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Abstract. A join in a graph is a set F of edges such that for every circuit
C, |C ∩ F | ≤ |C \ F |. We study the problem of finding a connected
join covering a given subset of vertices of the graph, that is a Steiner
tree which is a join at the same time. This turns out to contain the
question of finding a T -join of minimum cardinality (or weight) which is,
in addition, connected. This last problem is mentioned to be open in a
survey of Frank [7], and is motivated by its link to integral packings of
T -cuts: if a minimum T -join F is connected, then there exists an integral
packing of T -cuts of cardinality |F |.
The problems we deal with are closely related to some known NP-
complete problems: deciding the existence of a connected T -join; finding
the minimum cardinality of a connected T -join; the Steiner tree problem;
subgraph isomorphism. We also explore some of these connections.

1 Introduction

Graphs G = (V, E) are always undirected, V = V (G) denotes the vertex-set of
G and E = E(G) its edge-set. Paths, trees and circuits will be considered as
edge-sets.

A set F ⊆ E(G) is said to be a join if for every circuit C in E(G), |C ∩ F | ≤
|C \ F |. We say that F ⊆ E(G) covers v ∈ V (G), if degF (v) > 0 (degF (v)
denotes the degree of v in F , that is, the number of edges of F incident to v),
and covers S ⊆ V (G) if it covers every v ∈ S. We will denote by V (F ) the set of
vertices covered by F . We will say that F is connected if the graph (V (F ), F ) is
connected, and generally F will also denote the subgraph (V (F ), F ). The main
result is a polynomial algorithm an related theorems for the following problem.
Connected join
INSTANCE. A graph G, a subset S ⊆ V (G).
QUESTION. Is there a connected join covering S?

The connected join problem has interesting connections to well-known objects
of combinatorial optimization, one of them is T -joins, and a ‘dual’ one is integral
packings of T -cuts. For basic facts and context related to T -joins, see Frank [7].
If T is an even cardinality subset of vertices of G, F ⊆ E(G) is called a T -join
if for all v ∈ V , degF (v) is odd exactly when v is in T . A T -join of minimum
cardinality is a join according to a result of Guan [10], [6]. Conversely, a join F is
a minimum cardinality T -join, where T is defined as the set of vertices incident
to an odd number of edges of F . (Indeed, F is not a join if and only if there is
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a circuit C in G such that |C ∩ F | > |C \ F |, that is, if and only if F∆C is a
T -join of smaller cardinality). A T -cut is a set of edges connecting two subsets
of V (G) both intersecting T in an odd number of vertices. A consequence of
the characterization of connected joins is the solution the problem of deciding
the existence of a connected minimum weight T -join. This problem is an (the
unique) open problem stated in Frank’s survey paper [7].

Another interesting related problem is minimizing the cardinality (or weight)
of a Steiner tree. A Steiner tree is a tree covering a given set of vertices; to require
that it is a join looks like a natural substitute for minimizing its cardinality. The
main result of this paper tells that in spite of the NP-completeness of Steiner
tree minimization, the ‘substitute’ is polynomially solvable.

We need to introduce some basic notions about metric spaces, an important
tool in our solution. Let X be any finite set. A function d : X × X −→ R+
is a metric if it is symmetric (d(x, y) = d(y, x) for all x, y ∈ X), d(x, y) = 0
implies x = y for all x, y ∈ X, and it satisfies the triangle inequality : d(x, y) ≤
d(x, z) + d(z, y) for all x, y, z ∈ X. (X, d) is a metric space. The restriction of d
to S ⊆ X, denoted by d|S , is the metric on S × S such that d|S(x, y) = d(x, y)
for all x, y in S. The restriction of a function f to a subset S of its domain will
also be denoted by f |S .

If X is the set of vertices of a connected graph G, let dG(x, y) be the minimum
number of edges in a path between x and y, x, y ∈ V (G). It is easy to see
that (V (G), dG) is a metric space. With an abuse of notation, this metric space
(V (G), dG) will simply be denoted G.

An isometry from a metric space (X, dX) into another (Y, dY ) is a mapping
f : X → Y , such that for all u, v ∈ X, dX(u, v) = dY (f(u), f(v)). Given a metric
space (X, d), we say that a graph H realizes d if there is an isometry from (X, d)
into H. (An alternative terminology in the literature: (X, d) is ‘embeddable’ in
H). Note that f is an injection and therefore |X| = |f(X)| ≤ |V (H)| and the
strict inequality may hold. If there is an isometry between two graphs G and
H with |V (G)| = |V (H)|, then this isometry is in fact a bijection and the two
graphs are isomorphic.

