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1. PRELIMINARIES

Throughout the paper, G = (V, E) stands for a graph with vertex-set V' = V(&) and edge-set
E = E(G). Our terminology and notation are standard: a clique is a set of pairwise adjacent
vertices, a stable set is a set of pairwise nonadjacent vertices, w = w(G) denotes the maximum
size of a clique in G, = «(G) denotes the maximum size of a stable set and x = x(G)
denotes the chromatic number, that is, the minimum size of a partition of the vertex set into stable
sets. An w-clique is a clique of cardinality w and k-coloring is a partition of V' into at most k
stable sets.

A family of sets in this paper always means a multiset, that is, the members of the family are
not necessarily distinct. The cardinality of such a family H (denoted by |H|) is the sum of the
multiplicities of the members. If H is a family of subsets of V and v € V is a vertex, then d;(v)
denotes the cardinality of the subfamily consisting of elements of H which contain v.

The graph theoretic notions extend naturally to weighted graphs. If w: V' — Z is a weight
function on V' (Z . denotes the set of non-negative integers), the (weighted) clique number w (G, w)
is the maximum of w(Q) = >, c o w(v), forcliques @ C V(G). The (weighted) stability number
a(G,w) = w(G,w) is then defined as the weighted clique number of the complement of G.
The weighted chromatic number x (G, w) is the minimum of Zle A, for stable sets Sy, ..., Sk
and \; € Z, such that Zie{l,,..,k},uesi Ai = w(v) for every v € V. The sets Sq,..., Sk

above with the coefficients Aq,..., A, are called a Zle A;-coloring of (G, w). Obviously,
w(G,w) < x(G,w) for every w,w = w(G) = w(G,1) and x = x(G) = x(G, 1), where 1 is
the all-1 vector.

A graph G is called perfect, if x(H) = w(H) for every induced subgraph H of G. Lovasz
[10] proved that perfect graphs also satisfy the more general equality x(G,w) = w(G,w) for
arbitrary w: V' — Z . As a consequence, clique polytopes of perfect graphs are described by the
stable set constraints. It follows by simple polarity (antiblocking relation see [3]) that the stable
set polytopes are described by the clique constraints, and hence that G is perfect. In particular,
the equality x(G,w) = a(G,w) follows, and will be important in the sequel. (The reader is
referred for details to [8] (9.2.4) pages 277-278.) Polyhedral arguments will only be used here
for providing the intuition behind some of the proofs.

2. RESULTS

Roughly speaking, according to Lovasz’s result, perfect graphs are those in which the weighted
chromatic number is well-characterized by the means of the clique number. Still, to find the
chromatic number of perfect graphs is not easy. A polynomial time algorithm was given by
Grotschel, Lovasz and Schrijver [7], using the ellipsoid method. It can be expected that other
problems related to colorings can be well-characterized in perfect graphs. Answering a question
asked by Paul Seymour [11] at the DIMACS meeting on polyhedral combinatorics in Morristown,
1989, our Theorem 2.1 gives such a good characterization for the case when a perfect graph is to
be w-colored so that a given stable set is monochromatic.

Theorem 2.1.  Let G be a perfect graph, and let X C V(G) be a stable set. Then G has an
w-coloring with X monochromatic if and only if for an arbitrary family of cliques Q and a family
of at most |V| distinct w-cliques K satisfying

do(w) =dx(v)  forallveV —X,
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and
do(w)=di(v)+1  forallve X,
we have |Q| > |K| + | X|.

Theorem 2.1 does provide a good-characterization: a coloring can be checked in polynomial
time, and there is an obstacle of polynomial size if there is no feasible coloring. (|K| < |V
implies |Q| < [V|? + 1.)

In fact, we will consider a slightly more general question: if another set of vertices Y C V(G)
is given, one can ask, in addition, that the color of X is different from all colors occurring in Y.
The good-characterization theorem is then the following:

Theorem 2.2. Let G be a perfect graph, and X, Y C V, XNY = (). Then G has an w-coloring
such that all elements of X are colored with the same color different from all the colors used on
Y, if and only if for an arbitrary family of cliques Q and a family of at most |V'| distinct w-cliques
IC satisfying

do(w) =di(v)  forallveV —(XUY),
and
do(w) =dk(v)+1  forallve X,
we have |Q| > |K| + | X|.

