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Abstract. Seymour [10] has characterized graphs and more generally 
matroids in which the simplest possible necessary condition, the "cut 
condition", is also sufficient for multiflow feasibility. In this work we ex- 
hibit the next level of necessary conditions, three conditions which cor- 
respond in a wen-defined way to minimally non-ideal binary clutters. We 
characterize the subclass of matroids where the presented conditions are 
also sufficient for multiflow feasibility, andprove the existence of integer 
multiflows for Eulerian weights. The theorem we prove uses results from 
Seymour[10] and generalizes those results and those in Schws Seb6 
[7]. We then study the polar of the considered multiflow problems, and 
characterize the subclass where the integer metric packing theorem holds 
for bipartite weights; surprisingly, unlike for most of the known multi- 
flow theorems this subclass is not the same as the class where integer 
multiflow theorems hold for bipartite weights, but is essentially smaller. 

1 I n t r o d u c t i o n  

Let M be a binary matroid defined on the finite set E(M) and p a function 
assigning integer values to the elements of E(M). We think of the negative 
values of p as representing demands and of the nonnegative values as representing 
capacities. Define F(p) = {e E E(M) : p(e) < 0}. A flow problem is a pair (M, p). 
I t h a s  a solution if there exists a multiflow, that  is a function �9 : Cp(M) ~ IR+ 
defined on the set Cp(M) of all circuits C of M with [CN F(p)I = 1 such that  

E ~(C)(  < p(e), i f e E E ( M ) - F ( p ) ,  
-p(e), if e E F(p). 

CECp,Cge 

A function m :  E(M) --* IR+ is a metric if m(e) < m ( C -  {e}) for all circuits 
C of M and all elements e of C. (We use the notation re(X) = ~-'~,ex re(e) for 
subsets X of E(M).) ,4 is a family of metrics if for every binary matroid M, 
A(M)  is a set of metrics defined on E(M). For A C IR+, we will denote the 
family of all metrics m : E(M) ---, A by AA(M), or simply by AA. A metric m 
is bipartite if re(C) is even for all circuits C of M. The extreme rays of the cone 
( AA(M)) are called primitive. 

Let A be a family of metrics, and (M, p) be a flow problem. Consider the 
condition 

m.p > 0 for all m 6 A(M) .  (1) 
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It follows easily from LP duality that (1) is necessary for the existence of multi- 
flows, even if A(M) is the set of all metrics on M, and, in this case, (1) is also 
sufficient. The question that arises is then the following one: When is (1) being 
true for a specific family of metrics sufficient to imply that (1) is true for all 
metrics? 

A binary matroid M for which the condition (1) is sufficient for the existence 
of a solution of (M, p) for arbitrary functions p, will be called flowing with respect 
to A. A flow problem (M, p) is Eulerian if p(D) is even for all cocircuits D of 
M .  If (1) is sufficient for the existence of an integer solution for all Eulerian 
problems (M,p), then M is called cycling with respect to A. 

A well known and easy fact to be used throughout (it is a consequence of 
Farkas' Lemma): 

Fact  1. [7] Let M be a matroid and A C_ Tl,+. M is flowing with respect to AA 
if and only if ATz+ C_ cone (AA(M)). 1"7 

The polar problem of the multiflow problem could be seen as the packing 
of a metric m into a set of primitive metrics AA(M), that is we want to write 
m as ~ lml  + . . . + ) l k m k ,  hi E Z + , m i  E AA(M),  1 < i ~_ k. From Fact 1 
it follows that if M is flowing with respect to AA, then a metric m on E(M) 
may be always written as a - fractional - sum of metrics in A. So now we are 
interested in a packing with integer coefficients, but with no further hypotheses 
this seems to be too restrictive. So we ask an integer packing whenever a given 
metric m is bipartite (see the analogy with "cycling"); if a binary matroid M 
has this property for all bipartite metrics, then we say that it is packing with 
respect to AA. If the coefficients in the packing are integer multiples of 1/2, we 
say that M is half packing. 

The problem of packing metrics in graphs has been raised in several papers 
in the past: For the case of cut-metrics, Karzanov [2] and Schrijver ([5], [6]) 
have proved the existence of integer "polars' of several well-known multiflow 
theorems, and Karzanov in [4] proves the existence of an integer packing of 
bip(2,3)-metrics and cuts for graphs with a demand-set adjacent to at most  
five vertices. Given an undirected graph G = (V, E) and a partition of V in 5 
possibly classes A1, A2 and B1, B2, B3, such that A1 O A2 and B1U B2 U B3 are 
non-empty, define a metric m : E --* Z+,  a bip(2, 3)-metric, as follows: 

1, if x E Ai, y E Bj, 
m(z ,y)--  2, i f z e A i ,  y e A j  ( i • j )  o r z e B i ,  y e B j  (i~s 

0, i fz ,  y E A i o r z ,  y E B i .  

