JOURNAL OF COMBINATORIAL THEORY, Series B §9, 163-171 (1993)

Integer Plane Multiflows with
a Fixed Number of Demands

ANDRAS SEBO*

CNRS, ARTEMIS IMAG, Université Joseph Fourier, BP 53x,
38041 Grenoble Cedex, France

Received March 28, 1989; revised April 14, 1992

We give a polynomial algorithm which decides the integer solvability of multi-
commodity flow problems where the union of “capacity-" and “demand-edges”
forms a planar graph, and the number of demand edges is bounded by a prefixed
integer k. This problem was solved earlier for k=2 by Seymour and for £ =3 by
Korach. For & =4 much work has been done by Korach and Newmann. The main
result of the present note is a polynomial algorithm that finds such a multiflow or
proves that it does not exist, for arbitrary fixed k. Middendorf and Pfeiffer have
recently proved that this problem is NP-complete in general (without fixing k). We
actually give a more general polynomial algorithm, namely to decide whether the
relation w(G, T)=1(G, T) or its weighted generalization holds for the pair (G, T')
(where G is not necessarily planar), provided |7] is fixed, thus extending Seymour’s
method and result for |77 =4. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

We are going to study multicommodity flow feasibility in the case when
the graph defined by the union of the demand- and capacity-edges forms
a planar graph. Let us formulate this problem precisely:

Suppose that G is a planar graph, R< E(G), r:R—N and
¢: E(GN\R - N (N is the set of positive integers). A set ¥ of circuits and
a function f: 4 — N has to be found so that

(i) Forall Ce¥:|CnR|=1
(ii) ForalleeR:Y , . ccoe SICY=r(e),
(iii) Forall ee E(GI\R: Y, c e S(C)< cle).

(Think of f as a function telling the mulriplicities of elements of 6.) We
shall say that (G, R, r, ) is a network. r(xy) is called the demand of the pair
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X, ¥, xy€ R, and c(e), e E(G)\R is the capacity of e. f, or more precisely
(€, /) will be called a flow, if it satisfies (i), (i1), and (iii). (A flow is always
integer in this paper.)

The problem of finding a flow in a planar network has been investigated
a lot, partly due to the underlying nice combinatorial structure and
its appealing relation to matching theory. Seymour [23] discovered its
relation to the Chinese postman problem and used it to solve the plane
multicommodity flow problem for Eulerian graphs and to settle the case of
two demand-edges. This relation has become the alpha and the omega of
results about planar multiflows (see, for example, Barahona [1], Korach
[12], etc.) In Section 3 we shall explain this relation, which will be the
starting point in the proof of our main result. It will enable us to use the
results of Section 2 which concern the Chinese postman problem.

It has been a long-standing unsolved problem whether the plane multi-
commodity flow problem is polynomially solvable, until Middendorf and
Pfeiffer [19] proved that it is NP-complete. The result of this paper is that
this problem is polynomially solvable if the number of demand-edges is
bounded by a fixed integer k. In other words, for any integer k we shall give
a polynomial algorithm that decides the existence of a multicommodity flow
for an arbitrary network (G, R, r, ¢) for which G is planar and |R| < k. For
k =2 this problem has been settled earlier by Seymour [23] (cf. also
Lomonosov [ 16] and Sebo [22], for a generalization cf. Frank [8], [9])
and for k=3 by Korach [12]. For £ =4 many results were achieved by
Korach and Newmann [13]. For recent surveys consult [9] or [7].

In the special case where all capacities are 1, the multicommodity flow
problem specializes of course to the problem of finding edge-disjoint paths
between a given set of pairs of vertices. Note that even this problem is
NP-complete (Even, Itai, and Shamir [6], cf. Garey and Johnson [10]),
but if the number of demand-edges is fixed and r is 1 everywhere on R, it
is polynomially solvable according to the celebrated result of Robertson
and Seymour [20]. Our problem is independent of this latter one: we allow
arbitrary demands and capacities but we suppose planarity. Without
supposing planarity the same problem is NP-complete even for k=2 (see
[6] again).

Finally, let us formulate our problem more precisely. Suppose k is a
positive integer, and define the following problem:

UNDIRECTED PLANE k-CoMMODITY INTEGRAL FLOw.

Instance: Network (G, R, r, ¢), where G is a planar graph and R< E(G),
|R| < k.

Question: Does there exist a flow in this network?
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I think it is really surprising how straightforward the solution of this
problem turns out to be. It is also somewhat disappointing that the answer
does not lie as deep as one could have expected.