A metric d is said to be a tree metric if there exists a tree realizing it. (This
definition slightly differs from the one used in the literature: all the weights in
the realization must be equal to 1. This corresponds to ‘tree realizable’ metrics
in terms of [2]. For instance the metric m which is 1 on every pair of a three
element set is not a tree metric, but 2m is a tree metric in our sense.) For tree
metrics, d(x, y) + d(x, z) − d(y, z) is even for all x, y, z in X : this is twice the
length of the path joining x to the y, z-path in any tree that realizes d. We note
this length dx

y,z = 1
2 (d(x, y) + d(x, z) − d(y, z)).

Metric spaces and embeddability are treated in details in Deza and Laurent’s
book [5].

The following observation, is not yet a good characterizaton, just an equiva-
lent reformulation of the connected join problem. However, it provides a key to
the solution.
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Proposition 1. Let G be a graph, S ⊆ V (G), and F a subset of edges of G
covering S. Then F is a connected join if and only if it is a tree, and dF =
dG|V (F ).

Proof. The necessity is straightforward: a connected join F covering S is indeed
a tree, so we only have to show that the path between any two covered vertices
is a minimum path in G. Indeed, if not, then let a, b ∈ V (F ), and let P1 be
an a, b-path in F , and P2 a strictly smaller a, b-path in G. Then C = P1∆P2
is the disjoint union of circuits, and |C ∩ F | = |C ∩ P1| > |C ∩ P2| = |C \ F |,
contradicting that F is a join.

To prove the sufficiency, let F be a tree in G such that dG|V (F ) = dF .
We have to prove that F is a join, that is, F is a minimum T -join, where
T = {v ∈ V (G),degF (v) is odd}. Let J be a minimum T -join in G, with |F ∩ J |
maximum.
Claim: J ⊆ F .

Indeed, suppose not: then there exists vertices a, b ∈ V (F ) so that both F
and J contain an a, b-path, P and R respectively, so that the only two common
vertices of these paths are a and b. (If V (J) ⊆ V (F ), then any R = {ab},
ab ∈ J \ F will do, otherwise consider a vertex c ∈ V (J) \ V (F ). Since c /∈ T , its
degree is even, and one can walk in both directions on even vertices of J until
reaching vertices a, b of F . In this way R is determined, and P can be defined
as the a, b-path of F .)

Now C = P ∪ R is a circuit. By the assumption dF = dG|V (F ), we have
|C ∩ F | = |R| ≤ |P | = |C \ F |. It follows that J∆C is also a minimum T -join
and has bigger intersection with F than J , contradicting the definition of F , and
finishing the proof of the claim.

So J ⊆ F . As F and J are both T -joins, F∆J = F \J is the union of disjoint
circuits, which is necessarly empty since F is a tree. This implies J = F . ut

We will treat the condition of Proposition 1 in two parts. In order to test
whether there exists a join in G covering S ⊆ V (G), we will first test the weaker
condition :
(1) The restriction dG|S of dG to S is a tree metric.

In other words, there exists a tree A, and an isometry fS from (S, dG|S) into
A. In order to check the condition of Proposition 1, choose A to be inclusionwise
minimal, that is, all paths in A are subpaths of paths between vertices of fS(S).
It is easy to see that (1) is not sufficient for the existence of a connected join: C6
with every second vertex in S satisfies (1), and K1,3 is the realization but there
is no connected join covering S in C6. This shows that the following condition
(2) is essential. It is easy to see that (1) and (2) together are already equivalent
to the condition of Proposition 1 (see the proof of Theorem 1).
(2) There is a subgraph F of G and an isometry f from A into F , with f(fS(x)) =
x for all x in S.

It is easy and well-known to decide the condition (1) in polynomial time
(and, more generally to decide if any metric is a tree metric, see section 2). In
section 3, it is shown that (2) can also be tested in polynomial time: we construct
the subgraph F whose existence is stated in (2), or certify its nonexistence,
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supposing that a tree satisfying (1) is already known. Since the tree realizing dG|S
in (1) turns out to be unique, applying the proposition to S := T , the solution of
Frank’s connected T -join problem follows (section 4). Then, in section 5, we show
a way of constructing Korach’s maximum integral packing of T -cuts whenever a
connected minimum T -join exists. Finally, in section 6 the relation of the results
to some well-known problems of combinatorial optimization is shown.