We shall denote by C(M) the set of cycles (that is, disjoint union of circuits) 
of the matroid M and by C* (M) the set of cocycles. We refer to Welsh [11] for 
the basic concepts and facts of matroid theory. 

In section 2 we give an overview of the multiflow problem in binary matroids 
and its relation to metrics; in section 3 we study the K~- and FT-metrics, showing 
that both are primitive and that the condition (1) restricted to Ks- and Fr- 
metrics is sufficient for the existence of a multiflow in a certain class of matroids. 
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In section 4 we show that M(Ks) and Fr are packing and that under certain 
hypotheses we can get a half packing matroid out of a special 2-sum of packing 
matroids - and that is the best that we can get. 

2 M u l t i f l o w s  

The incidence vector XD ofa  cocycle D of M is called a cut-metric, and A(cc)(M) 
denotes the set of all cut-metrics of the binary matroid M. We say that (M, p) 
satisfies the so-called cut-condition if and only if 

m.p >>_ 0 for all m E A(cc)(M).  (CC) 

Seymour's following result (see [10]) tells us that the metrics in A(CC) are 
sufficient to describe the flowingness with respect to A{0,1} and characterizes 
the related class of matroids. 

T h e o r e m 2 .  For a binary matroid M the following are equivalent: 
(i) M is cycling with respect to A(cc); 
(ii) M is flowing with respect to A{0,1}; 
(iii) M has no F7, Rio or M(Ks) minor. [] 

Fr is the Fano matroid on 7 elements, M(Ks) is the graphic matroid of the 
complete graph on 5 nodes, and R10 is a special matroid on 10 elements used 
to characterize regular matroids [8], that can be represented by the node-edge 
incidence matrix of the complete bipartite graph/s plus a column of 1. 

Schw~irzler and Seb5 [6] have shown that extending the cut condition to a 
larger class of metrics, called CC3-metrics, a statement similar to Seymour's 
holds for a larger class of matroids. We will deduce the following sharper form in 
Sect. 3, where CC3 is replaced by the cut-condition or either of two conditions 
which correspond to the only primitive metrics in CC3. 

T h e o r e m  3. For a binary matroid M the following are equivalent: 
(i) M is cycling with respect to A(CC,F,,Ks); 
(ii) M is flowing with respect to A{0,1,2}; 
(iii} M has no AG(2, 3), Ss, R10, M(H6), M ( K s ) ~ 2  FT, M ( K , ) ~ 2  M(Ks),  
F7 ~2 F7 minor. [] 

Here H6 is the graphic matroid in Figure 1 (a), AG(2, 3) is the representation 
of a projective plane and Ss can be represented as the node-edge incidence 
matrix of the graph in Figure 1 (b), with a column with the circled elements. 
The definition of 2-sum Mx ~ M2 of binary matroids is given in [10]. 

3 T h e  t w o  c o n d i t i o n s  

Let ~SKs(M) (respectively ~SF~(M)) be the class of metrics m E A{0,1,z) such 
that, if we contract the elements e with re(e) = 0, we obtain a M(Ks)  (re- 
spectively FT), probably with some parallel elements, with the weights on each 
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(a) (b) 

Fig. l .  He and $8 

element of a parallel class defined below. For the Ks,  if we denote by { 1, 2, 3, 4, 5} 
the set of vertices, and by ij  the edge between the vertices i and j ,  then we have 

m(ij) = {2,1, otherwise.ifij E {12,23, 13,45}, 

If C is a three-element circuit of C(FT), then we define 

2 

1 3 2 

1 

5 4 

�9 2 

O i 

Fig. 2. Ks- and Fz-metrics 

2, i fe E C, 
re(e) = 1, otherwise. 

L e m m a 4 .  The Ks-  and FT.metrics are primitive. 

Proof. We will show that the FT-metric is an extreme ray o f  the cone ~ z +  
(for K5 the proof works in the same way, and is well known, see for example 
Karzanov [3]). If it is not primitive, then m can be decomposed in a sum of 
primitive metrics, and the equalities m ( C  - e) = re(e), e E C E C(FT), satisfied 
by the FT-metric, must be satisfied by any primitive metric in the decomposition. 
We check that the only solution to the system formed by these equalities is the 
FT-metric, and its positive multiples. 
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To facilitate our task, let xi denote the value of the function x on the element 
i, following Figure 2. Then we have the equalities: 

~I ~ X4 di- ZT "-- XS + X61 
XS -~ XS "4- X T  - "  X4 -I- X6 ~ ~ x 5  - -  x 4 '  X6 -"  XT,  

and in the same way we obtain that x4 -- xz, x5 = xs and so x 4 - -  X 5 - - "  X 6 - "  

zr and xl = xs = xa = 2x4, and this corresponds to the Fr-metric, proving 
that it is the only primitive metric in the decomposition. [] 

Now we prepare the proof of the implication (iii) =~ (i) of the Theorem 3. A 
twofold application of Seymour's 'Splitter Theorem' gives the following [10]. 

