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An edge of a graph is called critical, if deleting it the stability number of the graph
increases, and a nonedge is called co-critical, if adding it to the graph the size of the
maximum clique increases. We prove in this paper, that the minimal imperfect
graphs containing certain configurations of two critical edges and one co-critical
nonedge are exactly the odd holes or antiholes. Then we deduce some refor-
mulations of the strong perfect graph conjecture and prove its validity for some par-
ticular cases. Among the consequences we prove that the existence in every minimal
imperfect graph G of a maximum clique Q, for which G&Q has one unique optimal
coloration, is equivalent to the strong perfect graph conjecture, as well as the exist-
ence of a vertex v in V(G) such that the (uniquely colorable) perfect graph G&v
has a ``combinatorially forced'' color class. These statements contain earlier results
involving more critical edges, of Markossian, Gasparian and Markossian, and
those of Bacso� and they also imply that a class of partitionable graphs constructed
by Chva� tal, Graham, Perold, and Whitesides does not contain counterexamples to
the strong perfect graph conjecture. � 1996 Academic Press, Inc.

Introduction

If G is a graph |=|(G) denotes the cardinality of a maximum clique
and :=:(G) denotes the cardinality of a maximum stable set. n will always
stay for |V(G)|. A k-stable set or k-clique (k # N) will mean a clique or
stable set of size k, and a k-coloration is a partition into k stable sets.
/=/(G) is the chromatic number of G, that is the minimum of k for which
a k-coloration exists. Subgraph means induced subgraph in this paper.

Let us replace [x] by x throughout the paper. Paths and circuits go
through every vertex at most once. They will be considered to be subgraphs
or edge-sets. The vertex-set of the graph G will be denoted by V(G), the
edge-set by E(G). N(v)=NG(v) (v # V(G)) will denote the set of neighbors
of v (not including v). G� denotes the complementary graph, and for
V$�V(G) the graph induced by V$ will be denoted by G(V$).
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A graph G is called perfect if /(H)=|(H) for every subgraph H of G;
otherwise it is called imperfect.

A graph is called minimal imperfect if it is not perfect, but all its sub-
graphs are perfect.

A co-NP characterization of perfectness immediately follows from
Lova� sz [13 or 14], but perfect graphs are not known to belong to NP.

However, the direction of co-NP characterizations is not closed either.
The strongest co-NP characterization would be given by the following
conjecture of Berge [3, 4]:

A graph isomorphic to an odd circuit of length at least five is called an
odd hole, and the complement of such a graph is called an odd antihole.

Berge's Strong Perfect Graph Conjecture (SPGC). If a graph is minimal
imperfect, then it is an odd hole, or an odd antihole.

Lova� sz [12, 13] proved that every minimal imperfect graph is parti-
tionable; that is, n=:|+1 (:, | # N, :�2, |�2), and G&v can be parti-
tioned both into |-cliques and into :-stable sets, for arbitrary v # V(G). If
G is partitionable, then clearly, /=|+1, /(G&v)=|=|(G&v), and G�
is also partitionable.

Padberg [22] deduced from Lova� sz's result that the number of |-cliques
of a minimal imperfect graph G is n; moreover, they are linearly inde-
pendent. In fact, what Padberg proved is that the set of all :-stable sets is
the following: fix an arbitrary :-stable set S and consider the coloration of
G&s for all s # S; the :|+1=n considered color classes, together with S,
include every :-stable set. As a consequence G&v is uniquely colorable for
all v # V(G). A graph is called uniquely colorable if it has exactly one parti-
tion into a minimum number of stable sets.

Bland, Huang, and Trotter [5] observed that the same properties hold
for partitionable graphs.

Tucker [25] has noted that the graph whose vertices are the |-cliques
of G and two vertices are joined, if and only if the intersection of the
corresponding |-cliques is nonempty, is also partitionable, with the same
parameters. (Easy to check.) Let us call this graph the intersection graph of
G and denote it by I(G).

Let us call an edge of G determined, if there exists an |-clique containing
both of its endpoints. Clearly, I(I(G)) is the graph we get from G after
deleting the nondetermined edges. Let G be partitionable.

It follows from the unique colorability of the graphs G&v (v # V(G))
that the :-stable sets of G can be coded with the notation S(a, b), meaning
the color-class of G&a which contains b; similarly, K(a, b) denotes the
|-clique which is the color class containing b in the optimal coloration of
G� &a. It is easy to see that the unique |-clique disjoint from S(a, s) is
K(s, a). If K is an |-clique, the unique :-stable set disjoint from K will be
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denoted by S(K); the unique |-clique disjoint from the :-stable set S will
be denoted by K(S).

An edge e # E(G) is called critical if :(G"e)=:+1.
If S is an (:&1)-stable set, then the relation xSy (x, y # V(G)) will mean

that x, y � S and S _ x, S _ y are stable-sets. Then xy is a critical edge.
Similarly a nonedge xy of G, that is, xy # E(G� ), will be called co-critical

if it is a critical edge of G� . If K is an (|&1)-clique of G, then the relation
xKy (x, y # V(G)) means that x, y � K and K _ x, K _ y are |-cliques.

If xKy, then x and y must have the same color in every |-coloration
of G&v, provided v � K. Therefore the relation xKy is called a forcing (by
cliques). We say that x and y are forced in the graph G, if they are in the
same component of the graph consisting of the co-critical nonedges (that
is, if they can be joined by a chain of forcings). Clearly, if xy # E(G) and
x, y are forced, then /(G)>|(G), and in particular, G is not perfect. That
is, if /(G)=|(G) then any two forced vertices of G are nonadjacent.

If S is an (:&1)-stable set of G, then the relation xSy will be called a
coforcing, if it is a forcing in G� , that is x, y � S and S _ x, S _ y are :-stable
sets. Two vertices are coforced, if they are in the same component of the
graph which consists of the critical edges (that is, if and only if they are
forced in G� ). If /(G� )=:(G) then coforced vertices are adjacent.

If G is partitionable, T�V(G), is called a small transversal, if
|T |�:+|&1, and T meets every |-clique and every :-stable set of G.
Chva� tal [5, 6] pointed out that no minimal imperfect graph has a small
transversal, because if T was one, then :(G&T)�:&1, |(G&T )�|&1,
and n&|T |�(:&1)(|&1)+1, implying /(G&T)>|(G&T); he also
provided partitionable graphs called webs which have small transversals. A
graph G=(V, E) on :|+1 vertices is called a web, if |(G)=|, :(G)=:,
and there is a cyclical order of V so that every set of | consecutive vertices
in this cyclical order is an |-clique. It is easy to see that the critical edges
of webs are exactly those between the neighboring vertices in their
(uniquely determined) cyclical order, whereas the cocritical nonedges are
exactly between vertices at distance |+1 in this order. Webs are also rich
in small transversals. They satisfy the condition of every result or conjec-
ture in this paper, and the reader may find them to be useful examples
throughout.

