binary matroid. So we have only to consider when $\left|C_{i} \cap C\right|=4$. In this case $C=C_{i}$ and $e \in C_{i} \cap C$, so $\chi_{C_{i}}(C-e)-\chi_{C_{i}}(e) \leq 2$, and we have the desired inequality.

Claim 2. If m_{i} and m_{j} are different F_{7}-metrics, then $m_{i}+m_{j}$ can be written as a sum of cut metrics.

Proof. In Figure 7 we show the sum of two F_{7}-metrics, and its decomposition in metric-cuts is: $\{1,2,4,5\}+\{1,3,5,7\}+\{1,2,6,7\}+\{1,3,4,6\}+\{2,3,4,7\}$ (with the same numeration of Figure 2). All the others are symmetric.

Now putting together Claims 1 and 2 we obtain that m is an integer sum of cut-metrics and perhaps one F_{7}-metric, with an integer coefficient too - because as we can always subtract the cut-metrics from m, repeating this procedure we will end up with a F_{7}-metric and necessarily with an integer coefficient.

We will introduce now a concept that will help us prove some new characterizations of flowing and packing matroids. We say that M has the sums of circuits property (see [9]) if the following are equivalent for all $p: E(M) \rightarrow \mathbb{Z}_{+}$:
(i) There is a function $\alpha: \mathcal{C}(M) \rightarrow \mathbb{R}_{+}$such that $\sum \alpha(C) \chi_{C}=p$.
(ii) For every cocircuit D and $f \in D, p(f) \leq p(D-\{f\})$.

In [10] Seymour characterized matroids that have the sums of circuits property - they are the duals of those flowing with respect to $\Delta_{(C C)}$, and conjectured the following result, proved by Alspach, Goddyn and Zhang ([1]).

Theorem 9. If M is a binary matroid and has no $F_{7}^{*}, R_{10}, M^{*}\left(K_{5}\right)$ or $M\left(P_{10}\right)$ minor, and p satisfies (ii) and is Eulerian, then there is an integral α satisfying (i).
$M\left(P_{10}\right)$ is the graphic matroid of the Petersen graph. Dualizing this result, we get a class of packing matroids:

Corollary 10. If M is a binary matroid and has no $F_{7}, R_{10}, M\left(K_{5}\right)$ or $M^{*}\left(P_{10}\right)$ minor, then M is packing with respect to $\Delta_{(C C)}$.

Notice that this is the class of matroids cycling with respect to $\Delta_{(C C)}$, except for those containing $M\left(P_{10}\right)$ as minor. We know, by Lemmas 7 and 8 , that the $M\left(K_{5}\right)$ and F_{7} matroids are packing with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$. We would like to join these classes of matroids and obtain something "bigger". The 2 -sum of matroids could help us in this direction, but the packing property is not preserved by the 2 -sum. We show in Figure 8 an example of a bipartite metric on a 2 -sum of matroids that are each packing, but its decomposition in primitive metrics is half-integer.

Notice that in the Proposition 6 we do not "2-sum" two matroids $M\left(K_{5}\right)$ or F_{7}, or a $M\left(K_{5}\right)$ with an F_{7}, so we might suppose that the matroid $M=$ $M_{1} \bigoplus_{2} M_{2}$ is in fact a "big" 2-sum of several matroids packing with respect to $\Delta_{(C C)}$ and one $M\left(K_{5}\right)$ or (exclusive) one F_{7}. This fact will be used in the following proposition, which is not a recursive result, but shows a way of decomposing a metric in such a "big" 2-sum.

Lemma 11. A matroid M resulting from 2-sums of one copy of $M\left(K_{5}\right)$ or F_{7}, and matroids packing with respect to $\Delta_{(C C)}$ is half packing with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$.

Fig. 8. A half integer metric-packing

Proof. We will find a half integral metric packing in M from integral metric packings of each piece of the 2 -sums.

Let $M=R_{1} \bigoplus_{2} R_{2} \bigoplus_{2} \ldots \bigoplus_{2} R_{n}$ where R_{1} is either a $M\left(K_{5}\right)$ or a F_{7}, and each $R_{i}, 2 \leq i \leq n$, is a matroid packing with respect to $\Delta_{(C C)}$ that is being "2-summed" with R_{1}. Let $f_{i}=E\left(R_{1}\right) \cap E\left(R_{i}\right), 2 \leq i \leq n$.