P r o p o s i t i o n 5 .  Every binary matroid with no AG(2, 3), Ss, Rio or M(Hs)  mi- 
nor may be obtained by 1- and 2-sums from matroids cycling with respect to 
A(cc) and copies of Fr and M(Ks).  [] 

And we can use it to prove that 

Proposition6. Any 2-sum M1 ~ s  Ms of a matroid M1 cycling with respect 
to z~(CC,Ks,FT) and a matroid M2 cycling with respect to A(Cc) is cycling with 
respect to A(CC,Ks,Fv). 

Proof. Let E(M1) f3 E(M2) = {f} and M = M1 ~ 2  M2. Choose p :  E(M)  ---* 2g 
such that (M,p) is Eulerian and (CC, K~, FT) is satisfied. We define functions 
Pi : E(Mi) --* Z (i e {1, 2}) in the following way: 

[ p(e), if e q E(Mi) - f ,  pi(e) ( -1) i - lq ,  ife = f ,  

where q = min{p(D - f )  : f E D E C*(Ms)}. Let Do be a cocycle of 21/Is with 
p( Do - f )  - q .  

Cla im 1. Pi (i E {1, 2}) is an Eulerian function. 

Proof. Let Di be a cocycle of Mi. If f qL Di, then pi(Di) = p(Di) =- mod 2, 
because Di is also a cocycle of M. If f E Di, then 

p~(D~) = p~(D~ - f) + p~(f) 
= p(Di - f) + p(Do - f) = p(DiADo) mod 2, 

because DiADo is a ~ocycle of M. U 

Claim 2. (Ms, Ps) satisfies (CO). 

Proof. Let D ~ C*(Ms). If f ~ D, then again D is a cocycle of M and ps(D) = 
p(D) > O, because we assumed that (CC, Ks, Fr) and so in particular (CC) 
is satisfied for (M,p). If f E D, then the definition of q implies the following 
inequality: ps(D) "- p2(D - f )  + P2(f) = p(D - f )  - p(Do - f )  > O. 0 
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Cla im 3. (Mt,pt) satisfies (CC, Ks, FT). 

Proof. We have to show that pmt > 0 for every choice of mr 6 A(CC,Ks,Fr)(Mt). 
If mt is a CC-metric, then everything works as in Claim 2. Otherwise we 

associate to m t a  metric m 6 A(CC,Ks,Fr)(M) defined as 

[ mr(e), 
re(e) = ~ mr(f), 

(0 ,  

if e E E(Mt) - f, 
if e 6 Do, 
otherwise. 

It is not difficult to see that if mt is a Ks- or FT-metric on Mr, then m is a Ks- 
or FT-metric on M. And so we have that 

Pl Ir?'ll "- E pt(e)mt(e) 
eEE(M,) 

pt(e)mt(e) +pt(f)m(f) 
e6E(M) 

E p(e)m(e) + p(Do - f)m(f) 
eEE,(M)-Do 

= E p(e)m(e) 
eEE(M) 

>_ O, 

because (M, p) satisfies (CC, Ks, Fr). Thus Claim 3 is proved. 

As M1 (respectively/1//2) was assumed to be cycling with respect to A(CC,Ks,FT) 
(respectively A(cc)), the above claims guarantee the existence of integer flows 
r in (Mi,pi) (i e {1,2}). r consists of a list of cycles of Cp,(.~[i). Suppose 
without loss of generality that precisely the first ki cycles of each list contain 
the element f. It follows from the definition of a flow that ki _< q = k2. After 
deleting the first k2 -kl cycles from the second list 42, the union of the two lists 
contains exactly kl cycles of C(M1) and kl cycles of C(M~) passing through the 
element f .  Build kt pairs (Ct, C2) (Ci E C(Mi)) of the cycles passing through f 
and replace each pair by C1AC2. It is easy to see that the list of cycles obtained 
in this way represents an integer flow of (M, p). [] 

Proof. ( of Theorem 3:) 
(i) :=~ (ii) trivial. 
(ii) =~ (iii) There are several ways of proving this implication. [7] checks it by 
showing multiflow problems that have no solution, but whose multiflow func- 
tions satisfy (1) for A{0,t,2 }. We show that there are primitive metrics for these 
matroids that are not in A{0,1,2}, which is a shorter and easier way of proving 
the implication. 

Let Ss, Rt0 and AG(2, 3) be represented by the matrices in Figure 3. We will 
prove the result for the Ss case, the other ones follow similarly. 



