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In a superstitious company everybody has numbers that he thinks to be unlucky
for himself. When they meet, everybody wants to shake hands with some of his
acquaintances, but nobody wants to shake hands with an unlucky number of
acquaintances. When can this be successful? This question occurred to L. Lovasz
(Period. Math. Hungar. 4, Nos. 2-3, 1973, 121-123), where the case when everyone
has one unlucky number (antifactor problem) is answered. In this paper we give a
“Tutte-type good characterization” (and a simple polynomial algorithm) to decide
this question when several unlucky numbers are allowed, but no one in the
company has two neighboring unlucky numbers. ¢ 1993 Academic Press. Inc.

[. INTRODUCTION

Let G be an arbitrary graph, and let a set H(x) of non-negative integers
be associated with every vertex x e V(G ). An H-factor is a set F < E(G) for
which d,.(x)e H(x) for all xe V(G). (V(G) is the vertex set, E(G) the edge-
set of the graph G. 3,(x) is the set of edges of F incident to x, d,(x) is the
cardinality of this set. If F= E(G), then we simply write 8(x) and d(x).
Similarly, for x< V(G), d(X) denotes the set of edges with exactly one
endpoint in X.)

The problem of deciding the existence of an H-factor is NP-complete.
In fact, if we restrict G to be 3-regular, and H(x) to be equal to {0, 3} or
{1} for every xeV(G), we already get an NP-complete problem
(cf. Lovasz [7], Lovasz and Plummer [9]). This suggests studying the
existence of general antifactors, that is, H-factors, where H has the property

(%) i¢ H(x) implies i+ 1 € H(x), for every x e V(G).

The antifactor problem is the special case where H(x)=N'g(x) (g(x)e N)
for all x e V(G). The methods we use below badly need (), they are based
on it, this is the limit of their use.

This fact was pointed out by Lovasz [7] who generalized the structure-
theory of matchings to “general factors,” that is, H-factors, where H(x) is
a subset of an interval (which depends on x), and () is required only for
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GENERAL ANTIFACTORS OF GRAPHS 175

this interval. However, Lovasz’'s paper does not provide a polynomial
algorithm to solve this problem.

Recently, Cornuéjols [5] has given a polynomial algorithm.

Both Lovasz [7] and Cornuéjols [ 5] generalize Tutte’s theorem in some
sense, but in these results the property generalizing the “oddness” of Tutte’s
theorem seems as difficult to check as the existence of general factors.
Lovasz [8] gave the following simple direct characterization for the
antifactor problem, and a straightforward polynomial algorithm.

THEOREM (Lovasz [8]). Suppose H(x)=N\g(x) (g(x)eN) for all
x€ V(G). Then G has an H-factor if and only if G is not a tree which can
be oriented so that the indegree of vertex v is g(v), for all ve V(G).

The goal of the present paper is to give a Tutte-type answer to the
general antifactor problem as well. Unfortunately, this answer turns out to
be more complicated, and different in spirit. (However, Lovasz’s theorem
can be simply deduced from the main result, see end of Section 3.)

By “Tutte type characterization” we mean an apparent reason for the
non-existence of graph-factors, where “apparent” means “very easy to
check,” and could be defined precisely to mean a constraint checkable in
linear time, or with a “cutting plane proof” (cf. Chvatal [2], see Section 4).

For the more special, better known factorization problems, the Tutte-
type characterization for the existence of graph factors and the good
characterization of the weighted optimum get a common, deeper explana-
tion in the polyhedral descriptions. The former corresponds to Farkas’
Lemma, the latter to the duality theorem applied to the minimal system of
inequalities describing the convex hull of the investigated graph factors. To
determine this system of inequalities, the usual way is to first write down
a bigger polyhedron, which however does not contain new integer points.
Then use non-negative combinations giving new inequalities with integer
coefficients, and round the corresponding right hand sides, to get sharper
valid inequalities for all the integer points of the given polyhedron.
According to Chvatal [1], after a finite number of such steps one gets
down to the convex hull of the integer points. A procedure that makes clear
the emptiness of a polyhedron by repeatedly taking linear combinations
and rounding, proving in this way an inequality that has obviously no
solution, is called a cutting plane proof (Chvatal [2]).