Choose $m: E(M) \rightarrow \mathbb{Z}_{+}$such that m is a bipartite metric. Let $m_{1}^{\prime}: E\left(R_{1}\right) \rightarrow$ \mathbb{Z}_{+}be such that:

$$
m_{1}^{\prime}(e):= \begin{cases}m(e), & \text { if } e \in E\left(R_{1}\right)-\left\{f_{j}, 2 \leq j \leq n\right\} \\ q_{i}, & \text { if } e=f_{j}\end{cases}
$$

where $q_{i}:=\min \left\{m\left(C-f_{i}\right): C \in \mathcal{C}\left(R_{i}\right)\right\}, 2 \leq i \leq n$. Now we define functions $m_{i}: E\left(R_{i}\right) \rightarrow \mathbb{Z}_{+}, 1 \leq i \leq n$, in the following way: $m_{1}(e):=\min \left\{m_{1}^{\prime}(X): X=\right.$ $\{e\}$ or $X=C-e$ for some $C \in \mathcal{C}\left(R_{1}\right)$ with $\left.e \in C\right\}$ and

$$
m_{i}(e):= \begin{cases}m(e), & \text { if } e \in E\left(R_{i}\right)-f_{i} \\ m_{1}\left(f_{i}\right), & \text { otherwise }\end{cases}
$$

Let C_{i}^{0} be the circuit of $\mathcal{C}\left(R_{i}\right) \cup \mathcal{C}\left(R_{1} \oplus_{2} \ldots \oplus_{2} R_{i-1} \oplus_{2} R_{i+1} \oplus_{2} \ldots \oplus_{2} R_{n}\right)$ with $f_{i} \in C_{i}^{0}$ and $m\left(C_{i}^{0}-f_{i}\right)=m_{i}\left(f_{i}\right), 2 \leq i \leq n$.

Claim 1. $m_{i}, 2 \leq i \leq n$, is a bipartite metric.
Proof. Let C_{i} be a cycle of R_{i}. If $f_{i} \notin C_{i}$, then $m_{i}\left(C_{i}-e\right) \leq m_{i}(e), \forall e \in C_{i}$, and $m_{i}\left(C_{i}\right)=m\left(C_{i}\right) \equiv 0 \bmod 2$, because C_{i} is also a cycle of M.

If $f_{i} \in C_{i}$, then $m_{i}\left(C_{i}-f_{i}\right)-m_{i}\left(f_{i}\right)=m\left(C_{i}\right)-m\left(C_{i}^{0}\right) \geq 0$, and for $e \neq f_{i}$, $m_{i}\left(C_{i}-e\right)-m_{i}(e)=m\left(C_{i}-e\right)+m\left(C_{i}^{0}\right)-m(e) \geq 0$, because of the definition of C_{i}^{0}; and $m_{i}\left(C_{i}\right)=m_{i}\left(C_{i}-f_{i}\right)+m_{i}\left(f_{i}\right)=m\left(C_{i}-f_{i}\right)+m\left(C_{i}^{0}-f_{i}\right) \equiv m\left(C_{i} \Delta C_{i}^{0}\right) \equiv$ $0 \bmod 2$, because $C_{i} \Delta C_{i}^{0}$ is a cycle of M.

Claim 2. m_{1} is a bipartite metric.
Proof. By the definition of m_{1} as an induced metric, we have only to verify that m_{1} is bipartite. Let C be a cycle of R_{1} and $L:=\left\{j: \exists f_{j} \in C\right\}$, then

$$
\begin{aligned}
m_{1}(C) & =m_{1}\left(C \backslash\left\{f_{j}: j \in L\right\}\right)+\sum_{j \in L} m_{1}\left(f_{j}\right) \\
& =m\left(C \backslash\left\{f_{j}: j \in L\right\}\right)+\sum_{j \in L} m\left(C_{j}-f_{j}\right) \\
& \equiv m\left(C \triangle_{j \in L} C_{j}^{0}\right) \\
& \equiv 0 \bmod 2
\end{aligned}
$$

because $C \triangle_{j \in L}\left(C_{j}^{0}\right)$ is a cycle of M.
As R_{1} (respectively $R_{i}, 2 \leq i \leq n$) was assumed to be packing with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$ (respectively to $\Delta_{(C C)}$), the above Claims guarantee the existence of cocircuits $C_{1}^{i}, \ldots, C_{r_{i}}^{i} \in \mathcal{C}^{*}\left(R_{i}\right)$ such that $\sum_{j=1}^{r_{i}} \chi_{C_{j}^{i}}=m_{i}$ and cocircuits $C_{1}^{1}, \ldots, C_{r_{1}}^{1} \in \mathcal{C}^{*}\left(R_{1}\right)$, and K_{5} - or F_{7}-metrics l_{1}, \ldots, l_{t} such that $\sum_{j=1}^{r_{1}} \chi_{C_{j}^{1}}+$ $\sum_{j=1}^{t} l_{j}=m_{1}$.