[ 00011 ] 
1 0 0 1 0 0  
0 1 0 0 1 0  
0 0 1 0 0 1  
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[ oo l 1 1 1 1 1 1 0 0  
1 1 1 0 0 0 1 1 1 0  
1 0 0 1 1 0 1 1 0 1  
0 1 0 1 0 1 1 0 1 1  
0 0 1 0 1 1 0 1 1 1  

[ 0010 
0 1 1 1 0 1  
1 1 1 0 0 0  
1 1 1 1 1 1  

Fig.  3. Matrix representation of Ss, Rio and AG(2, 3). 

Now let m := (2, 1, 1, 1, 1, 1, 1, 3). For this metr ic  m we have the following 
equali t ies arising f rom the inequal i ty  re(e) < ( C -  e), where C is a circuit in Ss: 

ml  -- m2 -I- ms ml  -- m3 -4- ms rnl -- rn4 q- rnz 
ms = m2 + m3 + m r  ms = ms + m4 + ms ms  = ms + rna + m s  
ms = ms + m6 + mr .  

These  equat ions  are affinely independent  and all solut ions for this sys tem are 
vectors of  the form (2a, a, a, a, a, a, a, 3a), a > 0, which is exact ly  the ex t reme 
ray of  the cone of  metr ics  A2z+ (Ss) defined b y  m. There fore  m is primit ive,  but  
is is not  a (0, 1, 2)-vector,  so, by Fact  1, Ss is not  flowing wi th  respect to A{0,1,2}. 

In the  same way we can show tha t  m = (3, 3, 1, 1, 3, 1, 1, 1, 1, 1) and m = 
(1, 1, 1,4,  1, 1, 1, 1) define ex t reme rays of  the cone of  metr ics  ATz+(R10) and 
A2z+(AG(2, 3)), respectively, proving tha t  they are not  flowing with respect to 
A{0,1,2}. 

A primitive metric for/-/6 is represented in Figure 4, and one can check that 
it is primitive in the same way as in the cases above. 

Fig.  4. H6 

Now let M(Ks)t~ 2 M(Ks) be as in Figure 5, the  marker  is indicated in 
dashed line, and let m : E(M(Ks) ~2  M(Ks)) -.-* Z be as follows 

4, if z E {j,l,o,r}, 
r e ( z ) : =  2, i f z s { a , c , i , k , m , n , p , q } ,  

1, otherwise.  
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r lg .  5. M(Ks) ~ 2  M(Ks) 

The following are tight inequalities for m 

r = p + q  r = m + k  j = n + q  j = k + f + d  
j = k + g + h  l = p + n  l = m + f + d  l = m + g + h  
o = k + q  o = p + m  o = n + f + d  o = g + h + n  
a= f +e a = h + b  i = b + g  i = d + e  
c = e + b  c = f + h  c = d + g  

and it is not difficult to find that the solutions for the system are 

46, if x 6 {j,l,o,r}, 
s(x) := 26, i f z  6 {a,c,i,k,m,n,p,q}, 

16, otherwise, 

where 6 >__ 0. 
Let Fz~)2 M(Ks) and FT~)2 F7 he as in Figure 6, the markers are indicated 

by dashed lines, and ml : E(F7 ~)2 M(Ks)) ---, 7Z, and m,  : E(F7 { ~  FT) ---, 7Z 
be as follows 

4, i fxE{g,h , i ,m},  
r n l ( x ) : =  2, i f z E { e , f , j , k , l , n , o } ,  

1, otherwise. 

4, if x E {a,b,e}, 
ra2(z):= 2, ifz e {c,d,f,l,m}, 

1, otherwise. 

We can check in the same way as above that both metrics ml and m2 are 
primitive, and as they are not (0, 1, 2)-vectors, and together with the Fact I they 
show that the matroids are not flowing with respect to A{0,1,2}. 
(iii) ::V (i) Now we know that K5 and Fz are flowing with respect to ~5{CC,Ks,F~) 
(see [4] and [7]). Using these results with Proposition 6 we get easily the desired 
implication. [] 
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\ ,  
-- .  

m - .....y' ~ .....J 

F i g .  6. Fr ~}z M(Ks)  and Fr ~ 2  Fr 

4 P a c k i n g  m a t r o i d s  

We prove now two s ta tements  showing that  Ks and F7 are packing with respect 
t o  A{CC,Ks,FT}. The first is in fact a consequence of a theorem of Karzanov ([4]), 
but  for the sake of completeness and because of the analogy of our proof  for Ks 
and F7 we include a simple proof. We say that  we can subtract a metric m2 from 
ml  if m l  - m2 is a metric. If  both  ml  and m2 are biparti te,  then obviously 
ml  - m2 is also biparti te.  

