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We study decision problems of the following form: Given an instance of a
combinatorial problem, can it be solved by a greedy algorithm? We present
algorithms for the recognition of greedy instances of certain problems, structural
characterization of such instances for other problems, and proofs of NP-hardness
of the recognition problem for some other cases. Previous results of this type are
also stated and reviewed. Q 1996 Academic Press, Inc.

1. INTRODUCTION

We study in this article decision problems of the following type: Gï en
an instance of a combinatorial problem, can it be sol̈ ed by a greedy
algorithm? If the answer is positive, we say that the instance at hand is
greedy. We present efficient algorithms for the recognition of greedy
instances of certain combinatorial problems, structural characterization of
such instances for other problems, proofs of NP-hardness of the recogni-
tion problem for other cases, as well as some open questions within this
scope. The precise meaning of ‘‘greedy algorithm’’ varies according to the
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combinatorial problem at hand. It is always based, however, upon some
‘‘best fit’’ or ‘‘any which fits’’ approach and it avoids backtracking.

We focus here on a more rigorously defined, yet not as general a
concept, that of ‘‘greedy hereditary systems’’:

Ž .A hereditary system is a pair H s S, FF , where S is a finite set and FF is
a family of subsets of S, where F g FF and FX : F implies FX g FF. The
members of FF are called the feasible sets of the system.

Many combinatorial problems deal with finding maximum feasible sets
in certain classes of hereditary systems. The greedy algorithm for the

Ž .construction of a maximal feasible set M of a hereditary system H s S, F
is defined as follows:

begin
let M be the empty set;

repeat
� 4select any s g S R M, such that M D x is feasible and let M

� 4become M D x ;
until such x does not exist;

return M
end.

If a weight function is defined on S and a maximum weight feasible set
Ž .is required though, not necessarily achieved , then the selected element x

should be of maximum possible weight.
Matroids form the family of hereditary systems for which the greedy

algorithm indeed provides a maximum weight feasible set for every positive
weight function. We study here systems for which the above holds for the
‘‘all 1’’ function:

Ž .A greedy hereditary systems greedy-HS is a hereditary system for which the
greedy algorithm always produces a maximum cardinality feasible set.

ŽEquivalently, a hereditary system is greedy if and only if its maximal with
.respect to set containment feasible sets are all of the same cardinality.

There are doubly exponentially many distinct hereditary systems on an
underlying set of cardinality n. Thus, the description of a general heredi-
tary system is exponentially long in n. Any complexity analysis highly
depends on the specific encoding scheme by which the input is described;
e.g., the hereditary system on the vertex set of a graph, whose feasible sets

Ž .are the stable sets see the next section , can be efficiently encoded by a
description of the graph. On the other hand, an explicit list of all feasible
sets of the same system, can be exponentially longer. An important role is
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hence played by the combinatorial frame in which the hereditary system is
described.

In order to verify that a given hereditary system is nongreedy, one
should present two maximal feasible sets which differs in size. It implies

Žthat, if testing feasibility and maximality of a set of a system induced by
.some combinatorial problem is in NP, then the corresponding recognition

of a greedy instance would be in co-NP. Among known NPC problems, we
will show some for which recognizing a greedy instance is co-NPC, as well
as some others where greedy instances can be recognized in polynomial

Ž .time. We have found no ‘‘natural’’ whatever this last term means prob-
lem, solvable in polynomial time, for which the recognition of a greedy
instance is NP-hard. It is possible, however, to artificially construct such a
problem:

Ž .Let k G 4 be an integer and G s V, E a graph on at least k q 1
vertices, which contains two vertex disjoint edges e and e . Consider the1 2
hereditary system on V which consists of all subsets of cardinality k or less
and those of cardinality k q 1, which do not contain a k vertices stable

Žsubset. A stable set in a graph is a set of vertices with no edge between
.any two of its members. A maximum feasible set in such a system is

always of size k q 1 and it can be constructed in polynomial time by
selecting any set of k q 1 vertices which includes the endvertices of e and1
e . On the other hand, a k vertices subset is maximal feasible if and only if2

Ž .it is stable. It turns out that an input k, G is greedy if and only if G has
no stable set of size k. Telling if there exists a given sized stable set in a

Ž w x.graph is a well known NPC problem e.g., 9 . Recognizing a greedy
instance of the above is hence co-NPC.

In what follows we deal with the recognition of greedy-HS among some
classes of hereditary systems, induced by certain known combinatorial
problems.

While studying the subject, we have encountered many results of this
nature in the literature. Our notion of ‘‘greedy’’ is not commonly used. In

Žw x .some articles it is replaced by ‘‘random’’ 1]3, 19, 23 and others . Several
wauthors use ad-hoc terminology, such as ‘‘well-covered graphs’’ in 16, 4,

x18 , dealing with the maximum stable set problem and ‘‘equimatchable
w xgraphs’’ in 13 , referring to the maximum matching problem. We find

‘‘greedy’’ appropriate for the task, while the term ‘‘random’’ is heavily
loaded with other mathematical connotation. It is worth mentioning two

w xrecent articles 11, 25 . Both deal with some greedy schemes to certain
linear programming problems. Despite the similar titles, the content of
these papers does not overlap with that of ours. Each of the following
sections is devoted to a certain family of combinatorial problems. We also
consider some cases which do not fit to the framework of hereditary
systems.
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2. THE MAXIMUM STABLE SET PROBLEM AND
ITS DERIVATIVES

2.1. Maximum Stable Sets

Ž .A stable set also known as ‘‘independent’’ in a graph is a set of vertices
with no edge between any two of its members. Finding a maximum size

Ž .stable set more precisely, telling if there exists one of a given size is a
w xwell known NPC problem, e.g., 9 . The stable sets of a graph are clearly

the feasible sets of a hereditary system. Accordingly, a graph is maximum
Ž .stable greedy MS-greedy if its maximal stable sets are all of the same

cardinality. Let the problem of telling whether a given graph is MS-greedy
Žbe denoted by the abbreviation g-MS We assume that the size of the

input is polynomial in the number of vertices of the input graph. This
convention holds throughout this paper, whenever an input graph is

.considered . We prove now that the recognition of MS-greedy graphs is
co-NP-complete, even when restricted to K -free graphs. This particular1, 4
restriction is, in a way, best possible, as stated later in Theorem 2.7.