2 Constructing the Shape of a Join

In this section we provide a polynomial algorithm that either finds a tree realizing
a metric d given on a finite set X, or certifies that such a tree does not exist.
This problem has many applications in various fields, such as phylogeny [16],
data mining, or psychology [4], and has been solved long ago [1], [2], [11] in a
sharper sense; since we make only a very simple use of tree metrics, and for the
sake of completeness, we include the simple treatment we worked out for our
restricted goals.

Start with a copy {f(x), x ∈ X} of the set X, and construct a path of length
d(a, b) between f(a) and f(b) by adding new vertices and edges. This path is a
tree realizing d|{a,b}, and f |{a,b} is an isometry.

Suppose now that we have a tree A realizing the restriction of d to some
proper subset Y of X, and f |Y is the corresponding isometry. Let c ∈ X \ Y .
Choose a, b ∈ Y so that dc

a,b is minimum, and let d be the vertex of V (A) at
distance da

b,c from f(a) on the f(a), f(b)-path. Construct a path P from f(c) to
d, of length dc

a,b.
Then either A ∪ P realizes d|Y ∪{c}, and then f |Y ∪{c} is an isometry or there

is no tree realizing d|Y ∪{c}.
Note that an inclusionwise minimal tree realizing d, whenever it exists, is

uniquely determined by this procedure. The unicity up to isomorphism is actually
straightforward to prove from scratch: vertices of degree 1 of the tree can be
characterized with the help of distances, and after deleting them we can continue
by induction. A variant of this statement will be important in the sequal:

Proposition 2. Let G be a graph and S ⊆ V (G). An inclusionwise minimal
connected join covering S is a subtree of G that realizes dG|S and is uniquely
determined up to isomorphisms leaving S fixed.

The proof is easy, along any of the lines explained above (by the unicity of
the construction, or from scratch), we leave it to the reader.

Note that tree metrics have been characterized with a certain ‘four-point-
condition’, that ensures the existence of a realizing weighted tree (Buneman
[2]):

for all a, b, c, d ∈ X, d(a, b) + d(c, d) ≤ max

{
d(a, c) + d(b, d)
d(a, d) + d(b, c)

However, the realizing tree may have noninteger weights. As mentioned be-
fore, we also need the following condition : for all a, b, c in X, d(a, b) + d(a, c) −
d(b, c) is an even integer. Together with the four-point-condition, this is sufficient
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for a metric to be a tree metric, as it can be shown with the simple proof above
(this is irrelevant for the main results of this paper).

3 Finding a Connected Join

The previous section allows us to decide whether the condition (1) holds or not.
In this section we show how to test condition (2) in polynomial time, that is, we
construct a subgraph of G covering S, isomorphic to A.

Suppose that condition (1) holds, and let A be the inclusionwise minimal tree
that realizes the restriction of dG to S. Let fS be the isometry from (S, dG|S)
into A.

Let us recursively construct a set P i
u for every u ∈ V (A) and i = 0, . . . , n,

where n = |V (G)|. (P i
u is the set of vertices of G that are not excluded to be in

the image of u after step i).
For u ∈ fS(S), define P i

u := {f−1
S (u)} for all i = 0, . . . , n. Let now u ∈ V (A)

be arbitrary:
- P 0

u := {v ∈ V (G) : dG(v, s) = dA(u, fS(s)) for all s ∈ S}, and
- for some i ∈ 0 . . . n − 1, if P i

u has already been defined for all u ∈ V (A),
then we check for all v ∈ P i

u, and all x ∈ V (A) such that ux ∈ A, whether there
is an edge from v to some vertex of P i

x. If not, we define P i+1
u := P i

u \ {v}, and
P i+1

u′ := P i
u′ for all u′ 6= u.