L e m m a  7. In the matroid M ( K s )  every bipartite metr ic  can be expressed as a 
positive integer sum o f  metrics in A (CC,Ks ) (M(Ks ) ) ,  

Proof. Let m be a bipart i te  metric on M ( K s ) .  We want to write it as an integer 
sum of cuts and Ks-metrics.  By Theorem 3 and Fact 1 we know that  m can be 
expressed as m = ~xXcl + . . .  + v n X c .  + l x m l  + . . .  + l k m k ,  where Ci is a cut, 
mi is a Ks-metr ic ,  and ~'i, Ai > 0. 

C l a i m  1. Let D be a cut on Ks :  I f ( m  - X D ) ( C  -- e) -- ( m  - XD)(e)  < O, for  a 
circuit C and e E C,  then there exists a triangle T (a circuit o f  cardinalitv 3), 
and an e lement  f E T ,  such that (m  - XD ) ( T  -- f )  -- ( m  -- XD ) ( f )  < O. 

Proof. Let i = m - XD. If ICI = 4, then there exists a triangle T such that  
[ T N C [  = 2, T \  C = { f } ,  e E T f 3 C .  Let T '  = C A T .  Then 0 > l ( C - e ) - l ( e )  = 
l ( T  - e) - l(e) + l (T '  - f )  - l ( f )  and so we have tha t  either l ( T  - e) - l(e) < 0 
or l (T '  - f )  - l ( f )  < O. 

I f  [C[ = 5, then there exists a triangle T, I r n C I  -- 2, T\C = {f},  e E T f 3 C  
and a circuit C '  = C A T ,  IC'[ = 4, such that  0 > l (C  - e) - l(e) = l ( T  - e) - 
l(e) + l (C '  - f )  - l(f.). Now either we get directly the conclusion, or we use the 
previous case. [3 

C l a i m  2. I f  Ci is a cocircuit, then Xc~ can be subtracted f rom m.  

Proof. I f  Xc~ cannot be subtracted from m, then by Claim 1, there is a triangle 
T and e E T,  such tha t  

( m  - X c , ( T  - e) - ( m  - Xc , ) ( e )  < O. ( . )  
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As m ( T  - e) - re(e) = 0 implies that  X c , ( T -  e) - Xc,(e) = 0, we may suppose 
that  m ( T -  e) - re(e) > 2. As X c , ( T -  e) - Xc,(e) < 2, we cannot have (.) .  [3 

C l a i m  3. I f  mi  and rnj are different Ks -me t r i c s ,  t h e n  mi  + m j  can be wr i t t en  
as a sum o f  cut -metr ics .  

Proof. The Figure 7 shows the sum of two Ks-metrics, which has the following 
cut decomposition (we use the numeration of Figure 2): {15, 25, 35, 14,24, 34} 
+{15, 25, 45, 13,23, 34}+ {12, 13, 15, 24, 34, 45}+{12,14, 15, 23, 34, 35}. The other 
cases are similar. [3 

2 2 

Fig. 7. Sums of two h�89 and two Fr-metrics 

The three Claims above imply that we can obtain from a fractional decom- 
position for m an integer decomposition for m consisting on cut-metrics and 
Ks-metrics. Q 

L e m m a  8. In the Fr  matroid  every bipartite metr ic  may be expressed as a pos -  
itive integer sum o f  metr ics  in A(CC,FT). 

Proof. Let m be a bipartite metric on Ft.  We proof as above: 

C l a i m  1. I f  Ci is a cocircnit, then Xc,  can be subtracted f rom m.  

Proof. Xc .  may be subtracted from m if and only if 

m ( C  - e) - re(e) > X c i ( C  - e) - Xc , (e ) ,  for all e e C 6 C(Fr). 

m ( C  - e) - re(e) = 0 implies that  X c , ( C  - e) - Xc , (e )  = 0. If m ( C  - e) - 
m(e )  > 2, then ICi N CI = 0 mod 2, because Fr is a binary matroid. So we have 
only to consider when [Ci N C I = 4. In this case C = Ci and e E Ci N C,  so 
X c , ( C  - e) - Xc~(e) < 2, and we have the desired inequality, t3 

C l a i m  2. I f  mi  and m j  are different Fr-metr ics ,  then mi  + m j  can be wr i t t en  
as a sum of  cut metr ics .  
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Proof. In Figure 7 we show the sum of two FT-metrics, and its decomposition 
in metric-cuts is: {1,2,4,5} + {1,3,5,7} + {1,2,6,7} + {1,3,4,6} + {2,3,4,7} 
(with the same numeration of Figure 2). All the others are symmetric. [] 

Now putting together Claims 1 and 2 we obtain that m is an integer sum of 
cut-metrics and perhaps one FT-metric, with an integer coefficient too - because 
as we can always subtract the cut-metrics from m, repeating this procedure we 
will end up with a Fr-metric and necessarily with an integer coefficient. [] 

We will introduce now a concept that will help us prove some new characteri- 
zations of flowing and packing matroids. We say that M has the sums of circuits 
property (see [9]) if the following are equivalent for all p : E(M) ---* Z+: 
(i) There is a function a : C(M) ~ 1R+ such that ~ a(C)xc = p. 
(ii) For every cocircuit D and f e D, p(f) < p(D - {f}). 