All these facts about partitionable and minimal imperfect graphs will be
used without further reference in the sequel. The results we prove in the
present paper are the following.

Theorem 1. If G is partitionable, v1 , v2 # V(G), v1Kv2 , where K is an
(|&1)-clique, and there exist u1 , u2 # K (not necessarily distinct), such that
u1 v1 , u2 v2 are critical edges, then G is an odd hole or antihole or has a small
transversal.
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This theorem and the following two corollaries have been presented in
Sebo� [23].

Corollary 1.1. If G is a partitionable graph which contains a path con-
sisting of | critical edges, then G is an odd hole or antihole or has a small
transversal.

Indeed, if a and b are the first and last edges of the path in the condition
and K is the rest of its vertices, then it is easy to see aKb, and Theorem 1
can be applied.

Corollary 1.1 slightly sharpens a theorem of Markossian, Gasparian, and
Markossian [17, 18], where the condition is asked from both G and G� .
This ``Armenian theorem'' played a pioneering role in the subject of critical
edges. However, the original proof is quite complicated.

A relatively short proof of Theorem 1 has appeared in Sebo� [23],
another short proof will be given in Section 1 below. A third proof of the
Armenian theorem (Corollary 1.1) follows from Theorem 2 below (see
Corollary 4.2), with another kind of sharpening: | can be replaced by
|&1 in the condition. This slight surplus will tell us that the strong perfect
graph conjecture is implied by a statement on uniquely colorable perfect
graphs (see Corollary 4.2 below and the subsequent remark).

After reformulation and restriction to minimal imperfect graphs
Corollary 1.1 becomes:

Corollary 1.2. If G is minimal imperfect and there exists an xy # E(G)
so that x and y are forced, then G is an odd hole or antihole.

Forcings and their relation to uniquely colorable graphs deserve more
attention, as was pointed out by Fonlupt and Sebo� [8]. However, in the
present paper we wish to concentrate solely on proving theorems about
critical edges themselves. This ``forcing'' aspect of the results on critical
edges is explained in Sebo� [23].

A graph is called strongly perfect, if in all of its induced subgraphs there
exists a stable set which meets every (inclusionwise) maximal clique.

Olaru [21] proved that a minimal imperfect graph whose proper sub-
graphs are strongly perfect has a long path of critical edges (see Lemma 1.2).
At the Workshop on Perfect Graphs he pointed out that this result and
Theorem 1 imply:

Corollary 1.3. If G is not perfect but G&v is strongly perfect for
every v # V(G) then G is an odd hole or antihole.

The following theorem has been conjectured by Bacso� and Sebo� and is
a common generalization of their results involving four critical edges. (See
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Bacso� [1] for an account.) The proof method of Theorem 1 can be adopted
to prove this conjecture.

Theorem 2. Let G be partitionable, and suppose that there exists a ver-
tex of G which is adjacent to two critical edges and one cocritical nonedge.
Then G is an odd hole, odd antihole, or has a small transversal.

The proofs of earlier results show a set of cardinality :+|&1, which,
if G is not an odd hole or antihole, is a small transversal. The proofs of
Theorems 1 and 2 separate the problem into two cases, in both of which
there is a small transversal for different reasons (see Sections 1 and 2).

Corollary 2.1. Suppose that G is a partitionable graph and there exists
v0 # V(G), N(v0)�A _ B, where A and B are |-cliques, and A & B=<.
Then G is an odd hole or antihole or has a small transversal.

Corollary 2.2 is an application of Corollary 2.1 to a particular situation.
However, according to Theorem 3 below, the condition of Corollary 2.2
always holds whenever the seemingly weaker condition of Corollary 2.1
holds. In other words (knowing Theorem 3), conversely, Corollary 2.1 is
also an evident consequence of Corollary 2.2.

Corollary 2.2. If G=(V, E) is partitionable and v&(|&1) , ..., v&1 , v0 ,
v1 , ..., v| are vertices so that vi+1 , ..., vi+| is an |-clique for every
i=&|, ..., 0, then G is an odd hole or antihole or has a small transversal.

The condition here means exactly that in I(G) there exists a path con-
sisting of | critical edges (see Lemma 3.2) and consequently Corollary 2.2
can be reformulated as follows:

Corollary 2.3. If G is a partitionable graph and I(G) contains a path
consisting of | critical edges then G is an odd hole or antihole or has a small
transversal.

Of course again, like in Corollary 1.2 one can replace the condition by
``adjacent forced vertices'' (see (6) below). Note that the only difference
between Corollaries 1.1 and 2.3 is that here it is I(G) which is supposed to
have critical edges.

Remark. Chva� tal, Graham, Perold, and Whitesides [7] give two
methods of constructing partitionable graphs, and these seem to be the only
general methods up to now. We would like to note that the ``first method''
produces graphs which satisfy the condition of Corollary 2.2 and, thus,
cannot be minimal imperfect. (The second, more sophisticated method, can
also not produce minimal imperfect graphs, as was shown in a restricted
sense by Grinstead [10], and recently, in general, by Bacso� et al. [2].)
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As mentioned above, the conditions of Corollary 2.1 and 2.2 are related
by the following theorem [24] which will be reproved in Section 3:

Theorem 3. If G=(V, E) is partitionable, v0 # V(G) and N(v0)�A _ B,
where A and B are cliques, then there exists a (unique) order v&(|&1) , ..., v&1 ,
v0 , v1 , ..., v|&1 of [v0] _ N(v0) so that [vi , vi+1, ..., vi+|&1] is an |-clique in
G for all i=&(|&1), ..., &1, 0.

We prove Theorem i in Section i (i=1, 2, 3). Some of the lemmas and
simple statements of Section 1 about critical edges will be used throughout.

The main result of Section 3 is Theorem 4 below, which uses all of the
preceding results of the paper, and some new steps. It is motivated by the
study of the following bound of Olaru [20] (also found by Markossian
and Karapetian [16] and Reed [22a]:

(0) If G is partitionable, then the degree of every vertex is at least
2|&2.

The proof of (0) is not difficult; see, for instance, Sebo� [24] (or apply
the first part of Lemma 3.1 below to I(G)).

Theorem 4. If G is partitionable, I(G) has a vertex of degree 2|&2 and
I(G� ) has a vertex of degree 2:&2 then G is an odd hole or antihole, or has
a small transversal.

Note that, conversely, all of the results of the paper are reversible: odd
holes, antiholes, and, more generally, webs (after deleting the nondeter-
mined edges) satisfy the conditions of Theorems 1, 2, 3, 4, and of their
corollaries.