Clearly, the sets P i
u (u ∈ V (A)) are pairwise disjoint, and after k ≤ n steps,

either some P k
u is empty, or for all u ∈ V (A) all the vertices of P k

u are adjacent
to some vertex of P k

x for every x ∈ V (A) such that ux ∈ A. We then define
Pu := P k

u the representing set of u ∈ V (A) in G. If one of the representing
sets is empty, then all are empty, and there is no connected join. If none of the
representing sets is empty, then a connected join can be constructed ‘greedily’,
as it is shown in the proof of the following good characterisation theorem for
connected joins covering S:

Theorem 1. Let G be a graph, and S ⊆ V (G). There exists a connected join F
covering S if and only if the distances in G between pairs of vertices of S form
a tree metric, and the representing sets of the vertices of the realizing tree are
nonempty.

Proof. The necessity is obvious. Conversely, let A be the tree realizing the re-
striction of dG to S, Pu the representing set of u ∈ A, and let us construct a tree
F which is a subgraph of G covering S isomorphic to A, so that dG|V (F ) = dF .
Then by Proposition 1 it follows that F is a connected join.

Suppose that the representing sets are nonempty. We construct the isomor-
phism f from A into an appropriate subgraph of G by choosing one f(u) ∈ Pu

for all u ∈ V (A) as follows:
Start with an arbitrary u ∈ V (A), and let f(u) ∈ Pu be arbitrary.
- Choose one vertex f(v) from every Pv such that uv is an edge of A; add to

F the edges f(u)f(v) for all uv ∈ E(A). (The property of the representing sets
guarantees that these edges exist in G for every uv ∈ E(A).)
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Then we can repeat the same procedure for any vertex u ∈ V (A) such that
f(u) ∈ Pu has already been defined, but 0 < degF (vu) < degA(u):

- Choose a vertex f(v) ∈ Pv for all v ∈ V (A) such that uv ∈ E(A), and f(v)
has not yet been defined; add to F all edges f(u)f(v), uv ∈ E(A).

Since A is connected, after at most |V (A)| steps, one vertex vu in every
representing set Pu is chosen, and degF (f(u)) = degA(u). (The procedure is
similar to usual ‘in width label and scan’ procedures.)

The result is a tree F , and clearly, f is an isomorphism between A and F .
Then for all x, y ∈ S,

dG(x, y) = dA(fS(x), fS(y)) = dF (f(fS(x)), f(fS(y))) = dF (x, y).

Every path in F is a subpath of a path between vertices in S, that is, a sub-
path of a minimum path in G, hence is a minimum path in G. As a consequence,
dG(x, y) = dF (x, y) for all x, y ∈ V (F ), as claimed. ut

4 Finding a Connected Minimum T -Join

The following problem was mentioned to be open by Frank [7] :
Connected Minimum T -join
INSTANCE. A graph G, a subset T ⊆ V (G) of even cardinality.
QUESTION. Is there a T -join of minimum cardinality, which in addition is
connected?

As an immediate corollary of Theorem 1, this problem can be solved in
polynomial time:

Corollary 1. A graph G = (V, E), with a subset T of vertices has no connected
minimum T -join if and only if it has no connected join covering T , or it has an
inclusionwise minimal connected join F which is not a T -join.

Proof. The necessity of the condition is obvious. To prove the sufficiency, suppose
that F is an inclusionwise minimal connected join, which is not a T -join. We
have to prove that there is no connected T -join in G at all !

Indeed, by Proposition 1 dF = dG|V (F ), moreover, since F is inclusionwise
minimal, by Proposition 2, F is uniquely determined up to isomorphisms leaving
T fixed. Therefore, in any connected inclusionwise minimal join F ′ (and note that
connected T -joins are like this), the degrees in the vertices of T are the same as
in F , and the number of vertices of odd degree in V (F ′) \ T is also the same as
the number of such vertices in V (F ) \ T . So F ′ is a T -join if and only if F is a
T -join. ut

Note that this corollary can also be proved independently of the theorem:
the connected minimum T -join problem can be reduced to finding a connected
join, and this reduction does not have to rely on the solution of the problem, it
is actually much easier than solving either of the two subproblems.
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5 Connected T -Joins and Integral Packings of T -Cuts

In this section we develop an important motivation for the connected join prob-
lem, which is the problem of finding integral packings of T -cuts.

We call ν(G, T ) the maximum cardinality of a family of pairwise disjoint
T -cuts, and τ(G, T ) the minimum cardinality of a T -join. It is easy to see that
for all G and T , ν(G, T ) ≤ τ(G, T ) (a T -cut and a T -join always have an edge in
commun). The characterization of the equality is the subject of extensive stud-
ies in the literature because of its links to integral multiflows. Middendorf and
Pfeiffer [15] proved that deciding if equality holds is an NP-complete problem.
However, in [12], Korach and Penn proved that for a minimum cardinality T -join
F with k connected components, ν(G, T )−k+1 ≤ ν(G, T ) ≤ |F |, and therefore,
if a minimum T -join is connected, then ν(G, T ) = τ(G, T ).