In [10] Seymour characterized matroids that have the sums of circuits prop- 
erty - they are the duals of those flowing with respect to A(cc), and conjectured 
the following result, proved by Alspach, Goddyn and Zhang ([1]). 

T h e o r e m 9 .  l f  M is a binary matroid and has no Fr Rio, M'(Ks)  or M(Plo) 
minor, and p satisfies (iQ and is Eulerian, then there is an integral ~ satisfying 
(i). [] 

M(Plo) is the graphic matroid of the Petersen graph. Dualizing this result, 
we get a class of packing matroids: 

Coro l l a ry  10. I f M  is a binary matroid and has no Fr, Rio, M(Ks) or M*(Plo) 
minor, then M is packing with respect to A(cc). U 

Notice that this is the class of matroids cycling with respect to A(cc),  except 
for those containing M(Plo) as minor. We know, by Lemmas 7 and 8, that the 
M(Ks) and Fr matroids are packing with respect to A(CC,Ks,FT). We would like 
to join these classes of matroids and obtain something "bigger". The 2-sum of 
matroids could help us in this direction, but the packing property is not preserved 
by the 2-sum. We show in Figure 8 an example of a bipartite metric on a 2-sum 
of matroids that are each packing, but its decomposition in primitive metrics is 
half-integer. 

Notice that in the Proposition 6 we do not "2-sum" two matroids M(Ks) 
or FT, or a M(Ks) with an FT, so we might suppose that the matroid M = 
M11~2 M2 is in fact a "big" 2-sum of several matroids packing with respect to 
A(cc) and one M(Ks) or (exclusive) one FT. This fact will be used in the follow- 
ing proposition, which is not a recursive result, but shows a way of decomposing 
a metric in such a "big" 2-sum. 

L e m m a 1 1 .  A matroid M resulting from ~.sums of one copy of M(Ks) Or 
Fr, and matroids packing with respect to A(OC) is half packing with respect to 
ZI(cc,K~,Fr). 
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2 2 2 

I I I I 

= ! / 2  I / 2  

Fig. 8. A half integer metric-packing 

Proof. We will find a half integral metric packing in M from integral metric 
packings of each piece of the 2-sums. 

Let M = R11~)2 t / 2 1 ~ . . .  1~2 Rn where R1 is either a M ( K s )  or a Fr, and 
each R./, 2 < i < n, is a matroid packing with respect to A ( c c )  that  is being 
"2-summed" with R1. Let fi = E(R1) N E(R/),  2 < i < n. 

Choose m : E ( M )  --* Z+ such that  m is a bipartite metric. Let m~ : E(R1) 
Z+ be such that:  

rn(e), i f e E E ( R 1 ) - { f j ,  2 < j < n } ,  
m~(e) := qi, i fe  = f j ,  

where qi := min{m(C - fi)  : C E C(Ri)}, 2 < i < n. Now we define functions 
rni : E (R i )  ---, Z+,  1 < i < n, in the following way: ml(e)  := min{m~(X) : X = 
{e} or X = C - e for some C E C(R1) with e E C} and 

re(e), if e E E(Ri)  - fi, 
mi(e) := [ ml(f i ) ,  otherwise. 

Let C ~ be the circuit ofC(Ri)UC(R1 ~ 2 " "  . e 2  Ri_l  ~ 2  Ri+l ~ . . - ~ 2  Rn) 
with f i e  C O and m(C ~ - f i)  = mi(f i) ,  2 < i < n. 

C l a i m  1. rni, 2 < i < n, is a bipartite metric. 

Proof. Let Ci be a cycle of Ri. If fi ~ Ci, then mi(Ci - e) <_ mi(e), Ve E Ci, 
and mi(Ci) = m(Ci) = 0 rood 2, because Ci is also a cycle of M. 

If fi 6 Ci, then mi(Ci - f i)  - mi( f i )  - m(Ci) - m(C O) > O, and for e r f i ,  
mi(Ci - e) - mi (e) = m(Ci - e) + m(C~ ) - m(e) > O, because of the definition of 
C/~ and mi(Ci)  = m i ( C i -  f i )+mi ( f i )  = m ( C i -  f i ) + m ( C ~  f i )  =- m( C i / k C  ~ - 
0 mod 2, because C i A C  ~ is a cycle of M. 0 

C l a i m  2. mx is a bipartite metric. 