A coloring satisfying the condition (X is colored with one color different from all colorsin Y,
where, if Y is not given, Y = ()) will be called feasible. The proof of Theorem 2.2 (which also
implies Theorem 2.1, as this is a special case for Y = ) is presented in Section 3.1. The proof
also provides a polynomial algorithm for finding a feasible coloring (if one exists), as it is shown
in Section 3.2. Our algorithm uses Grotschel, Lovasz and Schrijver’s geometric algorithm [7]
which finds a maximum clique in a graph. Of course such an algorithm can be used in particular
to color perfect graphs, choosing the precolored set of vertices to be empty. Note the difference
between this specialization of our algorithm and the coloring algorithm of Grotschel, Lovasz and
Schrijver [7]: our variant only uses a ‘‘black box’’ which finds a maximum clique in a graph; it
does not use the ellipsoid method, or any kind of polyhedral argument besides that. Furthermore,
our algorithm is purely combinatorial—no fractional coloring is needed to start with.

Let us consider now the following problem: we are given a perfect graph G, a stable set
X C V(G) which has already been colored black, and y € V(G) — X colored already with some
color (black or other). Is there an w-coloring, which respects the colors that have already been
assigned? If the color of y is also black, the answer is in Theorem 2.1. If it is another color, then
Theorem 2.2 with the particular choice Y = {y} solves the problem.

The generalization of this problem, where a set of vertices has already been arbitrarily *‘precol-
ored’’ (so that each color class is a stable set) and the question is to continue this coloring so that
the number of colors used altogether is minimum, is called the precoloring extension problem. It
has been studied in [1, 4, 5] and [9] for general graphs. The case when two colors of arbitrary
size are used in the precoloring has been mentioned to be NP-complete by Seymour [11]. In this
paper we are going to separate polynomial and NP-complete subproblems of precoloring exten-
sion problems concerning perfect graphs. The subproblems restrict the number of colors used
in the precoloring, and the number of precolored vertices. Formally, we consider the following
PRECOLORING EXTENSION problem parametrized by positive integers mj > - -+ > my:
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PE(mq,...,mg)

Instance: A graph G and pairwise disjoint stable sets X7, ..., Xy such that |X;| < m; (i =
1,...,k).

Question: Is there an w-coloring of G such that each X is contained in a different color class?

We have the following sharp separation theorem for the complexity of PRECOLORING EX-
TENSION restricted to perfect graphs:

Theorem 2.3.  The problem PE(my, . .., my) restricted to perfect graphs is polynomially solv-
able if and only if k < 2 and mo < 1, and it is NP-complete otherwise.

The polynomial part of the theorem follows directly from Theorems 2.1 and 2.2 and Algorithm
3.1. The NP-completeness part is proved in Section 3.3.

3. PROOFS

3.1. Good Characterizations

In this subsection we prove the good characterization theorems for the chromatic number of
precolored perfect graphs, in the most general not NP-complete case. Note that setting Y = (),
Theorem 2.1 becomes a special case of Theorem 2.2. In the formulation of the proof, we already
have in mind the algorithm which we then describe in the next section. Subsets of vertices and
their characteristic vectors as vertex sets will not be distinguished.

The essence of Theorem 2.2 can be quickly understood using polyhedral combinatorics: a
feasible coloring exists if and only if the face of the stable set polyhedron of G defined with the
equalities z(K) = 1 for every w-clique K C V(G),z(v) = 1 forv € X and x(v) = 0 for
v € Y, and the inequalities x(K) < 1 for every other clique K and = > 0, is non-empty. A
necessary and sufficient condition for this face to be non-empty can be read out from Farkas'
lemma, and this is exactly how the condition of Theorem 2.2 arises.

Proof of Theorem 2.2. The ‘only if’ part is easy, and we prove the following statement: If a
feasible coloring exists, then for any family of cliques Q and any family of w-cliques IKC satisfying
do(v) > di(v) forallv € V — (X UY), and dg(v) = dic(v) + 1 for all v € X, we have
Q] > K|+ |X|.