Theorem 4 tells us, that the tightness of the bound of (0) for some vertex
of I(G) for every minimal imperfect graph G implies the strong perfect
graph conjecture.

Corollary 4.1 is implied by the fact that I(G) has a vertex of degree
2|&2 if and only if G has an |-clique K so that G&K is uniquely
colorable (see Lemma 3.1):

Corollary 4.1. If G is partitionable and G has an |-clique Q and an
:-stable set S, such that G&Q and G� &S are uniquely colorable, then G is
an odd hole, antihole, or has a small transversal.

Corollary 4.1 sharpens Sebo� [23, Theorem 1.3]. The main lemma
(Lemma 3.1) of Section 3 will generate the following reformulation:

Corollary 4.2. If G is partitionable and G has an |-clique Q and an
:-stable set S, such that the critical edges induced by Q and the cocritical
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nonedges induced by S respectively form a connected graph, then G is an odd
hole, antihole, or has a small transversal.

The corresponding reformulations of the strong perfect graph conjecture
are stated at the end of Section 3. Here we only mention a related remark
which we find more important:

Remark. According to Corollary 4.2, the strong perfect graph conjecture
is true for any class of graphs G closed under taking induced subgraphs,
provided the uniquely colorable perfect graphs of G and of [G� : G # G] have
a forced color class (that is, a stable set which meets every |-clique and
whose induced cocritical nonedges form a connected graph). Is there any
``interesting'' class of graphs for which the condition of this statement can
be proved? Does it not hold for the class of all graphs? Equivalently, we
are asking for a uniquely colorable perfect graph which does not have a
forced color class.

We did not succeed replacing I(G) by G in the condition of Theorem 4,
so we state the related statement as a conjecture. We believe that the
following Conjecture 1 might be reachable, whereas Conjecture 2 is
probably more difficult.

Conjecture 1. If a minimal imperfect graph G and its complement have a
vertex incident to 2|&2 and 2:&2 determined edges, respectively, then G
is an odd hole or antihole.

Conjecture 2. If G is minimal imperfect, then it has a vertex of degree
2|&2.

1. Proving Theorem 1 and Its Corollaries

The following simple but basic observations about critical edges are due
to Markossian, Gasparian and Markossian [18]. They will be useful
throughout the paper. We suppose that G is partitionable, and nothing else
in statements (1)�(6):

(1) If xy # E(G) is a critical edge, then the (:&1)-stable-set S for which
xSy is a coforcing is uniquely determined: S _ y=S(x, y). Moreover, the
|-clique Kx containing x and not containing y is also uniquely determined
and Kx=K(S _ y).

Proof. Suppose that xSy is a coforcing, and let Kx :=K( y, x). Clearly,
every |-clique containing x is disjoint from S. Since in addition y � Kx , we
have Kx & (S _ y)=<. The unicity of both Kx and S follows. Q.E.D.
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(2) Let x, y # V(G). xy is a critical edge in G if and only if there are
|&1 different |-cliques containing [x, y].

Proof. First let xy be a critical edge. Among the | different |-cliques
containing x, by (1) there is one which does not contain y, so there are
|&1 different |-cliques which contain both x and y.

Conversely, if there are |&1 different |-cliques containing [x, y], then
the colorations of G&x and that of G&y have |&1 common color
classes. The set U of vertices which are in none of these color classes con-
tains both x and y, and both U"x and U"y are stable sets. Since :(G)=:
and |U|=:+1, xy # E(G), and then it is a critical edge. Q.E.D.

(3) If x0x1 , x1 x2 , ..., xk&1xk are critical edges, 1�k<|, and the
corresponding coforcings are x0S1 x1 , ..., xk&1 Skxk , then Si _ xi is the color
class of xi in the coloration of G&x0 (i=1, ..., k).

Proof. Applying (1) to the critical edge xi&1xi we get that Si _ xi is
disjoint from a |-clique containing xi&1 , whence it is a color class of
G&xi&1 . If i=1 the claim is proved, so suppose i�2.

Now clearly, the coloration of G&xj&1 can be derived from that of
G&xj by replacing xj&1 _ Sj by Sj _ xj ( j=1, ..., k). Applying this con-
secutively to j=i&1, ..., 0 we get that Si _ xi is a color class of G&x0 as
claimed. Q.E.D.

(4) If x0x1 , ..., xk&1xk are critical edges, 1�k<|, then [x0 , ..., xk] is
a clique, and for the corresponding coforcings xi&1Sixi (i=1, ..., k),
Si & Sj=< if i{j # [1, ..., k].

Proof. Let xi&1 Si xj be the coforcings corresponding to these critical
edges (i=1, ..., k). Then [x0 , ..., xk] _ S1 _ } } } _ Sk is a proper subset of
the vertices of G, because k+1+k(:&1)=k:+1<|:+1. But a proper
subset of an (:, |)-graph has a partition into at most : cliques, and since
coforced vertices must be in the same clique class, they are adjacent, as
claimed.

Now since xixj # E(G), xj � Si _ xi , i{j # [1, ..., k]. But then according
to (3), Si _ xi and Sj _ xj are different color classes of G&x0 , and the
claim follows. Q.E.D.

(5) Suppose H is a connected subgraph of the graph which consists of the
critical edges of G, |V(H)|=|+1. Then H is a path, and if u, v # V(H)
denote its endpoints, u(V(H)"[u, v])v is a forcing.

Proof. Since |(H)<|V(H)|, H has two nonadjacent vertices u and v.
By (4), the distance of u and v in H is at least |, and because
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|V(H)|=|+1, it is exactly |. But then a shortest path between u and v
is a Hamiltonian path of H, and H has no other edges but the edges of this
path.

Now by (4) V(H)"u and V(H)"v are |-cliques, proving the last asser-
tion. Q.E.D.

(6) The following statements are equivalent:

(i) There exists in G a path of cocritical nonedges of length :.

(ii) G� has a subgraph on :+1 vertices whose critical edges form a
connected graph.

(iii) In G there exist two adjacent vertices which are forced.

Proof. (ii) follows obviously from (i). If (ii) holds, then any two vertices
of the claimed connected subgraph are forced, and since there is no (:+1)-
stable set in G, two of them are adjacent. Thus (iii) holds.

Last, to prove (i) from (iii), suppose that xy # E(G), x and y are forced.
That is, xy � E(G� ), and x and y are joined by a path P of critical edges
of G� . Now applying (4) to G� , |P|�:. Q.E.D.

We prove now the following simple lemma of technical character,
replacing the linear algebra in the proof in Sebo� [23].

Lemma 1.1. If S1 and S2 are :-stable sets, S1 & S2=<, and S�S1 _ S2

is an :-stable set, then (S1 _ S2)"S meets every |-clique except, maybe,
K(S1) and K(S2).