THEOREM 2.1. g-MS is co-NP-complete. This remains true when restricted
to graphs with no K induced subgraph.1, 4

Proof. First let us restate the theorem in complementary terminology:
The following decision problem is NP-complete:

Ž .Input: A graph G s V, E
< < < <Question: Are there two maximal stable sets A, B : V with A / B ?

The problem is obviously in NP. We show NP-hardness by providing a
Ž .polynomial time reduction of the 3-dimensional matching problem 3-DM ,

defined as follows:

Input: Three disjoint sets X, Y, Z of the some finite cardinality k and a
collection TT of three element sets, where each member of FF includes
exactly one element from each of X, Y, and Z.
Question: Is there a subset M of pairwise disjoint members of TT, whose
union is X DY D Z?

Ž w x. Ž .3-DM is well known to be in NPC see 9 . Let I s X, Y, Z, TT be an
� 4 � 4instance of 3-DM, where X s x , . . . , x and Y s y , . . . , y . Let t be a1 k 1 k

�� 4 < 4new element, t f X DY D Z. Define TT s t, x i s 1, . . . , k and TT sx i y
�� 4 < 4 Ž .y i s 1, . . . , k . Let G I be the intersection graph of the subset systemi
TT D TT D TT , that is, the vertex set is TT D TT D TT , and two are adjacent ifx y x y
and only if the corresponding subsets have a nonempty intersection. Since
< <A F 3 for each A g TT D TT D TT , any four sets, each intersecting with A,x y

Ž .cannot be pairwise disjoint, hence, G I does not admit a K induced1, 4



RECOGNIZING GREEDY STRUCTURES 141

Ž .subgraph. A stable set of G I corresponds to a collection of pairwise
disjoint members of TT D TT D TT . A maximal such collection always in-x y

Žcludes k disjoint subsets which completely cover Y otherwise, some
� 4 .y g TT can be appended . If X is not completely covered too, then onei y

Ž .member of TT can also be added to form a maximal stable set of G I ofx
size k q 1. A smaller maximal stable set can be formed only by k pairwise
disjoint members of TT, which completely cover both X and Y, namely, by a
complete 3-dimensional matching on the instance I. Any k q 2 members

Ž .of TT D TT D TT obviously contain an intersecting pair. Thus, G I hasx y
Ž .maximal stable sets of different size k and k q 1 if and only if the

instance I is solvable for 3-DM. B

Note that the result remains valid even if it is a priori known that the
cardinality of a maximal stable set is either k or k q 1.

w xUpon completion of this paper a recent work of Plummer 16 was
brought to our attention. It contains references to two other proofs for

w xco-NP-completeness of g-MS: one by Chvatal and Slater 4 and another by´
w xSankaranarayana and Stewart 18 . As far as we understand, these proofs

hold no restriction on the input graph.
We proceed with studying the ‘‘greedy question’’ on some combinatorial

problems which can be viewed as restricted cases of the max stable set
problem.

2.2. Hypergraph Matching

For further discussion we use hypergraph terminology, which allows
uniform formulation for set system problems and their graph analogues.

Ž .A hypergraph is a pair H s V, E where V is a finite set of ¨ertices and
Ž . Ž .E a collection of subsets of V, called hyper edges. Let H s V, E be a

X Ž X X . Xhypergraph and V a subset of V. The hypergraph V , E , where E : E
is the set of all edges of H contained in V X, is called the subhypergraph of

X X Ž .H induced by V . If H is the subhypergraph of H s V, E induced by
T : V then H R H X, or H R T , denote the subhypergraph of H induced
by V R T. A hypergraph is k-uniform if every edge includes exactly k
vertices.

ŽWe assume that a hypergraph is described as input for combinatorial
.problems by an explicit listing of its edges.

Ž . < <A matching M in a hypergraph H s V, E is a subset of E whose
members are pairwise disjoint. The set of all matchings of a hypergraph
clearly forms a hereditary system. Maximum matching of a hypergraph
Ž .when restated as a decision problem contains 3-DM, as well as many
other NPC problems. A greedy instance of the maximum hypergraph
matching problem is a hypergraph with all maximal matching having the
same cardinality. Such hypergraphs will be called greedy. Let the recogni-
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tion problem of greedy hypergraphs be denoted by g-MMH. An immediate
corollary of Theorem 2.1 is a similar result for g-MMH.

THEOREM 2.2. g-MMH is co-NPC. This remains true for 3-uniform
hypergraphs.

Proof. In the proof of Theorem 2.1, the complement of g-MMH on the
3-uniform hypergraph, whose edge set if TT D TT D TT , is clearly equivalentx y
to 3-DM on the input I. To obtain 3-uniformity insert a new vertex into
each set in TT and two new ones into each of TT . Bx y

2.3. Perfect Hypergraph Matching

Ž .A perfect matching in a hypergraph H s V, E is a matching M of H
with D A s V. We call a hypergraph which admits a perfect matchingAg M

Ž .matchable. A hypergraph is greedily matchable g-matchable if it is match-
able and greedy.