Indeed, suppose that S,V O S O X is a color class of a feasible w-coloring. Since S is a
stable-set, |[S N Q| < 1 forall Q@ € Q, whence |Q| > > _gdo(s). By the conditions on Q and
K,andsince S O X and SNY = 0,3  odo(s) =D cxda(s) + > ,co_x dols) > |X|+
> scs dic(s). Finally, since S is a color class of an w-coloring, |S N K| = 1 forall K € K, and
consequently > ¢ dic(s) = |K|. Hence |Q| > > . gdo(s) > | X[+ g dk(s) > | X[+]|K]
as claimed.

To prove the ‘if’ part of Theorem 2.2, let X be an arbitrary family of w-cliques. Define a
weight function w by

dec(w)+1  ifveX
w(v) =< 0 ifveY
dic(v) ifveV(G)—(XUY)
Let S be a stable-set of maximum weight, that is, w(S) = a(G, w), and subject to this choose

S to be of minimum size (namely, w(v) # 0 for every v € S). Any stable set contains at most
one vertex of each clique, therefore w(S) < |K| + | X].
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(1) Ifa(G,w) < |K|+|X|, then since G is perfect, we have (G, w) = a(G,w) < |K|+|X|
and the cliques participating in the o(G, w)-coloring of (G, w) contradict the condition of the
theorem.

(2) Suppose a(G,w) = w(S) = |K| + |X|. Then S obviously contains X, it is of course
disjoint from Y, and |S N K| = 1 for all K’ € K. We distinguish two possibilities:

(2.1) fw(G — S) = w — 1 we are done: since G — S is perfect it has an (w — 1)-coloring,
and adding S to this we get an w-coloring of G in which S is a color class.

(2.2) Suppose w(G — S) = w and let K be an w-clique of G — S. Then K must be linearly
independent (over the rationals) of the set /. (If it were not, we could express K as a linear
combination of IC, K' = 3, ;- A L. Since K and all members of K have the same cardinality
w, the sum of the coefficients A = 3, ;- Az equals 1. Using also [S N L| = 1 forall L € K,
it follows that [K N S| = A = 1, a contradiction with K C G — S.) It follows that if K is
an arbitrary generating system of w-cliques (for instance the set of all w-cliques, but a basis is
already enough), then this last possibility cannot hold, and the statement is proved. n

Let us remark that the ‘if” part of Theorem 2.2 was proved in a sharper form involving linear
independence instead of cardinality: If a feasible w-coloring does not exist, then one can find a
Samily of cliques Q and a set of linearly independent w-cliques K such that dg(v) = dic(v) for
allv e V—(XUY),dg(v) =dk(v)+1forallv € X,and|Q| < |K|+|X|. Note that linearly
independent cliques are always distinct and one cannot find more than |V| of them. In fact, it is
easy to prove (this is the trivial part of the ‘‘clique-rank’’ characterization of perfect graphs [2])
that one cannot find more than |V| — w + 1 linearly independent w-cliques in G.

3.2. Algorithm

A polynomial algorithm which finds a feasible coloring (or gives a polynomial size obstacle that
such a coloring does not exist) can be read out from the proof of Theorem 2.2:

Algorithm 3.1
Input: A perfect graph G, a stable set X C V(G) andasetY C V(G) — X.
Output: An w-coloring of G such that X is monochromatic and its color is different from

all colors used on Y, or a certificate that such a coloring does not exist.
Subroutine GLS(G,w): For arbitrary perfect graph G and w: V(G) — Z asinput, determines
w(G,w), and a clique of this size, in polynomial time. (Since G can also be given
as input, it can also determine (G, w) in polynomial time.)
Subroutine COL(G, w): For arbitrary perfect graph G andw: V (G) — Z asinput, determines
w(G,w), and an w(G, w)-coloration of (G, w), in polynomial time.
Variables: /C a set of w-cliques of G;
w a weight function on V(G);
S C V(G) a stable set;
Q C V(G) aclique.

begin

K :=0;

loop

for v € V(G) do

case of
veV(G)— (XUY): w) :=dk(v);
ve X: w(v) :=di(v) + 1;
veY: w(v) =0
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endcase
endfor;
use GLS(G, w) to find (G, w) and a stable set S with this weight;
if o(G,w) < |[K| 4 |X| then goto end1
else

use GLS(G — S, 1) to find w(G — S), and a clique Q C V(G) — S of this size;
if |Q] = w(G) then K := K U {Q}
else goto end2
endif
endif
endloop;
end1: output(‘‘There is no feasible coloring’’, and the coloration provided by COL(G, w)
shows an obstacle).
end2: Use COL(G — S, 1) to find an (w — 1)-coloring of G — S,
add S as a color class to this coloring,
output(the resulting w-coloring of G)
end.