Proof. By the definition of ml as an induced metric, we have only to verify that 
ml is bipartite. Let C be a cycle of RI and L := {j : 3fj E C}, then 
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rot(C) = m,(C\{fj : j 6 L}) + ~ m1(fj) 
jEL 

= ~(c \ 11~ :.~ e L}) + ~m(C~ - f~) 
jEs 

=_ ~(Ca~LC 2) 
= 0 rood 2, 

because CZXjeL(C ~ is a cycle of M. O 

As R1 (respectively R/, 2 < i < n) was assumed to be packing with respect to 
A(cc,x~,Fr) (respectively to A(CC)), the above Claims guarantee the existence 
of cocircuits CI, .,Cr/, 6 C*(Ri) such that r, �9 "" )"~j=l Xc~ = mi and cocircuits 

C~, . . . ,C~  1 6 C*(R1), and Ks- or Fr-metrics 11, . . . , I t  such that ~'~j=lr* Xcj  + 
t 

~ = 1  l~ = ml .  
Now we make the packing of cocircuits, Ks- and Fr-metrics for M and f .  

We can already put in the list the cocircuits C} (j  = 1 , . . . ,  n ) .  
We will consider two cases: 

Case I :  li(Yj) - 1, i e {1, . . . , t} ,  j �9 {2 , . . . , n}  
To each Ks- or Fr-metric li such that l i( f j)  = 1, we associate a cocircuit 

c~, k e {1 , . . . ,  r~}, where i~ ~ C~ and we join l, to C~ to create a Ks- or 
Fr-metric l~ in the matroid M. It is not difficult to see how to "glue" li and C~: 
the elements in C~ will replace fj ,  creating perhaps some parallel elements in 
the new Ks- or Fr-metric. We will replace ii by 1~, if there is some j '  such that 
li(fj ,) - 2; otherwise l~ goes to the list of the packing�9 

Case I I :  l i(f j)  = 2, i 6 { l , . . . , t } ,  j 6 {2 , . . . , n}  
In this case, if we have, for every circuit K 6 C(Rj) with f j  6 K,  

m ~ ( K  - f~ - e) - - ~ ( e )  _ 0, for all e e K,  

then we can simply contract fj in both matroids R1 and Rj and find a packing of 
cocircuits for li in R j / { f j  } in RI and a new packing of cocircuits in R j / { f j  ) for 
mj, and add this last packing to the list. If the corresponding Ks- or Fr-metric 
has already been transformed into cocircuits, we have only to find a packing in 
Ri / {.:i ). 

For these metrics li that have been transformed, and for all fj such that 
li(fj) = 2, but fj has not been contracted, there is a natural association between 
cocircuits in the decomposition of li and cocircuits in the decomposition of mj 
which contain fj; the symmetric difference of such pairs of cocircuits is a cocycle 
in M, and we put them all in the list. 

Now we have only metrics li not yet decomposed for which there exists a fj 
with l i( f j)  = 2 and one can not contract fj  as above. 

To each li and each Rj for which we have l i( f j)  = 2, as m l ( f j )  = mj(f~),  we 
know that we can associate two cocircuits C~, Cg 6 C(Rj), such that fj 6 C~ NC~. 
We now build two lists Lk, k = 1,2 of all these C],  for a l l j  with l i( f j)  = 2. We 
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will transform the metric li and the lists L1, L2 into two single Ks- or FT-metrics 
in the following way (k = 1, 2): 

li(e), if e # f j ,  Vj e {2 , . . . n} ,  
l~ (e ) :=  2, i f e 6 C e L k ,  e # / ~ ,  

0, otherwise. 

It is not difficult to see that 11, li ~ are Ks- or FT-metrics in M,  and that  

1 1 1~ 
+ = l, + x~ + xc-,,. 

CEL* CEL~ 

And this completes the packing. 
At the end we add to the list the metrics corresponding to the remaining 

cocircuits that do not contain the marker. [] 

Remark: In the second case of the proof, if l~ = l~, then the sum �89 + �89 is 
integer, and so, the result of the decomposition may be integer. 

As a conclusion we get that 

T h e o r e m  12. If  a binary matroid M has no M*(Plo) minor, then M is cycling 
with respect to .4(CC,F~,K~)if and only if  M is half-packing with respect to this 
set of metrics. 

Proof. If M is cycling with respect to .4(CC,Fr,Ks), then, by Theorem 3 and 
Proposition 5, M may be obtained by 1- and 2-sums from matroids cycling with 
respect to z~(cc) and one copy of Fr or (exclusive) one copy of M(Ks).  From 
Corollary 10 and the hypothesis that  M has no M*(Plo) minor, we conclude 
that M may be obtained by 1- and 2-sums from matroids packing with respect 
to A(CC) and one copy of Fr or (exclusive) one copy of M(Ks).  

Now, using Lemma 11 one sees that  M is half-packing with respect t o  
.4( C C,Fr ,Kn ) . 