We will present in this section a simple polynomial algorithm that computes
a packing of disjoint T -cuts of cardinality τ(G, T ), or provides a certificate that
a connected minimum T -join does not exist.

Such algorithms can be derived from any proof of Korach and Penn’s above
mentioned theorem [12], [8], [18]. The one we present here in the spirit of the
present work is short, elementary, and maybe shows a somewhat simpler way
of dealing with vertices of degree 1. The skeleton of the proof is similar to the
proof in [17] of ν(G, T ) = τ(G, T ) for bipartite graphs.

First we need one more definition. For a graph G, and T ⊆ V (G), the T -
contraction of xy ∈ E(G) is the operation of contracting xy in the graph, and
redefining T with T ′ := T \ {x, y}∪{vxy} if exactly one of x and y are in T , and
T ′ := T \ {x, y} otherwise. In this paper we will apply this operation uniquely
to the T -contraction of (all edges of) the star of a vertex, that is to identifying
a vertex with all its neighbors, (and redefining T depending on the number of
vertices of T in the identified set).

Lemma 1 can be viewed as one iteration of a polynomial algorithm finding :
- either a packing of disjoint T -cuts of cardinality τ(G, T )
- or a certificate that a minimum connected join does not exist (when one of

the conditions in lemma 1 is violated).

Lemma 1. Let G be a graph, T a subset of its vertices. Let a and b be elements of
T such that dG(a, b) is the maximum over all distances between pairs of vertices
of T . If there exists a connected minimum T -join, then:

(i) a (and also b) has degree 1 in any connected minimum T -join in G; in
particular a and b are in T .

(ii) there exists at least one neighbor a′ of a, such that dG(a′, x) = dG(a, x) − 1
for all x ∈ T , and at most one of such neighbors is in T .

(iii) δ(a) is a T -cut and, if G′, T ′ are obtained by T -contracting δ(a), then G′

has a connected minimum T ′-join of cardinality τ(G, T ) − 1.

Proof. Let F be a connected minimum T -join, and let P be the a, b-path of F .
By Proposition 1 P is also a shortest path in G, and by definition, the longest
among all shortest paths between vertices of T .
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Proof of (i): If indirectly, F contains an edge incident to a which is not in
P , then starting on that edge from a until reaching a vertex c, degF (c) = 1, the
obtained a, c-path R ⊆ F is vertex-disjoint of P , because F is a tree. But then
P ∪R is also a path, and is also a shortest path of G, by Proposition 1. Because
of degF (c) = 1 we have c ∈ T , and therefore P ∪R is a path between two vertices
of T , and longer than P , a contradiction with the choice of a, b.

Proof of (ii): Let a′ be the neighbor of a on P . Again, by Proposition 1,
dG(a′, b) = dF (a′, b) = dF (a, b) − 1, and if a had another neighbor in G such
that a′′ ∈ T , then a′′ is also a vertex of F , and dG(a, a′′) = dF (a, a′′) = 1, that
is aa′′ ∈ F , contradicting (i).

Proof of (iii): Let us prove that F \ {aa′} is a connected minimum T ′-join
in G′. By (i), it is connected. By Proposition 1 it is sufficient to prove that
any path R ⊆ P between two vertices x, y ∈ V (F ), degF (x) = degF (y) = 1,
is also a shortest path in G′. Since we know that in R is a shortest path in
G, a shorter x, y-path R′ of G′ must contain the new vertex a∗ of G′. But
dG′(x, a∗) ≥ dG(x, a) − 1 = dG(x, a′) by (ii), and therefore

|R| = dG(x, y) ≤ dG(x, a′) + dG(a′, y) ≤ dG′(x, a∗) + dG′(a∗, y) = |R′|,
a contradiction. ut

Clearly, the sets δ(a) found by successive application of the lemma are dis-
joint T -cuts, and each intersects any minimum T -join in one element. Hence, if
there exists a connected T -join, we arrive at a packing of T -cuts of cardinality
τ(G, T ), as desired. Note that this algorithm neither implies nor is implied by
the algorithm developed in the preceding sections for deciding the existence of a
connected minimum T -join; indeed, in case a packing of disjoint T -cuts of car-
dinality τ(G, T ) is found, no connected T -join is exhibited. We do not see how
to decide the existence of a connected T -join in this way.