It is clear from the proof of Theorem 2.2 that Algorithm 3.1 correctly finds a feasible w-
coloring, or derives that no such coloring exists. Theorem 2.2 also guarantees that the loop of the
algorithm is run at most | V| times and the polynomiality of the algorithm follows if GLS and COL
can be executed in polynomial time. Consequently, substituting for GLS and COL Grotschel,
Lovasz and Schrijver’s polynomial algorithm [7], Algorithm 3.1 has polynomial running time.
Another choice of substitution for COL is to call Algorithm 3.1 recursively with X = (). This
special case deserves more explanation:

If there is no precolored vertex, Algorithm 3.1 becomes a coloring algorithm slightly different
from Grotschel, Lovéasz and Schrijver’s [7]. We describe it in a form adapted to the weighted case:
if a function ¢: V' — Z is given, we replace w(G — S) in the proof by w(G — S, ¢) respectively.
(In the algorithm COL(G — S, 1) is replaced by COL(G — S, ¢)).

Using Grotschel, Lovasz and Schrijver’s algorithm to determine w(G — S, ¢) as a subroutine,
we determine, as before, more and more linearly independent cliques K with ¢(K) = w(G, ¢)
until determining a color class S. (Since now |K| + |X| = |K|, and since it follows from the
definition of w and the perfectness of G that a(G,w) = |K|, endl is never reached in this
application.)

The coefficient of S in the coloring can be defined as Grotschel, Lovasz and Schrijver do
in [8], to be w(G, ¢) — w(G — S, ¢). This makes sure that the set of stable sets used, similarly
to the cliques used, will be linearly independent, and their number will be at most |V (G)|. Of
course, the weighted generalization of Theorem 2.2 (about precolored weighted graphs) works in
a similar way, and a polynomial algorithm follows then as well.

This algorithm uses the ellipsoid method, but only in the subroutine finding w(G, ¢), otherwise
itis purely combinatorial—no fractional coloring is needed to start with. It follows the spirit of the
algorithm of Fonlupt and Seb6 [2] based on the ‘‘clique rank’” of perfect graphs. (This algorithm
does not use the ellipsoid method, however, its worst case bound is only n“.)

3.3. NP-Complete Cases

In this section we prove the NP-completeness part of Theorem 2.3, which says that PE(m, . . .,
my,) is NP-complete on perfect graphs if £ > 3 or k = 2 and m; > mg > 2. Since PE(1, 1, 1) is
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FIGURE 1. lllustration to the proof of Lemma 3.2.

a subproblem of PE(my, ..., my) with k > 3, and PE(2, 2) is a subproblem of PE(my, ..., my)
with m; > mo > 2, it suffices to prove that PE(1, 1, 1) and PE(2, 2) are NP-complete for perfect
graphs. We first prove two auxiliary complexity results which might be interesting on their own:

Lemma 3.2.  Given a graph G with three edges forming a triangle so that deleting these edges
we get a bipartite graph, it is NP-complete to decide whether x(G) = 3 is true.

Proof. We reduce GRAPH 3-COLORABILITY (see Garey, Johnson [6], page 84) to the
restricted instances of the theorem by ‘local replacement’” of edges:

Suppose G = (V, E) is an instance of GRAPH 3-COLORABILITY. The basis of the reduction
is the gadget of Figure 1:

Add the vertices v1, v2, v3 forming a triangle, to G, and let us denote the colors of these vertices
by 1, 2, 3 respectively. Add now w1, us, us and join u; to {vy,ve,v3} — {v;} (i = 1,2,3). The
color of u; is forced tobe i (i = 1,2, 3).