2. Opb cut PACKINGS

Let G be a graph, and T< V(G), |T| even. A T-join is a set of edges
F< E(G) such that d.(x) is odd if and only if xe T. A T-cur is a cut 3(X)
such that X is T-odd, that is, |X ~ 7] is odd. If T=V(G), we just say that
d(X) is an odd cut. (8(X) denotes the set of edges with exactly one endpoint
in X. d(X):=[6(X)|. If we wish to emphasize that this set of edges is
considered in the graph G, we write d5(X) and d;(X).)

Let now w:E(G)—Z"*. (Z* is the set of non-negative integers).
A w-packing of T-cuts is a family 7 of T-cuts with a function g: 7 — N,
which has the property that for all ee E(G), 3., ~. » 2(C) < wl(e). (Think
of g as a function telling the multiplicities of the elements of 7 ; that 1is,
g(C) is the number of copies of C.) 3" ;. » g(T) will be called the value of
the w-packing.

The minimum weight of a 7-join will be denoted by (G, 7, w) and the
maximum value of a w-packing of T-cuts will be denoted by v(G, T, w). If
Fis a T4oin and C is a T-cut, then obviously |F~ C| is odd. In particular,
|[FnC| 21, and (G, T, w) 2 v(G, T, w) follows. We shall say that (G, T, w)
has the Seymour property if t(G, T, w)=v(G, T, w).

In this section we give an algorithm, which, for fixed T, determines a maxi-
mum w-packing of T-cuts in polynomial time. In Section 3 we will see: this
immediately implies that for fixed T the Seymour property can be tested
in polynomial time, and this later problem, in turn, contains the plane
k-commodity flow problem.

Let us recall a well-known fact about packings of 7-cuts: for any
w-packing of T-cuts there exists another w-packing of T-cuts which is
laminar, and whose value is equal to the value of the original packing.
(A family of sets is called laminar, if for any two X,, X, of its element,
X,eX,or X, X, 0or X,nX,=. A packing of cuts is called laminar, if
it is the set of coboundaries of a laminar family.)

Indeed, if J is not laminar, we can “uncross” it as follows. Take 6(X,),
o(X,) such that X, ¢ X,, X, & X,, and X, n X, . We can suppose in
addition that X, n X, is T-odd, because if not, we replace X, by V(G)\X,.
Then X,u X, is also T-odd, and it is readily true that 6(X,u X,)+
X, N X,)<4(X,)+8(X,), where the sum means the sum of the corre-
sponding characteristic vectors. Thus, replacing ¢ N copies of each of
d(X,) and 4(X,) by e copies of each of 6(X, nX,) and 6(X, U X,) we
obtain a new w-packing of 7-cuts. It is not difficult to see that after having
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applied this “uncrossing step” a f{inite number of times we arrive at a
laminar packing. (We will not need a polynomial worst case bound on the
complexity of this uncrossing procedure.)

Recall that the fractional relaxation of a T-cut packing problem is just
the dual of the Chinese postman problem. (see Edmonds and Johnson [5],
or Lovasz and Plummer [18]). Edmonds and Johnson also observed that
the Chinese postman problem can be reduced to a weighted matching
problem in a related weigthed auxiliary graph. Our algorithm will be based
on the surprising fact that (integer) optimal dual solutions for the Chinese
postman problem also correspond to (integer) maximum odd cut packings
in this weigthed auxiliary graph. It follows in particular, that the well-
known matching algorithms can be converted into algorithms for the
Chinese postman problem, which have the same complexity. (For weighted
matching algorithms see, for example, Edmonds [4], Cunningham and
Marsh [3], Barahona and Cunningham [2]; the last finds an integral dual
solution in the bipartite case.) However, here we will concentrate only on
multicommodity flows, for more general results see the references in the
remark below.

Suppose we are given the graph G, the set T< V(G) (|T)] even), and the
function w: E(G) — Z , . Define the distance function d(x, y) :=d; . (x, y) 1=
min{w(P): P is an (x, y) path in G}. (w(X) denotes the sum ¥ _, w(x).)

Our key-result is the following:

For (G, T, w) with |T| < k, where ke N is fixed in advance, a maxi-
mum w-packing of T-cuts can be determined in polynomial time. (1)

Proof. We formulate our problem as a linear integer program with a
(4)x 2% ? constraint matrix.