Now we make the packing of cocircuits, K_{5} and F_{7}-metrics for M and f. We can already put in the list the cocircuits $C_{j}^{1}\left(j=1, \ldots, r_{1}\right)$.

We will consider two cases:
Case $I: l_{i}\left(f_{j}\right)=1, i \in\{1, \ldots, t\}, j \in\{2, \ldots, n\}$
To each $K_{5^{-}}$or F_{7}-metric l_{i} such that $l_{i}\left(f_{j}\right)=1$, we associate a cocircuit $C_{k}^{j}, k \in\left\{1, \ldots, r_{j}\right\}$, where $f_{j} \in C_{k}^{j}$ and we join l_{i} to C_{k}^{j} to create a K_{5} - or F_{7}-metric l_{i}^{\prime} in the matroid M. It is not difficult to see how to "glue" l_{i} and C_{k}^{j} : the elements in C_{k}^{j} will replace f_{j}, creating perhaps some parallel elements in the new K_{5} - or F_{7}-metric. We will replace l_{i} by l_{i}^{\prime}, if there is some j^{\prime} such that $l_{i}\left(f_{j^{\prime}}\right)=2$; otherwise l_{i}^{\prime} goes to the list of the packing.
Case $I I: l_{i}\left(f_{j}\right)=2, i \in\{1, \ldots, t\}, j \in\{2, \ldots, n\}$
In this case, if we have, for every circuit $K \in \mathcal{C}\left(R_{j}\right)$ with $f_{j} \in K$,

$$
m_{j}\left(K-f_{j}-e\right)-m_{j}(e) \geq 0, \text { for all } e \in K
$$

then we can simply contract f_{j} in both matroids R_{1} and R_{j} and find a packing of cocircuits for l_{i} in $R_{j} /\left\{f_{j}\right\}$ in R_{1} and a new packing of cocircuits in $R_{j} /\left\{f_{j}\right\}$ for m_{j}, and add this last packing to the list. If the corresponding K_{5} - or F_{7}-metric has already been transformed into cocircuits, we have only to find a packing in $R_{j} /\left\{f_{j}\right\}$.

For these metrics l_{i} that have been transformed, and for all f_{j} such that $l_{i}\left(f_{j}\right)=2$, but f_{j} has not been contracted, there is a natural association between cocircuits in the decomposition of l_{i} and cocircuits in the decomposition of m_{j} which contain f_{j}; the symmetric difference of such pairs of cocircuits is a cocycle in M, and we put them all in the list.

Now we have only metrics l_{i} not yet decomposed for which there exists a f_{j} with $l_{i}\left(f_{j}\right)=2$ and one can not contract f_{j} as above.

To each l_{i} and each R_{j} for which we have $l_{i}\left(f_{j}\right)=2$, as $m_{1}\left(f_{j}\right)=m_{j}\left(f_{j}\right)$, we know that we can associate two cocircuits $C_{1}^{j}, C_{2}^{j} \in \mathcal{C}\left(R_{j}\right)$, such that $f_{j} \in C_{1}^{j} \cap C_{2}^{j}$. We now build two lists $L_{k}, k=1,2$ of all these C_{j}^{k}, for all j with $l_{i}\left(f_{j}\right)=2$. We
will transform the metric l_{i} and the lists L_{1}, L_{2} into two single K_{5} - or F_{7}-metrics in the following way $(k=1,2)$:

$$
l_{i}^{k}(e):= \begin{cases}l_{i}(e), & \text { if } e \neq f_{j}, \forall j \in\{2, \ldots n\} \\ 2, & \text { if } e \in C \in L_{k}, e \neq f_{j} \\ 0, & \text { otherwise }\end{cases}
$$

It is not difficult to see that l_{i}^{1}, l_{i}^{2} are K_{5} - or F_{7}-metrics in M, and that

$$
\frac{1}{2} l_{i}^{1}+\frac{1}{2} l_{i}^{2}=l_{i}+\sum_{C \in L_{1}} \chi_{C-f_{j}}+\sum_{C \in L_{2}} \chi_{C-f_{j}}
$$

And this completes the packing.
At the end we add to the list the metrics corresponding to the remaining cocircuits that do not contain the marker.