Proof. If K is an |-clique, K{K(S1), K{K(S2), then let s1=K & S1

and s2=K & S2 . [s1 , s2]�S is impossible, because K is a clique, and S is
a stable set. Q.E.D.

Theorem 1. If G is partitionable, v1 , v2 # V(G), v1Kv2 , where K is an
(|&1)-clique, and there exist u1 , u2 # K (not necessarily distinct) such that
u1 v1 , u2 v2 are critical edges, then G is an odd hole or antihole or has a small
transversal.

Proof. If u1=u2 , then |=2, and G is an odd hole or antihole (see, for
instance, [19]). Therefore, we suppose u1 {u2 for the rest of the proof. Let
S1 and S2 be the uniquely defined (:&1)-stable sets (see (1)) for which
(u1S1 v1) and (u2 S2v2). By (1) S1 _ v1=S(K _ v2) and S2 _ v2=S(K _ v1).
S1 & S2=< follows. Let U1 :=S(u2 , u1) and U2 :=S(u1 , u2); see Fig. 1.
We distinguish two cases.

Case 1. There exists an :-stable set S not contained in S1 _ S2 _ [u1],
u1 # S{U1 .
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Figure 1

Choose an :-stable set S with u1 # S (then of course u2 � S), and let
s # S"(S1 _ S2), s{u1 . Let Q=K(s, v2).

Claim. s # S(Q); [u2 , v2]�Q; Q{K _ v2 .

Indeed, we see s # S(Q) and v2 # Q directly from the definition of Q.
If u2 � Q then by (1), u2 _ S2=S(Q). But then s # S(Q) and s # S"S2

contradict each other. Finally, if Q=K _ v2 then similarly, by (1),
v1 _ S1=S(Q), and s # S(Q) and s # S"S1 contradict each other. The claim
is proved.

To finish now the proof of the theorem when Case 1 holds, suppose that
S{U1 . Because of s # S(Q) and u2 # Q (see the claim), Q=K(s, u2).
Then S & Q{< because u1 # S=S(Q)=S(u2 , s) would imply S=
S(u2 , u1)=U1 .

Define now T=(S"u1) _ (Q"v2) _ v1 . (S"u1) & (Q"v2){<, because we
have just proved S & Q{<; v2 � S is clear; moreover, using (1) u1 # Q
would imply that Q=K _ v2 , contradicting the claim. Thus |T |=
:+|&2.

Clearly, T meets all |-cliques, except maybe K(S) and those containing
u1 . But according to (1) the |-cliques containing u1 also contain v1 # T, or
are equal to K & v2 and thus contain u2 : according to the claim,
u2 # Q"v2 �T. Thus the only |-clique maybe disjoint from T is K(S).

Similarly, T meets all :-stable sets, except maybe those containing v2 or
S(Q). But s # S(Q) & T according to the claim. Since v1 # T, using (1), we
see that the only :-stable set disjoint from T is S2 _ v2 .

Since S{S2 _ v2 , K(S) meets S2 _ v2 . Adding their intersection point to
T we get a small transversal.

The theorem is proved in Case 1, and also in the case when u1 and U1

of Case 1 are replaced by u2 and U2 , respectively. So we can suppose:

Case 2. Every :-stable set containing either u1 or u2 but different from
both U1 and U2 is contained in S1 _ S2 _ [u1 , u2].

If u1=u2=: u then |=2, because |�3 implies that at least three
|-cliques contain u, but by (1) only one of these does not contain v1 , and
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another does not contain v2 . Thus at least one |-clique contains
[v1 , u, v2], in contradiction with v1v2 � E(G).

Suppose now that u1 {u2 . Then clearly |�3, and suppose indirectly
that :�3 too. Then there exists an :-stable set S, u1 # S but S{U1 ,
S{S1 _ u1 . By the constraint of Case 2, S�(S1 _ u1) _ S2 , whence, by
Lemma 1.1, S$ :=(S1 _ u1) _ (S2 _ v2)"S meets every |-clique except,
perhaps K(S1 _ u1) and K(S2 _ v2).

Let T :=S$ _ K"u2 . Clearly, |T |=:+|&2, u1 , v2 # T (u1 # K, v2 # S$).
By our previous remark about S$, since K(S2 _ v2)=K _ v1 meets T, the

only |-clique disjoint from T is K(S1 _ u1).
Since (K _ v2)"u2 �T, we immediately see that the :-stable sets not con-

taining u2 and different from S(K _ v2) meet T. Since S(K _ v2)=S1 _ v1 ,
and S1 is not a subset of S (because u1 # S{S1 _ u1), S(K _ v2) meets
S$�T. So we only have to examine the :-stable sets containing u2 . Let U
be such an :-stable set. Because of the constraint of Case 2, U"u2 �S1 _ S2

unless U=U2 . Since S1 _ S2 "S�T we get that T meets U unless
U"u2=S"u1 or U=U2 . But the latter possibility contains the former one,
because in the former case u1(U"u2)u2 is a co-forcing: then, according to
(1), U=S(u1 , u2)=U2 . Thus U2 is the only :-stable set disjoint from T.

Since S1 _ u1 {U2 , K(S1 _ u1) meets U2 . Adding their common element
to T we get a small transversal. Q.E.D.

Corollary 1.1. If G is a partitionable graph which contains a path con-
sisting of | critical edges, then G is an odd hole or antihole or has a small
transversal.

Proof. Let x0x1 , x1x2 , ..., x|&1x| be the critical edges of the condition.
By (the last sentence of) (5): v1 :=x0 , v2 :=x| , and K :=[x1 , ..., x|&1],
u1 :=x1 and u2 :=x|&1 satisfy the condition of Theorem 1. Q.E.D.

Corollary 1.2. If G is minimal imperfect, and there exists an xy # E(G)
so that x and y are forced, then G is an odd hole or antihole.

Proof. According to (6) the condition of Corollary 1.1 is satisfied by G� .
Q.E.D.

Corollary 1.3. If G is not perfect but G&v is strongly perfect for
every v # V(G), then G is an odd hole or antihole.

Proof. As Professor Olaru observed, the following lemma from Olaru
[21] reduces Corollary 1.3 to Theorem 1.

Lemma 1.2. If G is not perfect and G&v is strongly perfect for all
v # V(G), then for every stable-set S{< of G there exists a cocritical non-
edge which has exactly one endpoint in S.
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Proof. Let S{< be an arbitrary stable-set. Since G&S is strongly per-
fect, there exists a stable-set T�V(G)"S meeting every maximal clique of
G&S.