We will not need to define this term more precisely, we only mention it
to explain what we mean by a Tutte-type characterization. Tutte’s theorem
and all its generalizations can be interpreted as simple cutting-plane proofs;
so can the theorem we present below for H-factors where H satisfies (*).
(For more details see Section 4.) However, the naturally stated optimiza-
tion problems on H-factors, or the related linear description of their convex
hull, remain open.

582b-5% 2-2



176 ANDRAS SEBO

Let us call the pair (G, H) dense if H satisfies (* ), and G is connected.

In Section 2 we characterize the existence of H-factors for dense pairs
with 2-connected G; this characterization is used in Section 3 to obtain the
characterization for arbitrary graphs. In Section 4 we explain how our
result can be interpreted as a cutting plane proof.

2. Two-CoNNECTED GRAPHS

First we prove a simple statement concerning arbitrary dense pairs. For
a given dense pair (G, H) and Fc E(G), we call xe V(G) feasible {(in F),
if d.{x)e H(x).

ProPOSITION 1. If (G, H) is dense, and ac V(G), then there exists
F< E(G) so that x is feasible for all xe V(G)\a.

Proof. Let FS E(G) with [{xe V(G)\a:d.(x)¢ H(x)}| minimal. If
indirectly, there is a b # a, d.(b) ¢ H(b), then let P be a path between a and
b, and let P(x, y) denote the subpath between two of its vertices x and y.
By (), dysp(b)e H(b).

Let x be the vertex with d;.,,(x)¢ H(x) nearest to b on P (if there exists
no such vertex, then define x=a). dp,p, . (x)e H(x), and because of
the choice of x, for all vertices y between b and x, dpypp . (¥)=
disp(y)e H(y). Thus, FAP(b, x) contradicts the choice of F, because b
becomes feasible. Q.ED.

For ae V(G) let
Ng ulay={dg(a): FE E(G), de{x)e H(x)if x£a},

that is, N ,(a) is the set of all possible degrees in a, under the condition
that all the other vertices are feasible.

Remarks. We often use the following easy statements:

— By Proposition 1, N 4(a)# .

- There exists an H-factor if and only if N ,(a)n H(a)# .

— If, i,i+1€Ng y(a), then by (x), N, yla)n H(a)#, and
consequently there exists an H-factor.

Given a dense pair (G, H), we call H(x) and also x € ¥(G) odd, or even,
if H(x) consists of only odd or of only even integers. A vertex will be said
to have fixed pariry if it is odd or even.

PROPOSITION 2. Suppose a€ V(G) is not a cut vertex in G. Then N y4(a)
either contains neighboring numbers, or if not, then it consists of all the odd,
or all the even integers in [0, d,(a)].
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Proof. First we show that
ieNg yla), i+1¢Ng yla), i+2<d;(a) implies i+2€ N; 4(a).

Let F< E(G) be such that d,.(a)=1i, and e,, e, € d(a)\ F. Since a is not
a cut vertex, there exists a cycle C containing both e, and e,. All the
vertices of V(G )\a are feasible in F AC as well: otherwise, like in the proof
of Proposition 1, we have a subpath P of C beginning with a such that
in FAP all vertices of V(G)\a are feasible, in contradiction with
i+1¢Ng y4la) Thus i+2=dp(a)e N y(a). Similarly,

ieNg yla),i—1¢Ng n(a),i—220 implies i —2e N 4 (a),

{The only difference is that now the choice e,,¢,ed(a)n F has to be
made, or we simply apply the already proved statement to H'(x):=
{ds(x)—h:he H(x)} and note that N, =d;— Ng 5.) Q.E.D.