Replace each edge e = xy € E(G) by three vertex-disjoint paths P(e, ) of length 4, adding
3 new vertices for each: the vertices of P(e, i) are, in order, =, v(e, z,1),v(e, 1), v(e, y, %),y (i =
1,2,3). Join v(e, 1) to u; and v(e,z,1),v(e,y, %) to different elements of {vy,va,v3} — {v;},
choosing between the two possibilities in an arbitrary way (i = 1,2, 3). In other words, the graph
G’ = (V', E') we have constructed with local replacements is defined by

3
V' = {uy,ug,u3, v1,v2,v3} UV (G) U U U{v(e,x,i),v(e,i),v(e,y,i)},

e=xycFE i=1

3
E' =] JE(GE (i)
ecE i=1
where G (e, 7) is the subgraph consisting of P (e, i) and the edges connecting vertices of P(e, 7) to
{u1, u2,ug, v1,v2,v3}. The illustrative Figure 1 shows the subgraph induced by {u1, ug, us, v1,
Vg, vz} U U?:1 P(e, 1) for some e = xy € E(G).
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The graph G’ — {v1v2, vav3, v3v1 } is bipartite (the bipartition is W = V(G) U {v1, va,v3} U
{v(e,i)le € E,i =1,2,3}, B = {uy,us,u3z} U {v(e,x,i)|lx € e € E,i = 1,2,3}). We show
that G’ is 3-colorable if and only if G is 3-colorable:

Note first that G’(e, i) has no 3-coloring with both 2 and y having color i. Indeed, say on the
example of G’(e, 3) of Figure 1, if z and y are both colored 3, then v(e, z, 3) is forced to have
color 2, and v(e, y, 3) to have color 1. But then v(e, 3) has neighbors of three different colors
and cannot be colored. (As mentioned in the construction of G’, without loss of generality we
consider only colorings that color the vertices v1, va,v3 by colors 1, 2, 3, respectively.) Thus
restricting a 3-coloring of G’ to V(G) we get a 3-coloring of G.

On the other hand, it is easy to check that G’(e, ) has a 3-coloring with = having color ¢’
and y having color j’, for any choice of (', j') € {1,2,3}? — {(i,4)} (again, we only consider
colorings in which v;, u; are colored by color j for j = 1,2, 3). It follows that any 3-coloring of
G can be extended to a 3-coloring of G'. [

Corollary 3.3.  Given a graph G with two vertices the deletion of which leads to a bipartite
graph, it is NP-complete to decide whether x(G) = 3 is true.

Proof. 1f Gisagraphasin Lemma 3.2, then deleting any two vertices of the triangle vy, v, v3
one gets a bipartite graph. Thus the statement follows from Lemma 3.2. [

Note that Corollary 3.3 is the best possible in the sense that every graph that contains a vertex
the deletion of which results in a bipartite graph, is 3-colorable.

Corollary 34. PE(1,1,1) is NP-complete when restricted to perfect graphs.

Proof. Given a graph GG with a triangle v1 vov3 such that deletion of the edges v v2, voUs, V3V1
results in a bipartite graph, delete these edges and precolor the vertices vy, v, v3 by colors 1, 2,
3, respectively. The precolored graph G’ obtained in this way allows a 3-coloring extending its
precoloring if and only if G was itself 3-colorable. However, w(G’) = 2, though we only try to
3-color G’. Therefore we add a dummy triangle to G’. Lemma 3.2 then implies that PE(1, 1,
1) is NP-complete even for graphs which are the vertex-disjoint union of a triangle and a bipar-
tite graph. n

Corollary 3.5. PE(2,2) is NP-complete when restricted to perfect graphs.

Proof. Let G’ be the input precolored perfect graph for PE(1, 1, 1) and let v1, v, v3 be the
three precolored vertices. Add two new vertices of degree one, both adjacent to vs, precolor one
of them with the color of v1, the other one with the color of v2 and release the precoloring of vs.
The resulting graph allows a 3-coloring extending its precoloring if and only if the precoloring of
G’ was extendable. Thus Corollary 3.4 implies that PE(2, 2) is NP-complete even when restricted
to graphs which are the vertex-disjoint union of a triangle and of a bipartite graph. [

We thank Zsolt Tuza for simplifying our proof of Corollary 3.5.
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