Since G is not perfect, G&T contains an |-clique Q. K :=Q"S is not a
maximal clique in G&S, because it is disjoint from T, whence for some
t # T, K _ t is an |-clique. Denoting the unique element of Q"K=Q & S by
s, we get that st is a cocritical nonedge, s # S, t � S as claimed. Q.E.D.

Corollary 1.3 follows now by applying Lemma 1.2 successively. First to
S1=[s1], where s1 # V(G) is arbitrary. Lemma 1.2 provides us with the
cocritical nonedge s1s2 . After k&1 applications of Lemma 1.2 we get the
Sk=[s1 , ..., sk], whose induced cocritical nonedges form a connected
graph. Applying (4) to G� we get that Sk is a stable set for k�:. So we can
apply Lemma 1.2 a last time to S: , to get a graph on :+1 vertices whose
induced cocritical nonedges form a connected graph. But then by (6), the
result follows from Corollary 1.2. Q.E.D.

2. Proving Theorem 2 and Its Corollaries

We first add four other claims to our collection of simple statements
about critical edges in partitionable graphs, the first of them is from
Markossian, Gasparian and Markossian [18]. (We suppose again that G
is partitionable throughout (7)�(10).)

(7) If x0x1 , x1x2 , ..., xk&1xk are critical edges, where 1�k<|, and Q
is an |-clique, then Q & [x0 , ..., xk] is either a starting sequence or an end
sequence of x0 , ..., xk . (< is also considered to be a starting sequence;
x0=xk is allowed.)

Proof. If indirectly, Q & [x0 , ..., xk] is neither a starting sequence nor
and end sequence of x0 , ..., xk then it contains a sequence xi , xi+1 , ..., xj ,
1�i�j�k&1, such that xi&1 � Q, xj+1 � Q.

Since xi , xj # Q and Si _ xi , xj _ Sj+1 are :-stable sets, Si & Q=<,
Sj+1 & Q=<. But then Q is disjoint of both xi&1 _ Si and Sj+1 _ xj+1 ,
and since by (4) Si & Sj+1=<, these two :-stable sets are distinct, a con-
tradiction. Q.E.D.

The fact that a minimal imperfect graph with a circuit of critical edges
is an odd hole or antihole is well known and can be easily proved in
various ways; see Markossian and Karapetian [16] or Giles, Trotter, and
Tucker [9]. The latter paper contains in fact an elegant proof of the
following sharper statement:
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(8) If C is a circuit of critical edges in G, then it is a Hamiltonian circuit
of G, and G is a web.

I heard the following proof from Grigor Gasparian; it is probably the
shortest of all using the statements we already have at hand. In fact, the
inequality in the claim of the proof��an easy consequence of (7)��is suf-
ficient for the use we will make of it later.

Proof.

Claim. |C|�|+1, and if K is an |-clique, K & V(C){<, then K is a
subpath of C.

We first prove the second part of the claim. If V(C)"K{< then the
statement is obvious, because then C has a subpath x0 , ..., xk+1, where x0 ,
xk+1 � K, but xi # K (1�i�k): according to (7) for any such subpath we
have k=| and K=[x1 , ..., x|].

Let now x0 and x1 be two arbitrary neighboring vertices of C, and let K
be the |-clique containing x1 and not containing x0 ; see (1). Then
V(C)"K{<, and for such |-cliques K we have just proved K/V(C).
Thus |V(C)|�|[x0] _ K|=|+1.

But then for an arbitrary |-clique K, V(C)"K{<, and the claim is
proved.

If now C is not Hamiltonian, then let u # V(G)"V(C), v # V(C). Accord-
ing to the claim, some of the |-cliques which are color classes in the
optimal coloration of G� &u partition V(C), and some of the |-cliques
which are color classes in the optimal coloration of G� &v partition V(C)"v.
But it is not possible that both |C| and |C|&1 are divisible by |. Thus C
is Hamiltonian.

Applying now (4) to C we get that G is a web. Q.E.D.

The following statement occurs both in Markossian and Karapetian
[16] and Giles, Trotter, and Tucker [9].

(9) If G is partitionable and v # V(G), and the degree of v is 2|&2, then
there are two different critical edges adjacent to v.

Proof. The coloration of G&v has | color classes and the constraint
implies that at least two of them, S1 and S2 contain at most one vertex
adjacent to v. Since S1 and S2 are maximum stable sets, they both contain
exactly one vertex adjacent to v; let these be s1 # S1 and s2 # S2 . Clearly, vs1

and vs2 are critical edges. Q.E.D.

We will also need the following statement:
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Figure 2

(10) If aQb is a forcing and aSc is a co-forcing, then exactly one of b # S
and c # Q holds.

Proof. Since Q _ a is a clique and S _ a is a stable set, their only
common point is a, whence Q & S=<.

If b � S, c � Q, then both a _ Q and Q _ b are disjoint from S _ c,
a contradiction.

If b # S, c # Q, then Q _ b and S _ c both contain [b, c], which is not
possible, because one of them is a stable-set and the other is a
clique. Q.E.D.

Theorem 2. Suppose G is a partitionable graph, and a, a1 {a2 , b # V(G)
are such that aa1 , aa2 are critical edges in G and ab is a critical edge in G� .
Then G is an odd hole or antihole or has a small transversal.

Proof. Let K be the (|&1)-clique for which aKb, and similarly, S1 and
S2 are the (:&1)-stable sets for which aS1 a1 and aS2 a2 . If G is an odd
hole or antihole we are done, so we can suppose :, |�3. Follow the proof
on Fig. 2.

Claim 1. S1 _ a1 and S2 _ a2 are distinct color classes of the coloration
of G&a.

Indeed, by (1) they are color classes, and they are distinct, because by
(4), a1a2 # E(G).

Claim 2. Exactly one of a1 # K and a2 # K holds.

Indeed, if a1 , a2 # K then K _ b is an |-clique not containing a, and con-
taining both a1 and a2 , in contradiction with (7). Similarly, if a1 , a2 � K
then K _ a contradicts (7).
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According to Claim 2 we can suppose without loss of generality a1 # K
and a2 � K. Let us summarize the containment relations which follow:

Claim 3. a1 # K, a2 � K

�� b � S1 , b # S2

�� S1 , S2 , and K are pairwise disjoint

�� The list of |-cliques containing at least one of a1 , a, a2 is the
following: K(S1 _ a)=K _ b, containing a1 ; K(S2 _ a2)=K _ a containing
a1 and a; |&2 different |-cliques containing all of a1 , a, a2 ;
K1 :=K(S1 _ a1) containing a and a2; K2 :=K(S2 _ a) containing a2

(Fig. 2).

We have the first item by assumption (relying on Claim 2). Then by (10),
b � S1 because of a1 # K and b # S2 because of a2 � K.