Ž .A minimal nongreedy matchable hypergraph mng-matchable is a match-
able hypergraph H, which is not g-matchable and every matchable in-
duced subhypergraph of H, except H itself, is g-matchable.

mng-matchable hypergraphs play the main role in our characterization
of g-matchable ones, due to the following simple observation:

PROPOSITION 2.1. A matchable hypergraph is g-matchable if and only if
all its matchable induced sub-hypergraphs are g-matchable.

Ž . XProof. Let H s V, E be a g-matchable hypergraph and H a match-
able induced sub-hypergraph of H. Since H is g-matchable, a perfect
matching of H X can be greedily expanded into a perfect matching of H,
which means that H R H X is g-matchable. The same holds for H X by
switching the roles of H X and H R H X. The ‘‘if’’ part follows the conven-
tion that H is a subhypergraph of itself. B

Consequently, a matchable hypergraph is not g-matchable if and only if
it contains an mng-matchable induced subhypergraph. Following is a basic
structural property of minimal nongreedy matchable hypergraphs:

Ž .LEMMA 2.1. If H s V, E is mng-matchable then there exists an edge
X g E, which intersects with e¨ery edge of any perfect matching of H.

Proof.

Ž .CLAIM 1. Let H s V, E be an mng-matchable hypergraph, then there
exists an edge X in E such that H R X is not matchable.

Indeed, let M be a maximal matching of H which is not perfect and X any
� 4edge in M. If H R X is matchable, then M R X is contained in a perfect

matching of H R X. Adding the edge X, such a matching becomes a perfect
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matching of H which contains M. Claim 1 is implied by this contradiction. To
complete the proof of Lemma 2.1, let M be any perfect matching of H and X
as stated in Claim 1. Assume that an edge A g M is disjoint from X.

� 4M R A is a perfect matching of H R A and, by minimality of H, H R A is
g-matchable. Thus, X is included in a perfect matching M X of H R A. But

Ž X � 4. � 4then, M R X D A is a perfect matching of H R X, in contradiction to
Claim 1. B

Let g-PMH denote the recognition problem of a g-matchable hyper-
graph.

We do not know the complexity status of g-PMH. However, Lemma 2.1
implies the existence of a g-PMH algorithm, whose time complexity,
although exponential in the maximum size of an edge, is polynomial in all
other parameters of the input. Note that this already shows g-PMH to be

Ž .easier provided P / NP than g-MMH, which is, as stated in Theorem
2.2, co-NPC even when restricted to 3-uniform hypergraphs:

Let us define g-k-PMH to be the restriction of g-PMH to hypergraphs
with edge size bounded by the constant k.

Ž k 2 .THEOREM 2.3. g-k-PMH is sol̈ able in O n time for e¨ery k g N

Proof. A greedy construction of a maximal matching, which fails to
produce a perfect matching, supplies a negative answer to g-k-PMH. It
then suffices to give an algorithm which solves the problem among match-
able hypergraphs. By Proposition 2.1, a matchable hypergraph is not
g-matchable if and only if it has an mng-matchable induced subhyper-
graph. By Lemma 2.1, an mng-matchable hypergraph whose edge size is
bounded by k has at most k 2 vertices. With k fixed, there are finitely

Ž .many nonisomorphic such hypergraphs. The number of induced subhy-
pergraphs of this size, in a hypergraph H on n vertices, is of order
Ž Žk 2 ..O n and hence they can all be listed and checked in polynomial time.

B

Theorem 2.3 applies to combinatorial problems which can be inter-
preted as a search for bounded edge size perfect matchings:

2.4. Graph Decomposition and Factorization

An H-decomposition of a graph G is a partition of its edge set into
subgraphs, isomorphic to the graph H. It is clearly equivalent to a perfect
matching in the uniform hypergraph on the edge set of G, whose edges are
the edge sets of all H-isomorphic subgraphs of G.

The vertex analogue}an H-factorization}is a collection of H-isomor-
phic subgraphs whose vertex sets form a partition of that of G. Again, it
can be viewed as a perfect matching in a uniform hypergraph, whose edges
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are the vertex sets of all H-isomorphic subgraphs of G. If H is a fixed
graph then telling whether an input graph G admits an H-decomposition
Ž . Žor an H factorization is NPC factorization, for every connected graph

w xH on more than 2 vertices 12 ; decomposition, for every graph H which
w x.has a connected component of more than 2 edges 6 .

Theorem 2.3 implies that the corresponding problems of recognizing
Ž .greedy instances are polynomial: Let g-H-decomposition factorization

stand for the following decision problem:

Input: A graph G.
Ž .Question: Is any collection of edge vertex disjoint H-subgraphs of G is

Ž .contained in an H-decomposition factorization :

COROLLARY 2.1. For e¨ery fixed graph H, g-H-decomposition and g-H-
factorization both are decidable in polynomial time.

w xCorollary 2.1 is the main result of 1 our proof of Theorem 2.3 is merely
w xa translation of the proof in 1 to the more general setting of hypergraph

perfect matching.
If the graph H is not fixed, but is given as a part of the input then, the

obtained problems are co-NP-complete, even if H is restricted to be a
complete graph.

Ž .THEOREM 2.4. The recognition of greedily K -factorizable decomposablek
graphs, where k is a part of the input is co-NP-complete.