6 Concluding Remarks

6.1 Complexity

The complexity of the algorithm based on our results finds a connected join cov-
ering a subset S of vertices of a graph on n vertices (or certifies its nonexistence),
in time at most O(n3).

Indeed, in the first step (constructing A from dG|S), at each step of a recur-
rence, we have to compute dc

a,b and da
c,b for all a, b in Y ⊆ S; it takes O(|Y |2)

operations. Then we construct a path (in O(|Y |) time) and check whether the
tree realizes dG|Y , that is we compute d(c, a) for all a ∈ Y . The entire procedure
takes O(

∑
i=1...n i2) = O(n3) time. Note that it is possible to determine if a

metric satisfies the four-point-condition (which is equivalent to our first step) in
time O(n2logn) with the help of ultrametrics as it is proved in [1], that could
improve our computation time.

The second step (embedding A in the graph G) has also a O(n3) time com-
plexity: constructing a P 0

u requires the computation of all the distances between
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u and every x ∈ S, then for all u ∈ V (A), it takes at most O(n2) operations.
Then computing P i

u from P i−1
u may need O(nm) checks for a single u ∈ V (A),

and this operation is achieved at most n times. In conclusion, the entire process
takes at most a time which is a function O(n3).

6.2 Weighted Case

As we mentioned in the introduction, the results of this paper, including poly-
nomial algorithms, work for the weighted case too. As far as the results are
concerned they can be immediately derived by subdivivision of the edges of a
weighted graph G, w (subdivide every edge e ∈ E(G) w(e) times, or contract it
if w(e) = 0, and apply Theorem 1). But this provides only an algorithm that
depends linearly on the weights (instead of being bounded by a polynomial of
the logarithm, or not depending on the numbers at all). Anyway it is possible
to achieve a strongly polynomial algorithm for the weighted case. The problem
can be reformulated as follows (a join is then defined as a set F of edges such
that for all circuit C, w(C ∩ F ) ≤ w(C \ F )):
Weighted Connected Join
INSTANCE. A graph G, an nonnegative integer weight function w : E(G) −→ N,
a subset S of vertices, an integer k.
QUESTION. Is there a connected join F covering S such that w(F ) ≤ k?

In particular, if |S| is even, the question could concern the existence of a
S-join of minimum weight which is connected. We reformulate Theorem 1 (and
Corollary 1) and the principles of the construction in the following way.

Let the distances between pairs of vertices in G be the minimum weights of
paths between the vertices. Then it is possible to restate the two steps of the
algorithm.

First, construct a weighted tree realizing a metric d on a set X.
Start with a, b in X. Construct the images of a and b by an isometry f , and

an edge between f(a) and f(b) with a weight w(ab) = d(a, b).
Then suppose a weighted tree A, w realizes the restriction of d to Y ⊂ X.

Choose c ∈ X \ Y such that da
b,c is minimum among all a, b in Y . Subdivide the

edge e incident to f(a) (it is unique, because of the choice of a), in two edges e1,
e2, of respective weight da

b,c and w(e) − da
b,c. Then join f(c) and the new vertex

incident to both e1 and e2 by an edge of weight dc
a,b. Check that the result is

a tree realizing dY ∪{c} and start again. Remark that in A, there is no vertex of
degree two, and therefore a minimum connected join in G is homeomorphic to
A (if it is incusionwise minimal).

Then, construct the representing sets Pu of every vertex u ∈ V (A) : first,
x ∈ V (G) is in Pu if dG,w(x, s) = dA(x, s) for all t ∈ S. Check for every x ∈ Pu,
and v ∈ V (A) such that uv is an edge of E(A), that there is a path of weight
w(uv) between x and some y ∈ Pv. If not, delete x from Pu, and start again.
Finally Theorem 1 can be reformulated for the weighted case as follows.

Theorem 2. Let G be a graph, w : E(G) −→ N, S ⊆ V (G). There exists a
minimum weight connected join F covering S if and only if the distances in G
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with respect to w form a tree metric, and the representing sets of the vertices of
the realizing tree are nonempty.