We have S1 & S2=< by Claim 1, and S1 & K=<, S2 & K=< follow
from the fact that S1 _ a, S2 _ a are :-stable sets, whereas K _ a is an
|-clique.

The last item immediately follows from (7) (applied to k=2), and (1)
or (2).

In order to prove the theorem we distinguish two cases:

Case 1. Every :-stable set containing a is a subset of S1 _ S2 _ a. Since
:�3 there exists an :-stable set S, such that a # S and S1 _ a{S{S2 _ a.
Since |�3 (the last item of) Claim 3 implies that there exists an |-clique
A$[a, a1 , a2].

Let T :=(A _ S)"a. Clearly, |T |=:+|&2. We show now that adding
a vertex to T we can get a small transversal. Note that a1 , a2 , b # T. (b # S
by (2), because a # S{S1 _ a.)

T meets every |-clique besides K(S): since T$S"a we only have to
check the |-cliques containing a, and according to Claim 3, these either
contain a1 or a2 (or both).

T meets every :-stable set besides S(A): since S contains Q"a we only
have to check the :-stable sets U containing a. If b # U we are done
(because b # T ), so suppose b � U. But then U is the unique :-stable set (see
(1)) containing a and not containing b, and because S1 _ a is such an
:-stable set by Claim 3, we get that U=S1 _ a. On the other hand,
S�S1 _ S2 _ a and S{S2 _ a imply together that (S"a) & S1 {<, thus
U & T{< holds in this case as well. Thus adding K(S) & S(A) to T we get
a small transversal.

Remark. This type of small transversal and the condition of its usability
was exhibited by Bacso� [1] and Gurvich and Temkin [11]. The last
paragraph above proves that S satisfies this ``Bacso� �Gurvich�Temkin'' con-
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dition. One can arrive at the same result by applying (9) to G� , a comment
of Grigor Gasparian.

Case 2. There exists an :-stable set S: a # S, S�3 S1 _ S2 _ a. Let
s # S"(S1 _ S2 _ a), and A :=K(s, a). Since a1S1 a and aS2a2 are forcings
in G� &s, [a1 , a, a2]�A. Define T :=(A _ S)"a. Clearly, |T |=:+|&2.
We show now that adding a vertex to T we can get a small transversal.
Note that a1 , a2 , s, b # T.

T meets every |-clique besides K(S): since T contains S"a we only have
to check the |-cliques containing a, and according to Claim 3, these either
contain a1 or contain a2 (or both).

S(A) & T{<, because s # S(A). If U is an :-stable set, U{s(A), then
U & A{<, whence U & T{<, unless a # U, b � U. According to (1) there
is exactly one :-stable set with this property, and it is S1 _ a.

Thus T meets every |-clique besides K(S) and every :-stable set besides
S1 _ a. These two are not disjoint, because S1 _ a{S by the assumption
of Case 2. Adding their intersection to T we get a small transversal.

Since either Case 1 or Case 2 holds the theorem is proved. Q.E.D.

Corollary 2.1. Suppose that G is a partitionable graph and there exists
v0 # V(G), N(v0)�A _ B, where A and B are |-cliques and A & B=<.
Then G is an odd hole or antihole or has a small transversal.

Proof. |N(v0)|�2|&2, because |(N(v0))�|&1, and by the con-
straint, N(v0) is covered by two |-cliques. By (0) we have equality here,
and by (9) there are two different critical edges adjacent to v0 .

Since A & B=< we can suppose v0 � A (see Fig. 3). Clearly,
|N(v0) & A|=|N(v0) & B|=|&1. Let a be the (unique) vertex of A"N(v0).
Clearly, v0(A"a) a is a forcing; that is, v0 a is a cocritical nonedge, and
Theorem 2 can be applied; Q.E.D.

With some more work one can prove the same assertion under the some-
what weaker assumption that G(v0 _ N(v0) _ a) is uniquely colorable for
some a # V(G)"N(v0) (see the last paragraph of the paper before the
acknowledgment).

Figure 3
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Corollary 2.2. If G=(V, E) is partitionable and v&(|&1) , ..., v&1 , v0 ,
v1 , ..., v| are vertices so that vi+1 , ..., vi+| is an |-clique for every
i=&|, ..., 0, then G is an odd hole or antihole or has a small transversal.

Proof. This statement is immediate from the previous corollary
(A=[v1 , ..., v|], B=[v&(|&1) , ..., v0]; see Fig. 3). Let us see another proof
directly from Theorem 2:

v&1v0 and v0 v1 are both critical edges, because they are contained in
|&1 of the cliques in the condition, and then (2) can be applied.
Moreover, note that v0Av| is a forcing, where A :=[v1 , ..., v|&1] (see
Fig. 3). Thus according to Theorem 2, G is an odd hole, antihole, or has
a small transversal. Q.E.D.

Corollary 2.3. If G is a partitionable graph and I(G) contains adjacent
forced vertices, then G is an odd hole or antihole or has a small transversal.

Corollary 2.3 is an immediate reformulation of Corollary 2.2 (see (6) and
Lemma 3.2 in Section 3 below).

As mentioned in the Introduction, Corollary 2.2 shows that a class of
partitionable graphs constructed by Chva� tal et al. [7] does not contain
counterexamples to the strong perfect graph conjecture. (This is the only
known class of partitionable graphs for which the strong perfect graph con-
jecture has been open since Bacso� et al. [2] proved it for the other class
of Chva� tal et al.)

3. Proving Theorem 3, Theorem 4, and Their Corollaries

The key lemma of this section is the following:

Lemma 3.1. Let G be partitionable, and let Q be an |-clique in G. Then
the number of |-cliques different from Q and meeting Q is at least 2|&2,
and the following statements are equivalent:

(i) The number of |-cliques different from Q which meet Q is exactly
2|&2.

(ii) G&Q is uniquely colorable.

(iii) The critical edges of G induced by Q form a connected spanning
subgraph of G(Q).

(iv) The critical edges of G induced by Q form a spanning tree of Q.

Proof. The inequality, and the implication (i) O (ii) follows from the
trivial part of a result in Fonlupt and Sebo� [8], but we include the proof
for the sake of completeness.
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The linear rank of the (characteristic vectors as vertex sets of the) |-cliques
of G&Q��which is the same as the number of these |-cliques��is at most
n&1&2(|&1)=(n&|)&|+1, and the stated inequality follows.

Suppose now that (i) holds. The characteristic vector /S of any color
class S of an arbitrary |-coloration of G&Q satisfies the equation x(K)=1
for every |-clique K of G&Q. But G&Q has n&| vertices, and
(n&|)&|+1 linearly independent equations in the (n&|)-dimensional
space have no more than | linearly independent solutions. Since the classes
of an |-coloration provide already | linearly independent solutions and a
different color class of any other coloration is linearly independent of these,
there is no other coloration.