Ž Ž . . Ž .Proof. Let G s V, E , k be an instance of the NP-complete
‘‘clique’’ problem: Is there a k ¨ertices clique in G? Let us construct a graph
GX by inserting k y 1 distinct new vertices for each vertex x of G, which
form a k-clique K with the vertex x. If there is no k-clique in G then thex
only k-cliques of GX are K , x g V. In that case GX is clearly greedilyx
K -factorazible. On the other hand a k-clique of G, if it exists, cannot bek
completed to a K -factorization of GX.k

To obtain the analogous result for decomposition, a new k-clique should
be inserted for every edge of G, which includes this edge and is otherwise
disjoint of G. B

Notice that the last result does not settle the complexity status of
g-PMH. Although it deals with a perfect matching in a hypergraph, the
hypergraph of k-cliques is encoded by the graph G, which makes the input
exponentially shorter, in comparison to an explicit listing of the hyper-
edges.

2.5. Vertex Packing

Ž .Closely related to H-factorization is the H- vertex packing problem,
where the goal is to find a maximum set of vertex disjoint H-isomorphic
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subgraphs of the input graph G. That is, a maximum matching in that
hypergraph where H-factorization searches for a perfect matching. Let
g-H-packing stand for the recognition problem of graphs for which this
hypergraph is greedy. Although g-H-factorization is polynomial for any
fixed graph H, greedy packing is co-NPC even where H is the triangle K .3

THEOREM 2.5. g-K -packing is co-NPC.3

Ž .Proof. An instance I s X, Y, Z, TT of 3-DM is consistent if for x, x0
� 4 � 4g X, y, y g Y, and z, z g Z, if x , y, z g TT, x, y , z g TT and0 0 0 0

� 4 � 4x, y, z g TT, then also x, y, z g TT. When restricted to consistent in-0
Ž w x.stances, 3-DM remains NPC see 7, p. 209, exercise 9 . Let I s

Ž . Ž . Ž .X, Y, Z, TT be a consistent instance of 3-DM. Let G I s V, E be the0
skeleton graph of I, where V s X DY D Z and two vertices are adjacent if
and only if there exists a member of TT which includes both. The consis-

� 4tency condition on I means that x, y, z ; V induces a triangle in G if
� 4and only if x, y, z g TT. We proceed now along the same lines as in the

Ž . Ž .proof of Theorem 2.1: A graph G I is constructed by appending to G I0
�� 4 < 4 �� 4 < 4two sets of triangles, TT s x, a , t x g X and TT s y, a , b x g X ,X x Y y y

where a for every x g X, a , b for every y g Y and t are new vertices.x y y
Ž .As in the proof of Theorem 2.1, G I admits maximal K packings of3

Ž < < < < < <.different size k and k q 1, where k s X s Y s Z if and only if there
exists a 3-DM of I. B

Modifications of the above provide similar results for other graphs H,
e.g., by a proper subdivision of all edges, K can be replaced by any simple3
circuit C . We believe that co-NP-completeness holds for every graph H,3n
say, connected and large enough, but have no proof for such a general
statement.

2.6. Maximum Matching and Perfect Matching in Graphs

Ž .A graph G s V, E is merely a 2-uniform hypergraph. Our general
hypergraph terminology and results are still valid in this restricted setting.
Theorem 2.3 implies that greedily matchable graphs can be recognized in
polynomial time, by denying the existence of the forbidden induced sub-
graphs: all graphs on four vertices which contain a three-edge-long path

Ž w x.with nonadjacent end vertices see Lemma 2.1 and 1 . A connected
matchable graph with no such subgraphs is clearly either a complete graph
of even order, or a complete bipartite graph K . This characterization ofn, n

Ž . w xg-matchable graphs is found along totally different lines in 19 .
Unlike hypergraphs with larger edges, graphs allow maximum matching

to be constructed in polynomial time. Based on a maximum matching
w xalgorithm, Lesk et al. 13 have developed an algorithm to recognize graphs
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in which all maximal matchings have the same cardinality. They refer to
such graphs as Equimatchable.

Ž .THEOREM 2.6 Lesk, Plummer, and Pulleyblank . The restriction of
g-MMH to graphs is sol̈ able in polynomial time.

A matching in a graph G is a stable set in the line graph of G. Thus,
Theorem 2.6 equivalently states the existence of a polynomial time algo-
rithm to solve the restriction of g-MS to line graphs. Line graphs are
characterized by a list of forbidden induced subgraphs, one of which is

w xK . Tankus and Tarsi 21 have recently proven the following generaliza-1, 3
tion of Theorem 2.6.

THEOREM 2.7. The restriction of g-MS to K -free graphs is sol̈ able in1, 3
polynomial time.

The proof is too involved to be sketched here. It is based, however, on a
reduction of the maximum stable set problem on K -free graphs to a1, 3

w xmaximum matching problem, presented in 14 . Two other important tools
on which the proof relies are Theorem 2.6 and the existence of a polyno-
mial algorithm to find maximum weight stable set in K -free graphs, e.g.,1, 3

w xthe algorithm presented by Minty in 15 .
Let us recall Theorem 2.1, which states that the restriction of g-MS to

ŽK -free graphs, as well as the construction of a maximum stable set in1, 4
.such graphs is already NP-hard.

2.7. The Structure of Critical Nongreedy Hypergraphs

Ž . Ž .Let H s V, E be a hypergraph. Let us denote by n s n H the
maximum number of disjoint edges in H. Let us say that H is critical, if it
is not a greedy hypergraph, but H R X is a greedy hypergraph for every
X g E. Although the recognition of greedy hypergraphs, even with bounded
edge size, is NP-hard, the structure of critical hypergraph can be charac-
terized as follows.