6.3 Related Problems

There are several problems which are closely related to the connected join prob-
lem, which have been proved to be NP-complete. We provide some simple NP-
completeness proofs and show their relation to our problem.

Connected T -join. This is a NP-complete variant of the connected minimum
T -join problem : we don’t require the T -join to have minimum cardinality.
Connected T -join
INSTANCE. A graph G, a subset T ⊆ V (G), |T | even.
QUESTION. Is there a connected T -join?

This problem is mentioned by Frank [7], and NP-competeness is said to be
solved by a proof of Pulleyblank, with a reduction of the Hamilonian circuit
problem, for 3-regular graphs, probably similar to the following :

Proof. Let G be a 3-regular graph. Let us construct G′ in the following way :
let f be a bijection between V (G) and a new set U of the same cardinality.
Let V (G′) = V (G) ∪ U , and E(G′) = E(G) ∪ {xf(x), for all x ∈ V (G)}. Let
T = V (G′). There exists a Hamiltonian circuit in G if and only if there exists a
connected T -join in G′. Indeed, let F ∈ E(G′) be a connected T -join, then all
degrees of vertices of V (G) in F are equal to 3 (they are odd, less than 4 because
G is 3-regular, and greater than 2 because F is connected). Then F ∩ E(G) is a
connected subgraph of G such that every vertex has degree 2, in consequence a
Hamiltonian circuit. The ‘only if’ part of the proof follows in the opposite way.

Note that in consequence, it is NP-hard to find a connected T -join, with a
minimum number of edges.

Steiner Tree. Let G be a graph and w : E(G) −→ N a weight function, and T a
subset of V (G). We call a Steiner tree for T a tree in G covering T . The optimal
Steiner tree is a Steiner tree of minimum weight. The following NP-complete
problem has been much studied.
Steiner Tree
INSTANCE. A graph G, and T ⊆ V (G), a weight function w : E(G) −→ N, an
integer k.
QUESTION. Is there a tree F in G covering T , such that w(F ) ≤ k?

For NP-completeness proofs, exact algorithms, polynomial heuristics, see [13],
[20]. The connection to joins is that a connected join turns out to be an optimal
Steiner tree.

Proposition 3. Let G be a graph, T ⊆ E(G) and w : E(G) −→ N. If F is a
w-minimum connected join covering T , then F is an optimal Steiner tree for the
terminal set T .
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Proof. If |T | = 2, then the statement is obvious. Suppose now |T | > 2. Let
A be a Steiner tree covering T , and F a connected join covering T , such that
w(F ) > w(A). Choose A and F so that |T | is minimum.

For any t ∈ T , call At (resp. Ft) the subset of edges of A (resp. F ) not
belonging to any path of A (resp. F ) between two vertices of T \ {t}. For all
t ∈ T , F \ Ft is a minimum weight connected join covering T \ {t}, and A \ At

is a Steiner tree for T \ {t}. Then w(F \ Ft) ≤ w(A \ At), by the minimality of
the example. Consequently, w(Ft) > w(At) for all t ∈ T .

Now it is easy to see that there exists two vertices t1, t2 such that the t1, t2-
path in A is exactly At1 ∪At2 (For example, fix x ∈ V (A), and let t1, t2 maximize
dA(x, t1) + dA(x, t2) − dA(t1, t2)). Then

dA(t1, t2) = w(At1) + w(At2) < w(Ft1) + w(Ft2) ≤ dF (t1, t2)

This contradicts (the trivial part of) Proposition 1. ut

Approximations, λ-joins and tree λ-spanners. The links to the Steiner
tree problem lead us to the study of a relaxation of the connected join problem.
It is possible for example to relax the property of Proposition 1: a λ-tree covering
S (λ ∈ R+) is a tree F ⊆ E(G) covering S, with the property that dF (x, y) ≤
λ × dG(x, y) for all x, y in V (F ).

In fact, a λ-tree F is a Steiner tree, which is a most λ times bigger than the
optimal Steiner tree. (Indeed, if w is the weight function on the edges of G, define
w′(e) := 1/λw(e) for all e ∈ F , and w′(e) = w(e) otherwise. F is a connected
join according to w′, and therefore 1/λw(F ) = w′(F ) ≤ w′(S) ≤ w(S), where S
is an optimal Steiner tree.)