The implication (ii) O (iii) is from Sebo� [23, (3.2)], we repeat the proof
for the sake of completeness: We suppose that (ii) holds and prove that
there is a critical edge between the classes of any bipartition of Q:

Let [X1 , X2] be an arbitrary bipartition of Q, and x1 # X1 , x2 # X2 . The
coloration of G&x1 consists of S(Q), of |X1 |&1 color classes meeting X1 ,
and |X2 | color classes meeting X2 . Similarly, the coloration of G&x2 con-
sists of S(Q), of |X1 | color classes meeting X1 , and |X2 |&1 color classes
meeting X2 . Thus, since by assumption the restriction of these two colora-
tions to G&Q is the same, there exists an (:&1)-stable A, and a1 # X1 ,
a2 # X2 such that A _ a2 is a color class of G&x1 and A _ a1 is a color class
of G&x2 . Hence a1a2 is a critical edge between X1 and X2 , as claimed.

(iii) O (iv) is trivial from (8).
To prove (iv) O (i) now, suppose that H is a spanning tree of Q consist-

ing only of critical edges. We have to prove that there are at most 2|&2
different |-cliques meeting Q.

Indeed, let K{Q, K & Q{< be an |-clique. It follows that there exists
a critical edge ab # E(H) so that a # K, b � K. Let S be the :&1-stable set
for which aSb. Then by (1), S(K)=S _ b. Thus K=K(S _ a) or K=
K(S _ b) for some ab # E(H), aSb; that is, K is one of 2(|&1) |-cliques,
as claimed. Q.E.D.

The following lemma will ensure the translation between I(G) and G. Let
us denote by 0(v) the |-clique of I(G), corresponding to v # V(G), and by
,(Q) the vertex of I(G), corresponding to the |-clique Q�V(G).

Lemma 3.2. Let K and L be |-cliques of G, and suppose that there exists
a path between ,(K) and ,(L) consisting of k critical edges of I(G). Then
k=|K"L|=|L"K|, and there is a (unique) order v&k , ..., v&1 of the vertices
of K"L, and v1 , ..., vk of those of L"K so that

[v&k+i , ..., v&1] _ (K & L) _ [v1 , ..., vi]

is an |-clique for every i=1, ..., k&1 (Fig. 4).
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Figure 4

Proof. Let x0 , ..., xk be the vertices (in order) of the path of critical
edges joining x0 :=,(K) and xk :=,(L) in I(G).

The vertices of K"L correspond to those |-cliques of I(G) which contain
,(K), but do not contain ,(L). We show that there is a natural one-to-one
correspondance between such |-cliques and the edges xi&1xi (i=1, ..., k).

Indeed, if an |-clique contains ,(K), but does not contain ,(L), then it
contains xi&1 and does not contain xi for some i # [1, ..., k]. Conversely, if
an |-clique contains xi&1 and does not contain xi for some i=1, ..., k,
then, according to (7), it contains ,(K) and does not contain ,(L). (In fact
it contains x0 , ..., xi&1 and does not contain xi , ..., xk .) But according to (1)
there is exactly one |-clique Qi containing xi&1 and not containing xi for
each i=1, ..., k, and k=|K"L|=|L"K| follows.

Moreover, the order Qi (i=1, ..., k) defines an order on K"L. Let
v&(k+1)+i # V(G) be the vertex for which 0(v&(k+1)+i)=Qi . According to
what has been proved above, [v&k , ..., v&1]=K"L.

Similarly, let Ri be the (by (1) unique) |-clique which contains xi and
does not contain xi&1 . Ri (i=1, ..., k) is the list of |-cliques which contain
,(L)=xk and do not contain ,(K)=x0 . Let vi # V(G) be the vertex for
which 0(vi)=Ri . Similarly to the symmetric, already considered case,
[v1 , ..., vk]=L"K.

After K"L and L"K let us consider the |-cliques of I(G) which
correspond to the vertices of K & L. They all contain ,(K)=x0 and
,(L)=xk , and then, according to (7), they contain [x0 , x1 , ..., xk].
Conversely, if an |-clique contains [x0 , x1 , ..., xk], then the corresponding
vertex of G is in K & L.

Finally, we just have to note that [v&k+i , ..., v&1] _ (K & L) _ [v1 , ..., vi]
is an |-clique for every i=1, ..., k&1, because the corresponding |-cliques
all contain xi . (The order is unique, because for any other order v$&k , ..., v$&1

of the vertices of K"L, and v$1 , ..., v$k of those of L"K, there exist i # [1, ..., k]
such that Qi corresponds to a vertex in [v$&k+i , ..., v$&1] and Ri corresponds
to a vertex in [v$1 , ..., v$i]. But Qi & Ri=<, because by (1) |S(Qi) & S(Ri)|=
:&1>0. Hence there is no edge between the vertices corresponding to Qi

and Ri , and this prevents [v$&k+i , ..., v$&1] _ [v$1 , ..., v$i] from being a clique,
contradicting the requirement that [v$&k+i , ..., v$&1] _ (K & L) _ [v$1 , ..., v$i]
be an |-clique.) Q.E.D.
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Remark. These lemmas make clear that the following weakening of
Conjecture 1 is also a consequence of Theorem 2:

If G is partitionable and there exists uv # E(G) such that
|N(u)|=|N(v)|=2|&2 then G is an odd hole or antihole or has
a small transversal.

Indeed, then the |-cliques 0(u) and 0(v) of I(G) are nondisjoint. (uv is
a determined edge in G because (0) also holds for the partitionable graph
defined by the determined edges.) By Lemma 3.1 the critical edges form a
connected spanning subgraph in both 0(u) and 0(v). But the union of
these two |-cliques contains at least |+1 vertices, and then, by (6)
(applied to I� (G)) and by Corollary 2.3, G is an odd hole, antihole, or has
a small transversal.

As a consequence one easily deduces that an odd hole and antihole free
graph in the following class of graphs, is also perfect.

G :=[G: for every V$�V(G) and for either H=G(V$) or H=G� (V$)it is
true that either E(H)=<, or there exists uv # E(H), so that :(NH(u))�2,
and :(NH(v))�2].

Maffray and Preissmann [15] proved the strong perfect graph conjec-
ture for ``split neighborhood graphs'' and raised the question of proving it
for ``claw-free neighborhood graphs,'' that is for graphs each subgraph H
of which, or its complement, contains a vertex v # V(H) such that
:(NH(v))�2.

In order to extend the above claim from G to claw-free neighborhood
graphs, one should delete the condition A & B=< from the condition of
Corollary 2.1, or equivalently, one should delete the two ``extreme cliques''
in the condition of Corollary 2.2. However, these stronger statements seem
to be difficult to prove.