Let 2 be the set of partitions of 7 into two odd sets. Clearly, | 2| = 2% 2,
Define one variable x, for each Pe#, and put one constraint
Y {xp: PeP, Pseparates ¢, and t,} <d(t,, t,) for each pair ¢, 1, T. Add
to these constraints x,>=0, and x, integer, for all Pe 2. The size of this
linear integer program is just what we claimed. Let us denote its solution
set by IP(w). (To determine the distances between pairs of vertices of T use
any shortest path algorithm; see, for example, Lawler [14].) ¥ ,_, x5
will be called the value of x:=(xp: PeP); max,  pw) 2pep Xp Can be
found in polynomial time, for by Lenstra’s tesult [15] (cf. also in Schrijver
[21]), integer programming problems in fixed dimension can be solved in
polynomial time.

We show now a natural one-to-one correspondence between /P(w) and
w-packings of T-cuts (computable in linear time).
If (7,g) is a w-packing of T-cuts and Pe?, let ap:=
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Yy (rhx.rx)=p &O(X)). Tt is easy to see that a:=(ap: Pe#)eIP(w),
and the value of a is equal to the value of (7, g).

This correspondence can be reversed: let a=(ap: Pe P)elP(w).
According to the preliminary remark we made on uncrossing we can
suppose that % :={Pe#?: ap>0} is laminar. (If not, we uncross
{X:(X, T\X)e 2} in the way dictated by the preliminary remark. Since
|T| is bounded by a constant, the uncrossing stops in constant time.) We
now construct a w-packing of T-cuts which has the same value as a.

We use induction on |V(G)| + 3 .., ap. If there are some edges e € E(G)
with w(e)=0, then contract them and put the arising new vertex to 7
if and only if exactly one of the endpoints of e is in 7. By induction, the
statement is true for the arising graph, and then it obviously holds for G
as well. Hence we can suppose w(e) >0 for all e € £(G). Then, for all ve T,
mp(v) i=min, . 7, ., d(v, ) ZmgV) :=min gy 2o W, X)>0.

LetveT, a,, ) > 0. We can suppose that such a vertex exists, because
if L={L,, LZE e % and here L, is minimal but not a vertex, then take any
ve L, and define a{l rey =min{a,, m;(v)} >0, and a} :=a, —a', ;..
On #\{L} define &’ to be the same as a. Clearly, @’ € IP(w) has the same
value as a.

Let now m := min{a(l,‘ Ty mg(v)}. Clearly, m > 0. Define

“e) {w(e)—m if eed(v)
w(e) ;=
w(e) otherwise,
g0 oo faL—m if L={v, T\v}
£ la, otherwise,
and let #¥:={LcT:a)}>0}; that is, ¥ =L\{L}. We prove for
=(a}:Le "),
a‘e IP(w").

Then, by induction, there exists a w'-packing in G which has the same
value as a°. Adding m copies of d(v) to this w'-packing, we obtain a
w-packing in G which has the same value as a, and we are done. A
polynomial aigorithm for finding this w-packing can be obviously read out
of this procedure.

So the only thing remaining to be proved is:

CiaM. Let d*:=d; .. Then Y. {x, :Le %" separates t, and t,} <
d"(t,, t,) for each pair t{, 1,€T.

Proof. U t;=v, then the claim is easy: for arbitrary re T,

Y {a}:Le &" separates r and v} <d(1, v) -
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because ae [P(w), and for all terms on the left-hand side, a} =a,, except
for a, , 0 = Ay ey — M. On the other hand, d(t,v)—m=d"(t,v),
because each path joining ¢ and v contains exactly one edge incident to v.

Let now both ¢,,1,eT be different from v. If d%(¢,, t,)=4d(1,, 1;)
we have nothing to prove, so suppose d'(t,,t,)#d(t,,1,); that is,
d(t;,t,) <d(1,, t,). This happens if and only if every w’-minimum path of
G joining t, and ¢, contains v. Let Q be such a path. Then v cuts Q into
two parts; denote these by Q, . and Q, ,,. Note that any P e 2 separating
t, and t, either separates ¢, and v, or ¢, and v. Thus, using the above
inequality,

Y {a}:Le ¥ separates t, and ¢, }
<)Y {a}:Le %" separates ¢, and v}

+Y {a}:Le %" separates v and 1,}
<d(t,,vy—m+dv, t,)—m=d"(t,, )+ d"(v, t5).
On the other hand,
d'(t;,v) +d(v, ) <w(Q,, ) +w Q. ) =w(Q)=d"(1,, 1)

The claim, and thus the theorem is proved. |

Note that the algorithm generated by the above proof is doubly
exponential in k. A more practical algorithm would be still more interesting.