Ž .THEOREM 2.8. The hypergraph H s V, E is critical if and only if there
Ž . Ž . Žexists hypergraphs H s V , E , . . . , H s V , E m is an integer, m G1 1 1 m m m

. � 42 so that E , . . . , E is a partition of E, and1 m

Ž . Ž .i H is a greedy hypergraph i s 1, . . . , m ;i

Ž . Ž .ii K g H , L g H i / j implies K l L / B;i j

Ž . Ž . Ž .iii there exist 1 F i - j F m such that n H / n H .i j

Ž . Ž .Proof. We first prove the sufficiency of the conditions. Suppose i , ii ,
Ž . Ž .and iii hold. ii implies that a maximal matching of H is also maximal int

Ž .H for all t s 1, . . . , m. Let i and j be the numbers defined in iii . Then
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the selection of t s i and t s j leads to maximal matchings of different
Ž . Ž .size, because according to i the size of a maximal matching is n H ini

Ž . Ž .the former case and it is n H in the latter case. By iii , these twoj
numbers are not equal, and hence H is not greedy. For any edge X g Ei
H R X is, by condition ii, an induced subhypergraph of H . It turns outi
that H R X is greedy and thus H is indeed critical.

Ž . Ž . Ž .To prove the necessity of i , ii , and iii suppose that H is critical.

CLAIM 1. For e¨ery edge X of H all maximal matchings containing X ha¨e
the same size, let us denote this size by n . With this notation, there exist edgesX
X , X g E so that n / n .1 2 X X1 2

The first sentence follows immediately from the greediness of H R X.
The last sentence is true because H is not greedy.

CLAIM 2. If X , X g E, X l X s B, then n s n .1 2 1 2 X X1 2

Indeed, if X l X s B, then there exists a maximal matching contain-1 2
ing both X and X . According to Claim 1 the size of this maximal1 2
matching is equal to both n and n , and the claim is proved.X X1 2

Ž .Let G be the complement of the intersection graph line-graph of H.
ŽThe vertices of G are the hyperedges of H and two vertices of G are

.adjacent if the corresponding hyperedges are disjoint. Let m be the
number of components of G, and denote the set of hyperedges corre-

Ž .sponding to the vertex-sets of the components by E i s 1, . . . , m , and leti
Ž . � 4H [ V, E . Clearly, E , . . . , E is a partition of E.i i 1 m

Ž .CLAIM 3. H i s 1, . . . , m is a greedy hypergraph.i

Indeed, since H corresponds to a connected subgraph of G, by Claim 2i
every maximal matching of H has the same size.i

To finish the proof of the theorem note that m G 2, because otherwise
Ž . Ž .H would be greedy by Claim 3. Now i is just Claim 3, ii holds by the

Ž .definition of H ; if iii did not hold, then again, H would be a greedyi
Ž .hypergraph: by ii all hyperedges of a maximal matching belong to the
Ž .same E , and if iii does not hold, then the maximal matchings of all of thei

H ’s and hence all the maximal matchings of H have the same size. Bi

Ž .3. 0]1 KNAPSACK SUBSET SUM

Among the fundamental NPC problems many involve questions about
sums of subsets of a given list of integers. Such problems are those defined

w xin 9 as Partition, Knapsack, Bin packing, Subset sum, and more. While
considering the length of a numeric input, the integer n is assumed to be

Ž Ž ..defined by Q log n digits. As a representative of such problems, we deal
here with 0]1 Knapsack.
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� 4An instance of 0]1 Knapsack is a finite sequence A s a , a , . . . , a of1 2 n
positive integers and an additional integer b. The question is to tell
whether there exists a subsequence of A whose elements’ sum equals b.

w xThis problem is also known as Subset sum 9, p. 223 . We call an instance
of 0]1 Knapsack greedy if every subsequence of A whose sum of elements
is less than b is contained in a subsequence whose sum of elements is
exactly b. Notice that all subsequences whose sums are at most b form a
hereditary system. Considering the value of an element as a weight
function, an instance is greedy if the greedy algorithm, as it is defined in
Section 1 for hereditary systems with a weight function, is guaranteed to
produce a maximum weight feasible set. Let g-01KNAP denote the prob-
lem of recognizing a greedy instance of 0]1 Knapsack. Although the
underlying problem is NP-complete, there exists a polynomial time algo-
rithm for the recognition of a greedy instance.

THEOREM 3.1. g-01KNAP is sol̈ able in polynomial time.

Ž � 4 .Proof. Let C s A s a , . . . , a , b be an instance of 0]1 Knapsack,1 n
and suppose a F . . . F a .1 n

� 4 kCLAIM 1. If C is greedy, then there exists k g 1, . . . , n such that Ý ais1 i
s b

Indeed, if C is greedy, then Ýn a G b, and consequently there existsis1 i
� 4 kminimal k g 1, . . . , n such that b F Ý a . The inequality must beis1 i

satisfied with equality, because otherwise a q Ýky1a ) b for every l gl is1 i
� 4k, . . . , n , in contradiction with the greediness of C.

In what follows, we assume that C satisfies the condition of Claim 1, in
particular we fix k to be the index defined in Claim 1.