We could not generalize our arguments to λ-trees, and this is not surprising in
the view of the work of Cai and Corneil’s on tree λ-spanners [3]: a tree λ-spanner
in a weighted graph G, is a spanning tree F (that means ‘covering V (G)’) such
that dF (x, y) ≤ λ × dG(x, y) for all x, y ∈ V (G).

Note that a tree λ-spanner is a connected λ-tree covering S = V (G), a special
case of our problem. In consequence, as a corollary of our work, it is polynomially
solved when λ = 1 (it was also solved in [3] in a simpler way); but when λ > 1,
it is NP-complete to determine whether a graph contains a tree λ-spanner, and
that proves NP-completeness of the λ-tree. Note that tree λ-spanners become
tractable for λ ≤ 2 if the graph is unweighted, according to [3].

Isometric Subgraphs. We put the algorithm of Section 3 to the more general
context of subgraph isomorphisms, showing also the limits of our method. It is
well-known, that it is NP-complete to decide whether a graph G given as input
contains a subgraph isomorphic to another given graph H, even if H is a tree [9].
Isomorphisms are exactly the isometries of the distance functions of unweighted
graphs: indeed, xy is an edge of a graph, if and only if the distance of x and y
in the graph is 1. The problem we have been studying in this paper (and mainly
in Section 3) has the specificity, that the distances in the isomorphic subgraph
must be the same as in the whole graph.
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Subgraph Isometry
INSTANCE. Two graphs G, and A.
QUESTION. Is there an isometry from A into G?

In other words, does G contain a subgraph H isomorphic to A so that the
distances in H are the same as in G. We will call H an A-isometric subgraph of
G.

If A is a clique of size k, then an A-isometric subgraph of G is still a clique
of size k: the subgraph isometry problem is in consequence NP-complete. How-
ever, the problem is not the same as subgraph isomorphism: indeed, suppose for
instance that A is a path of length |V (G)|. The problem of deciding whether G
contains a subgraph isomorphic to A is the Hamiltonian path problem, whereas
the A-isometric subgraph problem is trivial in this case: G has such a subgraph
if and only if G is a path of length n.

Another specificity of the problems we had to solve here is that the images
of some vertices of A are fixed in advance, moreover, that the distances from
these prefixed vertices uniquely determine every vertex of the graph. Indeed, the
polynomial running time of the algorithm in Section 3 is based on the pairwise
disjointness of the representing sets.

We say that R ⊆ V (A) determines A if for all x ∈ V (A), there exists u, v ∈ R,
such that dA(u, x) 6= dA(v, x).
Determined Subgraph Isometry
INSTANCE: Two graphs G and A, a set R ⊆ V (A) that determines A and an
isometry f from (R, dA|R) into G.
QUESTION: Is there an extension of f , which is an isometry from A into G?

In other words, is there an isomorphism f̄ between A and a subgraph H of
G so that f̄(r) = f(r) for all r ∈ R, and dH(x, y) = dG(x, y) for all x, y ∈ V (H).

The algorithm in Section 3 can now be copied to provide a polynomial al-
gorithm for this more general problem. The only fact to notice is that since R
determines A, the representing sets are disjoint again.

In other words, the main point of this work expressed in Section 3 is working
because the vertices of degree 1 of a tree determine it (and at least all the vertices
of degree 1 are fixed in advance). In fact all the vertices which degree is at least
2 and some of the vertices of degree 1 can be deleted from the determining set
(one from among each vertex in an equivalence class of vertices having degree
one and the same neighbor). It is easy to see that in this way we get all the
minimum determining sets of a tree.

While the smallest set that determines a clique has n − 1 elements, some
other interesting classes of graphs are determined by a subset of constant size.
For instance paths are determined by only one vertex, and circuits by two. For
classes of graphs that can be determined by a constant number of vertices the
Subgraph Isometry problem can also be solved in polynomial time, because one
can then define R to be a set of constant size that determines A, and one can
check the existence of a subgraph isometry for all possible choices for an image
of R. (There is a constant number of them.)

This raises the problem of finding the smallest determining set of a graph. Is
this problem polynomially solvable or NP-hard? For arbitrary k can the structure



Connected Joins in Graphs 395

of graphs that can be determined by at most k vertices be described? For dense
graphs this problem is close to subgraph isomorphism.

Another generalization of the problem studied in this paper is the minimiza-
tion of the number of components of a minimum T -join (or in a join). We do
not know the complexity status of this problem.
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