CoroLLARY L. If (G, H) is dense, and G does not have an H-factor, then
all the vertices of G except possibly the cut vertices have fixed parity.

Proof. We show that if a is not a cut vertex but it does not have fixed
parity, then N ,(a)nH(a)# ¢ which means that there exists an
H-factor. This is obvious if N ,(a) contains neighboring numbers. If
Ng y(a) does not contain neighboring numbers, then by Proposition 2, it
consists of all the odd or all the even numbers of the interval [0, d.(a)].
At least one of these is in H(a), because, by supposition, H(a) does not
have fixed parity. Q.E.D.

COROLLARY 2. If (G, H) is dense, and G is 2-connected, then there exists
no H-factor, if and only if x has fixed parity for all x € V(G), and the number
of odd vertices is odd.

Proof. By Corollary 1 we immediately have that every vertex has fixed
parity. Choose an arbitrary ae V(G). By Proposition! there exists
F< E(G), such that d.(x) has the same parity as H(x) for all x #a. Since
there is no H-factor, the parity of d,(a) is different from that of H(a). The
proposition follows now from the fact that the number of vertices with
dp(x) odd 1s even. Q.E.D.

We are still far from our goal: in order to see clearly when there is no
H-factor, we should better understand the set N ,(x) for cut vertices as
well.

In Fig. 1(a), the cut vertex a does not have fixed parity, in fact any
degree but 2 is allowed. Despite this, the graph does not have an H-factor.
Here we still have an easy explanation: in an H-factor the degree of a
should be 1 in both blocks.
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FIGURE |

If we want to see that the graph of Fig. 1(b) does not have an H-factor,
we have to find a somewhat more general reason: G —a, has two com-
ponents with all vertices having fixed parity, and both have an odd number
of odd vertices. Thus, if Fis an H-factor, then dp(a,) > 2. Since the degree
of a, in these components is 2, any H-factor will also miss one of the two
edges, so d,.(a,)<5—2=3. Now, after having deduced this lower and
upper bound, @, has fixed parity, and a similar argument can be applied
now to a,: we get that d,.(a,)>2, and d,.(a,) <3 —1=2, but 2¢ H(a,), so
F is not an H-factor, a contradiction.

The general argument we have is the direct extension of this.

3. ParITY TRACES

To formulate the general reason for the non-existence of general
antifactors it will be helpful to have the following notion.

Let (G, H) be dense, V', denote the set of odd vertices, and V7] the set of
even vertices. Suppose («,, ..., 4, ) is an order of V(G)\(V(',u V(Z)). (a;, .., a;)
will be called a parity trace if the sets and numbers defined recursively as
follows, satisfy (1) below.

0. V) and V' are defined as above. For i=1, .., k define recursively the
numbers /,, u,, and the sets V!, V2, for which (1) below holds:

1. Suppose V! | and V? | have already been defined. Let /, be the
number of those components C of G —q, for which C< V] (U V! | and
[CA V! || is odd.

Let u,:=d;(x)—1t, where ¢, is the number of those components C of
G —a, for which C< V! UV} |, and the parity of |[C~ V] || is different
from the parity of d,;(a;, C). (dg(a;, C) is the number of edges joining a;
to some vertex of C.) Moreover, as mentioned, we suppose that (1) holds:

(1) The numbers in [/, u,] ~ H(a;) have the same parity.
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2. If[l;,u,] n H(a;)is odd, then let V| :=V! | U a, and V}:=V? ;if
it is even, then V! :=V! |, and V?:=¥} ,ua,. There is no other case
according to (1). ([/;, ;] H(a,)= is possible, then we are free to
consider it to be either odd or even.)

If a,,..,a, is a parity trace, then let V':=V;, V?:=V;. Clearly,
VG)=V UV V' AV =,

ExaMpPLE. In Fig. 1(a), {a} is a parity trace: /,=1t,=2, u,=2,
[l,uJnH(@)= . Let ae V}.