� 4 jLet A s a , a , . . . , a , b s Ý a , and define the 0]1 Knapsacki 1 2 i j is1 i
Ž . Žproblems C for all pairs of integers n G i G j G 1 as C s A , b . Fori, j i, j i j

.example, by Claim 1, C s C .n, k

Ž .CLAIM 2. C n G p G q is greedy if and only if either p s q, or forp, q
e¨ery nonempty T : A R A for which t s Ý a - b, the following twop q a g T ii

properties hold:

Ž . � 4i b y t s b for some r g 1, 2, . . . , q y 1 ;q r

Ž .ii C is greedy.q, r

Suppose first that C is greedy. This is of course true if p s q so let usp, q
also assume p ) q. Start the summation with the elements of T. Then it is

Ž .apparent that A R T , b y t must also be a greedy instance. Sincep q
Ýq a s b , when applying the greedy algorithm to this instance, we canis1 i q
always make our selection from A , until reaching b y t. We have provedq q

Ž . Ž . Ž .that A , b y t is greedy. Now i is exactly Claim 1 applied to A , b y tq q q q
Ž .and ii is the statement we have just proved.
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Conversely, to prove the if part, let B : A , Ý a F b . All we havep a g B i qi

to prove, is that Ý a can be completed to b . Define T s B R A , anda g B i q qi
Ž . Ž .t s Ý a . Since T : B, t F b holds, i and ii can be applied to thisa g T i qi

Ž . � 4particular T and t. According to i , b y t s b for some r g 1, 2, . . . , q ,r
Ž .and according to ii B l A can be completed to b s b y t, and Claim 2q r q

is proved.
The above provides a scheme to determine the greediness of an instance

C by recursively checking all C descendent from it according to Claimp, q q, r
2. An instance C is a terminal node of such a recursion path if eitherp, q
p s q, in which case it is greedy, or if there exists some nonempty
T : A R A for which t [ Ý a - b and b y t / b for all r gp q a g T i q ri
� 4 Ž .1, 2, . . . , q y 1 . In that last case C is nongreedy, violating condition ip, q
of Claim 2. Since p G q, every recursion path eventually reaches a termi-
nal node. An instance is greedy if and only if all terminal nodes descen-
dent from it are greedy. It remains to translate that scheme into a
polynomial algorithm.

Let C , p ) q be an instance as defined above. The following proce-p, q
dure either finds that C is a terminal nongreedy node, or generates allp, q
the indices r, such that, by Claim 2, the greediness of C is equivalent top, q
that of all C :q, r

begin
� 4S [ 0 ; R [ B;

for i [ q q 1 to p do
begin

for every s g S do
begin

if s q a - b then check if there exists r, 1 F r F q y 1 suchi q
Ž . � 4that b s b y s q a . If such r exists then R [ RD r andr q i

� 4S [ SD s q a .i
If there is no such r then C is a terminal nongreedy node andp, q
the procedure halts.

end
end
return the set R of all the indices r as defined above.

end.

A similar ‘‘Dynamic programming’’ procedure supplies a pseudo-poly-
Ž w x.nomial algorithm for 0]1 Knapsack see, e.g., 9 . The set R contains

< < < < Ž .positive integers all smaller than q. Hence R s S s O n and the time
Ž 3.complexity of the entire procedure is O n .

Starting at C s C and applying the above procedure in, say, a depthn, k
Ž Ž 2 . .first order on O n instances C , the greediness of C is decidable ini, j
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Ž 5.O n time. In fact, for that price, the algorithm provides all integers b for
Ž .which A, b is greedy. B

4. MAXIMUM AND HAMILTONIAN PATHS AND CIRCUITS

Three basic greedy schemes to construct a Hamiltonian pathrcircuit are
considered in the literature:

Ž . � 4i One way progression: A graph on a vertex set V s ¨ , . . . , ¨ is1 n
Ž .one way greedily Hamiltonian if every simple path ¨ , ¨ , . . . , ¨ can bei i i1 2 k

Ž .completed to a Hamiltonian path ¨ , ¨ , . . . , ¨ , ¨ , . . . , ¨ .i i i i i1 2 k kq1 n

Ž .ii Two ways progression: A graph is two ways greedily Hamiltonian
Ž .if every simple path is contained not necessarily as a prefix in a Hamilto-

nian path.
Ž .iii Parallel progression: A graph is parallel greedily Hamiltonian if

Ž .every linear forest vertex disjoint union of simple paths is contained in a
Hamiltonian path.

Ž .Note that iii fits to the general framework of hereditary system, while
Ž . Ž .i and ii do not. In each of the above, ‘‘Hamiltonian path’’ might be
replaced by ‘‘Hamiltonian circuit.’’ Also each applies to either undirected,

Žor directed graphs with directed-simple paths, linear forests, Hamiltonian
.pathsrcircuits . It turns out that we deal here with 12 distinct families of

graphs.
Apparently, a considerable amount of work has been carried out,

Ž . Ž .regarding i and ii . A complete characterization of six out of the
wcorresponding eight families can be found in the union of 2, 3, 5, 8, 23,

x24 . Different proofs of these results have recently been given by Tankus
w x Ž .20 , who also considered and solved iii . From these characterization
results, it follows that the corresponding recognition problems are all

Ž . Ž .solvable in polynomial time. The two cases still open are ii and iii for
directed Hamiltonian path.

When ‘‘Hamiltonian’’ in the classes defined above, is replaced by ‘‘maxi-
mum,’’ a new set of problems is obtained, which apply to all graphs, not
necessarily Hamiltonian. One of us has recently obtained the following,
clearly polynomial, characterization of undirected graphs with the ‘‘two

w xways greedy maximum path’’ property 22 . We list it here, as a typical
example of the results mentioned in this section. Since the case where the

w xgraph at hand admits a Hamiltonian path was treated separately in 24 , it
is not included here.