Remark: In the second case of the proof, if $l_{i}^{1}=l_{i}^{2}$, then the sum $\frac{1}{2} l_{i}^{1}+\frac{1}{2} l_{i}^{2}$ is integer, and so, the result of the decomposition may be integer.

As a conclusion we get that
Theorem 12. If a binary matroid M has no $M^{*}\left(P_{10}\right)$ minor, then M is cycling with respect to $\Delta_{\left(C C, F_{7}, K_{s}\right)}$ if and only if M is half-packing with respect to this set of metrics.

Proof. If M is cycling with respect to $\Delta_{\left(C C, F_{7}, K_{s}\right)}$, then, by Theorem 3 and Proposition 5, M may be obtained by 1 - and 2 -sums from matroids cycling with respect to $\Delta_{(C C)}$ and one copy of F_{7} or (exclusive) one copy of $M\left(K_{5}\right)$. From Corollary 10 and the hypothesis that M has no $M^{*}\left(P_{10}\right)$ minor, we conclude that M may be obtained by 1 - and 2 -sums from matroids packing with respect to $\Delta_{(C C)}$ and one copy of F_{7} or (exclusive) one copy of $M\left(K_{5}\right)$.

Now, using Lemma 11 one sees that M is half-packing with respect to $\Delta_{\left(C C, F_{7}, K_{s}\right)}$.

In the other direction, from the proof of Theorem 3 one can conclude that the matroids $A G(2,3), S_{8}, R_{10}, M\left(H_{6}\right), M\left(K_{5}\right) \oplus_{2} F_{7}, M\left(K_{5}\right) \oplus_{2} M\left(K_{5}\right)$ and $F_{7} \bigoplus_{2} F_{7}$ are not half-packing with respect to $\Delta_{\left(C C, F_{7}, K_{5}\right)}$, since there is a primitive metric for each of them that is not in $\Delta_{\{0,1,2\}}$.

As $M^{*}\left(P_{10}\right)$ is not graphic, for graphic matroids we get the following sharper result:

Theorem 13. For a graph G the following are equivalent:
(i) G is cycling with respect to $\Delta_{\left(C C, K_{3}\right)}$;
(ii) G is flowing with respect to $\Delta_{\{0,1,2\}}$;
(iii) G has no $H_{6}, K_{5} \bigoplus_{2} K_{5}$ as minor;
(iv) G is half-packing with respect to $\Delta_{\left(C C, K_{5}\right)}$.

We will see that the example given in Fig. 8 is essentially the only one, where we 2 -sum a $M\left(K_{5}\right)$ or a F_{7} with a matroid consisting on two circuits C_{1}, C_{2} such that $C_{1} \cap C_{2}=\{f\}$, where f is the marker of the 2 -sum, and $\left|C_{1}\right| \geq 3$. We call this configuration a \bar{K}_{5} and a \bar{F}_{7}, respectively.

For the characterization we will need first the following lemma.
Lemma 14. The matroid M, resulting from the 2-sum of a matroid M_{1} that is packing with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$ with a matroid M_{2}, that is a circuit, is metric packing with respect to $\Delta_{\left(C C, K_{5}, F_{7}\right)}$.
Proof. If M_{1} does not contain $M\left(K_{5}\right)$ or F_{7} as a minor, the result is trivial. So let M_{1} contain one of $M\left(K_{5}\right)$ and F_{7} as minor. Given a bipartite metric m on the matroid M, we will find an integral decomposition for m as a sum of cocircuits, F_{7} or K_{5}-metrics. Let $M_{1} \cap M_{2}=\{f\}$.

As in the proof of Lemma 11, we define two metrics $m_{1}: E\left(M_{1}\right) \rightarrow \mathbb{Z}_{+}$and $m_{2}: E\left(M_{2}\right) \rightarrow \mathbf{Z}_{+}$such that

$$
m_{i}(e)= \begin{cases}m(e), & \text { if } e \in E\left(M_{i}\right)-f \\ q, & \text { if } e=f\end{cases}
$$