Similarly, in Fig. 1(b), (a,,a,) is a parity trace: I, =t, =2, u,=3,
[, u ] Hla))= {3}, thus a,eV}; L,=2, t,=1, u,=2, [L,u]n
H(a,)= . Let a,e V).

Of course, if for some i we have [/, u;]n H(a,)= ¢, then we know
already that there is no H-factor. This fits into the more general set of
obstacles where | V'| is odd (see the Theorem below): in this case we are
free to let both a,e€ V! or a,e V7. In our examples V' consists of the
vertices with H(x)= {1}, and of the vertices in the parity trace: | ¥'| =3 in
the first example (Fig. 1(a)), and | ¥'| =5 in the second (Fig. 1(b)).

(Note that (a,, a,) is also a parity trace.)
We state and prove now the main result of the paper:

THEOREM. Let (G, H) be dense. Then there exists an H-factor, if and
only if there is no parity trace with \V'| odd.

Proof. The necessity of the condition is easy: Suppose there exists an
H-factor F, and a parity trace (a,, .., a;). We have to show that | V'] is
even, Clearly, it is enough to prove that d.(x) is odd if and only if xe V.

We prove the following statement by induction on j < k:

(2) If F< E(G) is feasible on V] UV}, then d(x) is odd if
xe V!, and d,(x) is even if xe V}.

For j=0 we know this by definition. Suppose this is true for j=i—1.
If CeVv! ,uV? |, and |C~AV! || is odd, then d4.(C) is odd, and
consequently d(a;, C) = 1. d(a;) 2 I, immediately follows.

fccv! (oV: ,,1CnV! || #dgla;, C)(mod?2), then the parity of
d(C) is different from that of d(a,, C) yielding d(a,, C)<d;{a;,, C)— 1.
This implies immediately d.(a;) <dgl{a,)—t;,=u;.

Consequently dr(a,}e [{,, u;] ~ H(a,), whence d,(a;) is odd provided
a,e V!, and even provided a,e V2. Thus (2) is proved. Since (a, .., a;) is a
parity trace, V(G)=V'u V2 Applying (2) to j=k we have that d,(x) is
odd if and only if xe V' as we hoped.

To prove the essential, opposite implication, let us suppose that G does
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not have an H-factor. We construct the parity trace (ay, .., a,) with | V']
add.

Suppose V! |, V? | are already defined (1 <i<k).

We construct (a, ..., a;) so that (1) holds. This determines ¥}, V2.

Claim. There exists a,e V(G)\(V!_, v V?_,), for which all components
of G — a, except possibly one are subsets of V! U V? |.

Indeed, according to Corollary 1, the elements of V(G)\(Viu V) are
cut vertices. It is easy to see that for any non-empty subset 4 of the set of
cut vertices of an arbitrary graph there exists an @€ A such that all the
other elements of 4 are in the same component of G — a. (This is clear, e.g,,
from the block-structure.) Applying this to A :=V(G)\(V!_ ,uV? )<
VG (V3o V) we get our Claim.

Choose now a; to be a point with the property stated in the Claim. Let
2 be the family of graphs induced by the sets of the form Cu {qa,}, where
C is a component of G —a;. a, is not a cut vertex in Be %, and

(3) Ng.wla,)= Z Ng nlay).

Be#

(If X,Y,..,Z are sets of numbers, then X+ Y+ --- +Z:={n:n=
x+y+ -4z xeX, ye¥,..,zeZ}.) Since G has no H-factor, N ,(a;)
does not contain neighboring integers, whence for all Be#, Ny ,(a;)
does not contain neighboring integers either. Applying Proposition 2, for
each Be#, N 4(a;) consists of all the odd or of all the even integers of
the interval [0, dg(a,}]. The parity here must be equal to the parity of
|BAV,_,| for all Be#, Bc V! [ uV? |. Comparing this with (3), and
with the definition of /;, u, we see that N; ,(a,) <= [/, u,].