In the other direction, from the proof of Theorem 3 one can conclude that 
the matroids AG(2, 3), Ss, R10, M(H6), M(Ks) ~2 FT, M(Ks) (9~ M(Ks) and 
FT (~)2 F7 are not half-packing with respect to .4(CC,Fr,Ks), since there is a prim- 
itive metric for each of them that is not in '4{0,1,2 }. I"I 

As M* (/'10) is not graphic, for graphic matroids we get the following sharper 
result: 

T h e o r e m  13. For a graph G the following are equivalent: 
(i) G is cycling with respect to A(CC,Ks); 
(ii) G is flowing with respect to .4{0,1,2}; 
(iii} G has no H6, K5 {~2 1s as minor; 
(iv) G is half.packing with respect to A(CC,Ks). [] 
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We will see that  the example given in Fig. 8 is essentially the only one, where 
we 2-sum a M(K6) or a FT with a matroid consisting on two circuits C1, C2 such 
that  CI f3 C2 = {f}, where f is the marker of the 2-sum, and ICI[ _> 3. We call 
this configuration a Ks and a ~'T, respectively. 

For the characterization we will need first the following lemma. 

L e m m a 1 4 .  The matroid M, resulting from the 2-sum of a matroid M1 that 
is packing with respect to A(CC,Ks,Fr) with a matroid M2, that is a circuit, is 
metric packing with respect to A(CC,Ks,Fr). 

Proof. If M1 does not contain M(Ks)  or F7 as a minor, the result is trivial. So 
let M1 contain one of M(Ks)  and F7 as minor. Given a bipartite metric m on the 
matroid M,  we will find an integral decomposition for m as a sum of cocircuits, 
FT- or Ks-metrics. Let M1 f3 M2 = {f}. 

As in the proof of Lemma 11, we define two metrics rnl : E (MI)  ~ 7.+ and 
rn2 : E(M2) ~ Z+ such that  

re(e), i f e 6 E ( M i ) - f ,  
m i ( e ) =  q, i f e = f ,  

where q - -  m i n { m ( C -  f )  :C  6 C(M1) U C(M2)}. 
With a similar reasoning to the proof of Lemma 11 it can be seen that  rai, 

i = 1, 2, is a bipartite metric, and so there are cocircuits C 1 , . . . ,  Cr 6 C*(M2) 
such that  ~"~'=1 Xcj = m2, and we assume that  the first k~ cocircuits contain f ;  
and there are cocircuits D 1 , . . . ,  D, E C'(M1), and/s  or Fr-metrics 11,... ,It 
such that ~"~'=1 Xoj t + ~-'~j=l lj = ml .  We suppose that  the first kl cocircuits 
contain f ,  and that  the first ks Fr- or Ks-metrics li are such that  l i(f)  = 1. 
Notice that  k2 = kl + ks + 2(t - ks). 

To each lj, 1 < j < ks, and to each Di, 1 < i < kl, we associate a cocircuit 
CA E C*(M2), in each of them we replace f by Ck, and the result is clearly a 
cocircuit, a Ks- or an Fr-metric. 

Now we associate to each li, k 3 + l  < i < t, two cocircuits Cj,  CA, and replace 
all of them by B1 and B2 defined as follows. Let B1 = CjACk,  B1 is a cocircuit 
in/142, and so in M. Let B2 = E(M2) - (C/AC~); if ]B2I = 0 mod 2, then since 
M2 is a circuit, B2 is a cocycle in M2, and we replace in li the element f with 
B2 - f .  If [B2[ -- 1 mod 2, then we decompose li with li(f) = 0 into cocircuits, 
and put them in the list, with a coefficient 2. We add B2 - f to the list, with 
a coefficient 2, if B2 - f r $, since in this case B~ - f is a cocycle in M2 and 
so in M. Proceeding this way we get an integer packing of cocircuits and Fr- or 
Ks-metrics for m. [] 

Combining Corollary 10 and Lemma 14 one gets the following: 

A binary matroid M flowing with respect to A{04,2 t is packing with with respect 
tO A(CC,Fr,Ks) if and only if  M has no M*(Plo), Ks, ['r, Ri0 minor. [] 

Just before submitting this article, the authors have realized that  in fact a 
characterization of packing matroids follows. (A matroid is packing if it is integer 
packing with respect to its primitive metrics,) 
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For a binary matroid M the following statements are equivalent (provided Rzo 
is packing): 
( i )M is packing, 
(ii} M is packing with respect to A~CC,Fr,Ks,Rzo) , 
(iii} M has no M*(PlO), f'7, ffs, Rzo minor. 

The matroid/~x0 is defined in the same way as Fr, Ks. The  fact tha t  Rz0 is 
packing is being checked (if not, that  makes only trivial changes to the theorem).  
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