Remark. In an earlier version of this note (Bonn Report 88534-OR)
I stated a result about reducing the maximization of 7-cut packings in
general, to the maximization of odd cut packings in matching problems,
which is now only implicit in the second half of the above proof. 1 have
omitted them here, since the interested reader can find now these more
general relationships in the literature:

1. Recently Alexandr Karzanov kindly pointed out to me that [11,
Theorem 5.3] establishes a correspondence between some more general
families of cuts and their restrictions to subsets.

2. An improved presentation and simpler proofs of this omitted
result of my Bonn report can be found now in Andras Frank’s survey
paper [9]. Note, however, that for applications to the complexity of the
general Chinese postman problem (without fixing |7|), our argument is
not really useful; the same complexity bounds follow in an almost trivial
way, as it was noticed after the publication of his paper by A. Frank.
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3. PLANAR MULTIFLOWS

We explain first the relation between flows and packings of T-cuts
establised by Seymour [23]. The details are described for the sake of
completeness, and also because we are mainly interested in the connection
between slightly different problems, the wundirected plane k-commodity
integral flow problem and the following problem:

Suppose ke N.

SEYMOUR PROPERTY TEST FOR k.

Imstance: A graph G, T< V(G), |T| even, |T| <2k, w: E(G)— N.
Question: Does (G, T, w) have the Seymour property?

We show first that the planar special case of this problem is equivalent
to undirected plane k-commodity integral flow.

If G is a planar graph, we shall always suppose that it is actually
embedded in the plane. The dual graph (with respect to the given
embedding) will be denoted by G*, and the dual of an edge ¢e E(G),
by e*. (The embedding will not have any significance; we shall speak only
about cuts and circuits.) If F< E(G), then F*:={e*:eeF}. Clearly,
(F*)*=F, and C is a circuit of G if and only if C* is a cut of G* and vice
versa.

Let (G, R, r, ¢) be a network, where G is a planar graph, and define

r{e) if eeR

wi E(G*) - N, W(e*):={c(e) if eeE(GN\R.

and T:={xe V(G*): dg.(x) is odd }.

PRrROPOSITION.  With the above notation

(a) There exists aflowin (G, R, r,c)ifand only if (R)=1(G*, T, w) =
wWG*, T, w).

(b) The problem of finding a flow in (G, R,r,¢) is polynomially
equivalent to finding a 1(G*, T, w) element packing of T-cuts.

(c) If there exists a polynomial algorithm that solves the Seymour
property test for k, then there exists one that solves the undirected plane
k-commodity integral flow.

Proof. (a) 1If there exists a flow (%, f), then each element of
&*={C*: Ce¥} contains exactly one edge of R* Thus the elements of
&* are T-cuts. (€*, f*)is a w-packing of T-cuts (f*(C*) := f(C)) of value
r(R), and R* is a T-join of weight w(R*)=r(R). Hence, only the if part
of (a) is proved. Conversely, if r(R)=1(G* T,w)=v(G* T,w), then
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obviously, any cut in a w-maximum packing of T-cuts (6*, f*) intersects
every mimimum 7-join, in particular R*, in exactly one element, and
covers all the elements of R* (complementary slackness). This means
exactly that (%, f) is a flow, and the proof of (a) is complete.

(b) is an immediate consequence of the above proof of (a), and (c)
is also a consequence of (a), with the additional remark that
IR| <k=|T| <2k

We have arrived at our main result:

“Seymour Property test for k,” and “undirected plane k-commodity
integer flow” can be solved in polynomial time. (2)

Proof. The polynomial solvability of the former problem is an
immediate consequence of (1), because (G, T, w) is the minimum weigth of
a matching of T with weights d{(¢,, t,) (well known, see Edmonds and
Johnson [57).

The polynomial solvability of the latter problem is an immediate
consequence of the first, and of (c) of the above proposition. ||

Let us emphasize again that the worst-case performance of our
algorithms is doubly exponential in 4. For k =5, say, we just have a linear
integer program with 45 constraints and 256 variables and a very
particular structure. It could be an intriguing problem to look more
carefully into this integer program to obtain a better bound and an
algorithm that is applicable in practice which does not use Lenstra’s
general integer programming algorithm.
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