On the other hand, by the choice of a,, for all Be#, V(B)c
Vi_\u Vi holds, except for possibly one B,e#. But also Ny ,(a,)
consists of all the odd or all the even integers in [0, dg,(a,)]. Thus,
according to (3), Ng y,(a,) consists of each second number starting with
either /, or /,+ 1 and until either u, or u;— 1, depending on the parity of
Ng,. u(a;). In other words N 4 (a;) consists of all the odd or all the even
integers in [1;, u;]. Since there is no H-factor, and using ( *),

(4) (s udn Ha)= [, u,]\N y(a,),

whence (1) holds.
Until now we proved that if there is no H-factor, then there exists a
parity trace (ay, ..., a;). We show now that for this parity trace |V} | is odd.
Let F< E(G) be such that every xe V(G\a, =V, ,u Vi | is feasible.
Since (a,, .., a,_,) is a parity trace, (2) can be applied: d.(x) is odd if
xeV, ,,and even, if xe V] |. Hence, the parity of d,(a,) (€ [/, u,] N
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Ng.y(a,)) is the same as that of |V _,|, and according to (4) different
from the parity of [/, u,]n H(a,). It follows that |V, ,{ and [/, u,]n
H(a,) have different parities. Q.ED.

This proof can easily be turned into a O(| V(G)| | E(G)|) algorithm which
either determines an H-factor, or provides a parity trace proving the
non-existence of such an H-factor.

For the sake of another example let us conclude this section by checking
how parity traces specialize in the antifactor case. Note first that in this
special case VU V;§ consists of vertices of degree 1 and 2, and that a, has
one neighbor in each component of G —a,. If C< VU V' is a component
of G—a,, and v is the neighbor of a, in C, then clearly, d-(v) < 1. Thus,
either d-(v)=0 (V(C)={v}), or there exists another ue V(C)\v, with
d(u) odd, that is, d~(u)=1. In the former case d;(v)=1, whereas in the
latter case d;(u)=1. We have shown that the existence of a parity trace
implies that there exists a vertex of degree 1 in G. Lovasz’s antifactor
theorem follows now by a straightforward induction.

4. CUTTING PLANE PROOFS

Finally, let us sketch how parity traces can be interpreted as cutting-
plane proofs.

First we have to give a system of linear inequalities whose integer
solutions are the characteristic vectors of H-factors. This is an easy
excercise, which can be solved in many different ways. Here is a possible
solution that has the advantage of being applicable in the case when we
also permit bounds in H, and the number of constraints in it is not big.

Suppose H(v) < [{(v), u(v)], I(v), u(v)e H(v), and suppose () holds for
arbitrary ie [{(v), u(v)].

Let us associate to each edge e € F a variable x(e). The feasible values of
x will be the characteristic vectors of H-factors.

For all ve V(G), H(v) determines a unique partition .#(v) of the
interval [/(v), u(v)] into maximal intervals of the form I=[I(I), u(I)]
i(I), u(I) e H(v) with the following two properties (see Fig. 2):

- either 1< H(v),
—or InH(v)y={iel:i=lI)=u(l) (mod 2)}.

FIGURE 2
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Let us define now the coefficients p(v, I):p(v,I)=1 if I< H(v), and
p(v, )= 2 if only each second element of / is in H(v). For all v e V(G) and
I e #(v) we define in addition variables y(v, I), z(v, I), and for all ve V(G)
a variable x,.

(E0) 0<x(e)<1Vee E(G); w(o, I, z(v, I 2 0Vve V(G), Ie #(v)

(E1) Y oye, D=1
Ie #(1)
(E2) Y po.DDH<x(de)< Y o, Dull)  YoeV(G)
le #{v) [silz]

I — (1 =y, 1) <x(6(v))—pv, 1) z(v, I)
(E3) <IN +(1—y(v, 1)) Yve V(G),VIe £(v).