THEOREM 4.1. Let G be a connected simple graph which admits no
Hamiltonian path. E¨ery simple path of G is contained in a maximum length
simple path, if and only if G is one of the following:
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FIG. 1.

The union of simple paths, all of the same length, which share one
common end¨ertex and are otherwise ¨ertex disjoint; or

< < < <A bipartite graph on ¨ertex set V s X DY, where Y G X q 2 and
e¨ery ¨ertex in X is adjacent to all, but at most one, of the ¨ertices in Y, or one
of the fï e graphs, described in Fig. 1.

Although the characterization is simple and easy to state, the proof of
Theorem 4.1 is rather long and involved. Similar phenomena are observed
in the other references mentioned above.

5. SATISFIABILITY

Ž .An instance of the satisfiability SAT problem is a formula in conjunc-
Ž . mtive normal form CNF , V s H c where a clause c is the Booleanis1 i i

sum of literals, each of which is either a variable x g X, or its negation x
Ž w x.see, e.g., 9 . C is greedily satisfiable if any assignment of truth values to
some of the variables, where no clause has all its literals assigned with
‘‘false,’’ can be completed to an assignment to all variables in X, which
makes C s‘‘true.’’ Although SAT is the old ancestor of all NPC prob-
lems, the recognition of its greedy instances is polynomial.

THEOREM 5.1. An instance C s H m c of SAT is greedily satisfiableis1 i
unless there exist two clauses c and c , which satisfy the following:i j

Ž .i There exists exactly one ¨ariable x whose negated literals are in-
cluded one in c and the other in c ; andi j

Ž . � 4 Žii No clause c is contained in c Dc R x, x a clause is referred tok i j
.as a set of literals .
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Ž . Ž .Proof. Let c , c and x satisfy i and ii . Assign values to all thei j
� 4variables involved in c Dc R x, x , such that all the literals in c Dc Ri j i j

� 4 Ž . Ž .x, x are assigned ‘‘false.’’ This is possible by i and according to ii no
clause is fully assigned with ‘‘false.’’ Once a value is selected also for x,
either c or c will have all its literals assigned with ‘‘false’’ and hence C isi j
not greedily satisfiable.

On the other hand, if C is not greedily satisfiable then there exists a
maximal set X X  X with an assignment to the variables in X X, such that
no clause is fully assigned with ‘‘false.’’ Take x g X R X X. By maximality of
X X, there must exist clauses c and c , one of which is filled up with ‘‘false’’i j
literals once x is assigned with ‘‘true’’ and the other one, when x is given

Ž . Ž .the value ‘‘false.’’ Clearly c and c satisfy i and i . Bi j

Ž . � 4Note that if c and c satisfy i then c Dc R x, x is obtained from ci j i j i
and c by resolution. Theorem 5.1 can be restated as: C is greedilyj

Žsatisfiable if and only if it is closed to resolution. A clause, obtained by
.resolution, which contains another is not considered a new one. In fact

w xthe completeness of the resolution method 17 is proven by showing that
greedy satisfiability fails only when a new clause is obtained by resolution.

Let C be a formula in CNF on a variable set X. A ¨alid partial
�Ž . Ž .4assignment of C is a set of pairs x , b , . . . , x , b , where x g X, x /1 1 k k i i

� 4x for i / j, b g true, false , k - n and no clause of C has all its literalsj i
‘‘false’’ when x s b for every i s 1, . . . , m y 1. The valid partial assign-i i

� 4ments clearly form a hereditary system on the ground set X = true, false .
Accordingly, we call a formula C greedily saturated if all its maximal valid
partial assignments are of the same cardinality. A satisfiable formula is
greedily satisfiable if and only if it is greedily saturated. The recognition

Ž .problem, however, is harder provided P / NP when applied to nonsatis-
fiable formulas.

THEOREM 5.2. The recognition of greedily saturated CNF formulas is
co-NPC. This remains true where e¨ery clause consists of either one or two
literals.

Ž .Proof. Let the graph G s V, E be an input for g-MS. We construct a
Ž .CNF formula C G as follows: Let V be the variable set and for every

� 4 Ž .x g V let the singleton x be a clause of C G . Thus, a valid partial
Ž . Ž .assignment of C G is forced to contain only pairs of the form x, true .

Ž . � 4 Ž .Also for every edge x, y g E let x, y be a clause of C G . This allows
only one endvertex of an edge to be represented in a valid partial

Ž .assignment. It turns out that every valid partial assignment of C G
Ž .corresponds to a stable set of G. Hence g-MS co-NPC by Theorem 2.1 is

reducible to the problem at hand. B
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6. GRAPH COLORING

The simplest approach toward greedy coloring of a graph is taken by
Ž .arbitrarily selecting one at a time a, not yet colored, vertex x and a color

for x, provided that the selected color differs from those already given to
neighbors of x. It can easily be observed that the above always produces a
proper k-coloring of a graph G, if and only if the maximum degree of a
vertex in G is at most k y 1. Such graphs are of course polynomially
recognizable.

A more sophisticated greedy scheme is defined and studied by Gyarfas
w xand Lehel in 10 . Focusing on hereditary systems, we find the following

fitting better to the scope of this paper:
Ž . Ž .For a graph G s V, E , let VV G be the family of subsets of V, whichk

Ž .induce k-colorable subgraphs. Notice that VV G is the family of stable1
sets of G and hence, by Theorem 2.1, the recognition of graphs G for

Ž .which VV G is greedy is co-NPC. We present here a similar result for any1
positive integer k. Telling that an induced k-colorable subgraph is maxi-
mal, might not be in NP for k G 3. Accordingly, co-NPC is replaced in
that case by co-NP-hard. For the same reason there is not much of a
greedy algorithm here, where checking the feasibility of a set is already
NPC.