where $q=\min \left\{m(C-f): C \in \mathcal{C}\left(M_{1}\right) \cup \mathcal{C}\left(M_{2}\right)\right\}$.
With a similar reasoning to the proof of Lemma 11 it can be seen that m_{i}, $i=1,2$, is a bipartite metric, and so there are cocircuits $C_{1}, \ldots, C_{r} \in \mathcal{C}^{*}\left(M_{2}\right)$ such that $\sum_{j=1}^{r} \chi_{C_{j}}=m_{2}$, and we assume that the first k_{2} cocircuits contain f; and there are cocircuits $D_{1}, \ldots, D_{s} \in \mathcal{C}^{*}\left(M_{1}\right)$, and K_{5} or F_{7}-metrics l_{1}, \ldots, l_{t} such that $\sum_{j=1}^{r} \chi_{D_{j}}+\sum_{j=1}^{t} l_{j}=m_{1}$. We suppose that the first k_{1} cocircuits contain f, and that the first $k_{3} F_{7}$ or K_{5}-metrics l_{i} are such that $l_{i}(f)=1$. Notice that $k_{2}=k_{1}+k_{3}+2\left(t-k_{3}\right)$.

To each $l_{j}, 1 \leq j \leq k_{3}$, and to each $D_{i}, 1 \leq i \leq k_{1}$, we associate a cocircuit $C_{k} \in \mathcal{C}^{*}\left(M_{2}\right)$, in each of them we replace f by C_{k}, and the result is clearly a cocircuit, a K_{5} - or an F_{7}-metric.

Now we associate to each $l_{i}, k_{3}+1 \leq i \leq t$, two cocircuits C_{j}, C_{k}, and replace all of them by B_{1} and B_{2} defined as follows. Let $B_{1}=C_{j} \Delta C_{k}, B_{1}$ is a cocircuit in M_{2}, and so in M. Let $B_{2}=E\left(M_{2}\right)-\left(C_{j} \Delta C_{k}\right)$; if $\left|B_{2}\right| \equiv 0 \bmod 2$, then since M_{2} is a circuit, B_{2} is a cocycle in M_{2}, and we replace in l_{i} the element f with $B_{2}-f$. If $\left|B_{2}\right| \equiv 1 \bmod 2$, then we decompose l_{i} with $l_{i}(f)=0$ into cocircuits, and put them in the list, with a coefficient 2 . We add $B_{2}-f$ to the list, with a coefficient 2 , if $B_{2}-f \neq \emptyset$, since in this case $B_{2}-f$ is a cocycle in M_{2} and so in M. Proceeding this way we get an integer packing of cocircuits and F_{7} - or K_{5}-metrics for m.

Combining Corollary 10 and Lemma 14 one gets the following:
A binary matroid M flowing with respect to $\Delta_{\{0,1,2\}}$ is packing with with respect to $\Delta_{\left(C C, F_{7}, K_{s}\right)}$ if and only if M has no $M^{*}\left(P_{10}\right), \bar{K}_{5}, \bar{F}_{7}, R_{10}$ minor.

Just before submitting this article, the authors have realized that in fact a characterization of packing matroids follows. (A matroid is packing if it is integer packing with respect to its primitive metrics.)

For a binary matroid M the following statements are equivalent (provided R_{10} is packing):
(i) M is packing,
(ii) M is packing with respect to $\Delta_{\left(C C, F_{7}, K_{5}, R_{10}\right)}$,
(iii) M has no $M^{*}\left(P_{10}\right), \bar{F}_{7}, \bar{K}_{5}, \vec{R}_{10}$ minor.

The matroid \bar{R}_{10} is defined in the same way as \bar{F}_{7}, \bar{K}_{5}. The fact that R_{10} is packing is being checked (if not, that makes only trivial changes to the theorem).

References

1. X. FU and L. Goddyn, Matroids with the circuit cover property, (1995). pre-print.
2. A. V. Karzanov, Metrics and undirected cuts, Mathematical Programming, 32 (1985), pp. 183-198.
3. ——, Half-integer five-terminus flows, Discrete Applied Mathematics, 18 (1987), pp. 263-278.
4. -, Sums of cuts and bipartite metrics, European Journal of Combinatorics, 11 (1990), pp. 473-484.
5. A. Schrijver, Distances and cuts in planar graphs, Journal of Combinatorial Theory, Series B, 46 (1989), pp. 46-57.
6. -, Short proofs on multicommodity flows and cuts, Journal of Combinatorial theory, Series B, 53 (1991), pp. 32-39.
7. W. Schwärzler and A. Sebő, A generalized cut-condition for multiflows in matroids, Discrete Mathematics, 113 (1993), pp. 207-221.
8. P. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory, 28 (1980).
9. P. D. Seymour, Graph theory and related topics, Graph Theory and Related Topics, (1979).
10. -, Matroids and multicommodity flows, European Journal of Combinatorics, 2 (1981), pp. 257-290.
11. D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