A variant of this argument might be helpful for proving Conjecture 1
(see the remark after Theorem 4).

Theorem 3. If G=(V, E) is partitionable, v0 # V(G), and N(v0)�A _ B,
where A and B are cliques, then there exists a (unique) order v&(|&1) , ..., v&1 ,
v0 , v1 , ..., v|&1 of [v0] _ N(v0) so that [vi , vi+1, ..., vi+|&1] is an |-clique in
G for all i=&(|&1), ..., &1, 0.

Proof. We can suppose A, B�N(v0). Because of (0), A _ v0 and v0 _ B
are |-cliques with only v0 in common.

Claim. The critical edges induced by 0(v0) in I(G) form a spanning tree
of 0(v0).

Indeed, the |-clique 0(v0) of I(G) satisfies (i) of Lemma 3.1. Hence it
also satisfies (iv), and the claim is proved.
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It follows from the claim that there exists a path P of critical edges in
I(G) between ,(A _ v0) and ,(v0 _ B), |P|�|&1. Since A _ v0 and v0 _ B
have only one common element, |P|=|&1. Now Lemma 3.2 immediately
implies our theorem (k=|&1). Q.E.D.

The heart of this proof of Theorem 3 is Lemma 3.1; the rest is a
straightforward translation of the results about I(G) to results about G,
where the translator is Lemma 3.2. The original proof of this theorem
works directly on G, whereas here, the main part of the work is made in
terms of I(G). Surprisingly, this seems to make an essential difference even
between the main lines of the two proofs.

Theorem 4. If G is partitionable, I(G) has a vertex of degree 2|&2 and
I(G� ) has a vertex of degree 2:&2 then G is an odd hole or antihole or has
a small transversal.

Proof. According to Lemma 3.1, the condition is equivalent to the
existence of an |-clique Q and an :-stable set S so that the critical edges
induced by Q and the cocritical nonedges induced by S form spanning
trees. Let us denote these by HQ and HS , respectively. We would like to
show that either G or G� satisfies the condition of Theorem 2. Let x be a
vertex of degree 1 in HQ , and let xq # E(HQ) be the edge incident to it.

Claim. There exists a vertex y # V(G) for which x(Q"x)y is forcing.

Indeed, let Q$ be the |-clique which contains q but does not contain x
(see (1)). Because of (7) Q$$Q"x must hold. But then Q$"Q consists of
one vertex; let us denote it by y: it obviously has the claimed property.

Case 1. Q & S=<. Then Q$=(Q"x) _ y meets S; thus y # S: since xy
is a cocritical nonedge, HS _ xy is a connected graph, that is, for S _ x
(6)(ii) holds. Consequently (6)(i) also holds. Apply now Corollary 1.1 to G� .

Case 2. Q & S=v, where the degree of v is at least 2 in at least one of
HQ and HS . Then Theorem 2 immediately implies the statement. The only
case that remains is:

Case 3. Q & S=x, where the degree of x is 1 in both HQ and HS . The
vertex adjacent to x in HQ is denoted by q as before, and the unique vertex
adjacent to it in HS is denoted by s.

Then, from the claim we get that there exist vertices yQ and yS so that
x(Q"x)yQ is forcing and x(S"x)yS is coforcing. Both yQ=s and yS=q can-
not hold, because that would contradict (10). But if yQ {s then G� , and if
yS {q then G satisfies the condition of Theorem 2. Q.E.D.

Remark. At the very end of the above proof we could have applied
Theorem 1 or its corollaries instead of Theorem 2. (If, say, yQ {s, then by,
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say, (10) yQ � S, and because of :(G)=|S|, yQ is adjacent to some vertex
s$ of S. yQ and s$ are adjacent forced vertices, and Corollary 1.2 can be
applied.) This fact has some significance: Case 1 and Case 2 of the proof of
Theorem 4 can be handled for I(G) too, that is, in a tentative proof of
Conjecture 1 as well. Indeed, according to Corollary 2.3 (see in the Intro-
duction or in Section 2) we can replace G by I(G) in the condition of the
utilized corollaries of Theorem 1. Only that subcase of Case 2 does not go
through trivially, when a vertex of I(G) is adjacent to the two critical edges
and two critical nonedges of I(G). It can be easily checked that this means
exactly that the condition of the following conjecture is satisfied.

Conjecture 3. If G is minimal imperfect and it contains four vertices a,
b, c, d such that ab, cd are critical edges, and bc, da are cocritical nonedges,
then G is an odd hole or antihole.

According to the remark, Conjecture 3 implies Conjecture 1. (Again, odd
holes and antiholes satisfy the condition of this conjecture.) Some other
corollaries of Theorem 4 follow.

Corollary 4.1. If G is partitionable and G has an |-clique Q and an
:-stable set S such that G&Q and G� &S are uniquely colorable, then G is
an odd hole, antihole, or has a small transversal.

Corollary 4.2. If G is partitionable and G has an |-clique Q and an
:-stable set S such that the critical edges induced by Q and the cocritical non-
edges induced by S, respectively, form a connected graph, then G is an odd
hole, antihole, or has a small transversal.

Corollary 4.1 is an immediate consequence of Theorem 4 using
Lemma 3.1(ii) O (i), and then Corollary 4.2 follows using Lemma
3.1(iii) O (i). Here we state the corresponding reformulations of the strong
perfect graph conjecture and some of their variants.

The following statements are equivalent to the strong perfect graph
conjecture. For every minimal imperfect graph G:

G has an |-clique which meets at most 2|&2 other |-cliques.

G has an |-clique Q such that G&Q is uniquely colorable.

G has an |-clique Q whose induced critical edges form a connected
graph (or equivalently, G� has a forced class).

G contains a chain consisting of |&1 consecutive critical edges.

Either H=G or H=G� contains a ``local web structure,'' that is, 2|(H)
vertices which can be ordered so that any consecutive |(H) of them form
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a clique in H (or equivalently, either I(G� ) or I(G) have adjacent forced
vertices).

In either H=G or H=G� there exist vertices v0 {a, v0 a � E(H), such
that H(v0 _ N(v0) _ a) is uniquely colorable.

The third of the above reformulations meets an assertion on uniquely
colorable perfect graphs (see the remark at the end of the Introduction).
Compare the last reformulation with Conjecture 1, noting that |N(v0)|=
2|&2 means exactly that N(v0) induces a uniquely colorable graph. (This
follows easily from the characterization of uniquely colorable graphs by
Fonlupt and Sebo� [8]. The proof of Lemma 3.1 may give a hint; see also
Sebo� [24, (*), (i)]. These results, used together with (0) and (1), imply the
last reformulation as well.)
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