THEOREM 6.1. For any positï e integer k, telling for an input graph G
Ž . Žwhether VV G is a greedy system is co-NP-hard co-NPC for k s 1 andk

.k s 2 .

Ž . Ž .Proof. Let G s V, E be an input graph for g-MS see Section 2.1 .
The graph G = K is obtained by taking a k-clique K for every vertexk x
x g V and k 2 edges, connecting every vertex of K with every vertex ofx

Ž . ŽK , for every edge x, y g E. Take now any collection of k not necessar-y
.ily distinct stable sets of G. Its members can be viewed as disjoint stable

Ž Ž ..sets of G = K whose union is a set in VV G = K , by taking distinctk k k
vertices of the clique K , one for each set of the collection which includesx

Ž .x. On the other hand, a set of VV G = K clearly corresponds to ak k
Ž .collection of k possibly intersecting stable sets of G. It turns out that

Ž .VV G = K is greedy if and only if G is a greedy instance of g-MS. Thek k
proof is completed by Theorem 2.1. B

w xIn his survey paper 16 , Plummer discusses the graph classes W : An
graph G belongs to W if, given any collection of n disjoint stable setsn
� 4I , . . . , I in G, there exist disjoint maximum stable sets J , . . . , J , such1 n 1 n

Ž .that I : J , for each i s 1, . . . , n. Obviously VV G is greedy for G g W .i i n n
ŽThe converse is wrong already for n s 2 check a simple path on three
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.vertices . However, G = K g W if and only if G is MS-greedy, and thusn n
we obtain as a result of the previous proof:

THEOREM 6.2. For any positï e integer n, recognizing a member of W isn
co-NP-complete.

Here the complement problem is NP, because G f W can be verifiedn
by a maximal collection of n disjoint stable sets, at least one of which is
not maximum.

7. OPEN PROBLEMS AND CONCLUDING REMARKS

We mention here some topics, not covered in previous sections, which
might carry some general interest.

In this article, we focus on hereditary systems induced by problems
where the goal is to find a maximum set of certain property. We showed
no example where the underlying problem is of ‘‘minimum’’ type. Take, for

Žexample, the minimum dominating set problem find a minimum set of
.vertices with at least one member adjacent to every vertex out of that set .

A greedy instance of that problem is a graph where all minimal dominating
Žsets are of the same size that is, the complementary hereditary system is
. Žgreedy in the usual sense . We mention this specific problem min domi-

.nating set , mainly because we had given it some thought and yet have not
determined the complexity status of the corresponding ‘‘recognizing greedy
instances’’ problem.

Another greedy approach to minimum problems is greedily collecting
elements until the required property is reached. This method significantly
differs from our general scheme. Greedy instances seem to be more rare
and hence, maybe, easier to characterize.

A phenomenon, about the width of its nature we wonder, is observed
when comparing Theorem 2.2 to Theorem 2.3, Theorem 5.2 to Theorem
5.1, and Corollary 2.1 to Theorem 2.5. In all three cases we start with an
NPC underlying problem which has a ‘‘perfect’’ version and a more
generalized ‘‘max’’ version. The recognition of greedy ‘‘perfect’’ instances
is polynomial, while the recognition of greedy instances of the general
‘‘max’’ problems is co-NP-complete. A different scenario is drawn by the
results in Section 4: Again, we face an NPC problem, which has a

Ž‘‘perfect’’ and a general ‘‘max’’ versions Hamiltonian path versus maxi-
.mum path , but here the recognition of greedy instances is polynomial for

Žboth versions. However, the family of simple paths as subsets of the edge
.set is not a hereditary system. The ‘‘right’’ system to look at for that

matter is the family of linear forests: unions of vertex disjoint simple paths.
Can a graph for which this system is greedy, be recognized in polynomial
time?
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Among open problems, let us mention again that of recognizing a
greedily matchable hypergraph, where the edge size is not bounded.
Proposition 2.1 and the structural characterization stated in Lemma 2.1
Ž w x.both originally developed in 1 might be a step forward, but so far we
have not determined the complexity status of that problem.

w xBy a theorem of Yannakakis 26 , finding a maximum feasible set of a
hereditary system on the vertex set of a graph, defined by a non-trivial
property of the induced subgraph, is always NP-hard. What about the
recognition of greedy systems of that type? A property is nontrivial if for
every n there exists a graph on more than n vertices for which the
property holds, as well as one for which it does not. Being k-colorable, in

Ž .particular 1-colorable that is, having a stable vertex set , are of course
such properties and hence Theorems 2.1 and 6.1 are results of that type,
we tend to believe that such recognition problems are always co-NP-hard.
However, our attempt to adapt Yannakakis’ scheme seems to be leading
nowhere. Proving a general ‘‘Yannakakis-type’’ result might be a very hard
task. Can it be done at least for some wide families of nontrivial prop-
erties?

A potentially interesting direction might be the recognition of ‘‘ap-
proximately greedy’’ structures}instances where the greedy algorithm guar-
antees to provide a good approximation of the optimal goal. ‘‘Good’’ can
be defined to that matter in terms of bounded ratio or difference between
the optimum and the reached outcome.

To conclude: Almost every combinatorial problem can be approached by
some greedy scheme and hence it gives raise to at least one ‘‘recognizing
greedy instances’’ problem. We hope the few problems treated within the
scope of our article and those listed in this last section to be a ‘‘repre-
senting sample’’ which can shed some light on the area and encourage
further research.
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