The integer solutions of this system of inequalities clearly correspond to
H-actors: (E1) chooses an interval I, (E2) makes sure that the degree will
be in this interval, and (E3) does not say anything if y(v, /)=0, or if
p(v, I)=1 (it can be easily satisfied in these cases with an appropriate
z(v, 1)). On the other hand if y(v, I)=1, and p(v, I)= 2, then it implies an
equality ensuring that the parity of x(d(v)), that is, of dy(v), equals /(v).

Let us see an example of how (EQ), (El), and (E2) imply new
inequalities with a cutting plane proof. (Our example is the cutting plane
proof of the so-called T-cut constraints, ¢f. Edmonds and Johnson [6].)

If for some ve V(G), .#(v) consists of only one interval I(v), and
p(v, I)=2 (meaning exactly that v has fixed parity), then by (El),
y(v, I(v)) =1, and applying (E3) for the pair (v, I(v)) we get

(3) x(6(v)) = 2z(v, L(v)) = {({(v)).
If T consists only of such vertices, and Y ..+ /({(v)) is odd, then adding
up (5) for all ve T,

(6) x(o(T)) +2x(E(T))—2 Z (v, I(v))= Z I(I(v)).

vel ve T

Add to this —x(4(7T)) <0, then divide by 2, and round,

ZX'GTI(I(U))J

(7) X(E(T)) - Y, z(v, I(U))SL 5

veT

Multiplying (7) by 2, then subtracting it from (6), since the right hand side
of (6) is odd, we get

(8) x(3(T)H=1
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We described this well-known procedure (besides the goal of giving an
example) because we need it later. For (f, g)-factors (possibly with parity
constraints), and their special cases, matchings and 7-joins, one can prove
in this way similar inequalities to (7} and (8). In these cases, for all
ve V(G), #(v) consists of one interval, and according to the result of
Edmonds and Johnson [6], some inequalities proved similarly to (7)
describe the convex hull of all graph factors. (For all of these “classical”
problems the minimal description and the minimal TDI description are
also well known, cf. Cook and Pulleyblank [3, 4, 10].)

If (a,, .., a;) is a parity trace, then after the deletion of a, we remain
with a graph having /, components C,, .., C, for which we can show with
a cutting plane proof x(8(C)))=1 (i=1, .., 1))

Adding up these inequalities (and some inequalities of the form x(e) > 0)
we arrive at the inequality

(%) x(ola)) =1,

Similarly, for ¢, components C of G—a, it can be proved that
x(3(C))<dg(C, a,)— 1, and adding up these inequalities, we get

(10) x(o(a)))<dg—t,=1u,.

Equation (5} is now deduced for v = a, and (6), (7), (8) follow. Similarly,
continuing to do the same for a,, ..., a., if (a,, .., ;) 1s a parity trace, and
| V'] is odd, then we finally get x(8(V(G)))= 1, which obviously does not
have any solution. Figure 3 represents a graph having 2k + 1 vertices, and
all the vertices are labelled with one of the letters 4, B, C. Let H, :=1{0, 2},
Hg:={1}, H.=1{0,1,3,4}.

It is easy to see that the sequence of vertices denoted by C with the order
from the left to the right is a parity trace, and | V'| =2k — 1 is odd, so this
graph does not contain an H-factor.

Starting with the inequality system (EO), (E1), (E2), this parity trace
determines a cutting plane proof of length & — 1 (and in fact of depth &/2)

FIGURE 3
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proving the emptiness of the H-factor polyhedron. If the reader would like
to see a non-empty example to a “general factor polyhedron” with a long
Chvatal procedure (probably with a large Chvatal rank), then he only has
to modify to B the label 4 of one of the two vertices labeled with 4. The

m

ore complicated algorithmic behavior of general factors compared to the

classical factorization problems can probably be explained by their larger
Chvatal rank.

9
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