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We prove a minimax theorem on the minimum length of specific kinds of one-sided walks on compact surfaces
with at most three cross-caps. This theorem is a common generalization of a result of Schrijver about one-sided

* circuits on the Klein bottle (1989b), and of Karzanov (1990) about planar paths. The special cases include,

besides these, new results concerning integer packings of metrics in planar graphs, or-graphs embedded on the
torus, which in turn, imply some fractional multifiow theorems.

We establish a blocking relation between two classes of polyhedra. For one of these, the defining system of
linear inequalities has an integer dual solution for every Eulerian objective function to minimize, whereas for the
other—just for the one whose dual is a path packing problem—an easy example will show that this does not hold.
However, in some vertices of this polyhedron there exists an integer dual solution implying an integer multiflow
theorem.

The proof we provide here to the main result uses the framework of Schrijver (1989b), and a theorem of
Karzanov (1990) on planar multiflows. Besides, the proof has to deal with some new phenomena which make
necessary to originate the blocking polyhedron of our specific kinds of circuits from the geometry of the surface.
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blocking polyhedra.

1. Introduction

For all basic definitions of topological character and facts on surfaces we refer to Lefschetz
(1949), Giblin (1981), Stillwell (1980), and Schrijver (1991): in order to fit the page-limit of this
volume we state only the definitions where some ambiguity could arise.

Let us denote the nonorientable surface with three cross-caps (of genus 3, Euler characteristic
—-1), by X.

A curve is a continuous function 7 :[0,1] — 5 if 4(0) = 4( 1) it is called a closed curve, if it
is a bijection, it is a simple curve. Closed curves will be considered to be homeomorphic images
in ¥ of the unit circle {(z,y) € R? : 2% 4 ¢ = 1}, (that is, we will not need the particular
point which is both a starting and endpoint). Homotopy of closed curves will always mean free
homotopy. If it is clear from the context, we will delete the adjective “closed”.

A simple closed curve on a surface either has a neighborhood homeomorphic to the cylinder,
or a neighborhood homeomorphic to the Mobius-strip. In the former case the curve is called
two-sided, in the latter case one-sided. (In the literature the two-sided curves are also called ori-
entation keeping, or orientable, and the one-sided ones orientation reversing, or non-orientable. )

One of the directions of research in the field of multiflows concerns planar disjoint path
problems, where any two vertices to be Joined, called terminals, lie on the same face. The
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results concern the particular cases when all pairs lie on one face (Okamura, Seymour (1981)),
on two faces (Okamura (1983), Schrijver(1989b)), or on three faces (Karzanov (199()))il ?ome
corresponding “polar” —cut and metric packing— theorems were pr.m.red by Hurkens, Sc Tijver,
Tardos (1989), Schrijver (1989a), Karzanov (1990). The faces containing both elements of a pair
of terminals are often called holes. o .

We will refer to some of these theorems in the following, but the size limit of this volume
does not allow to state them. (An account can be found in Frank (1988).) However, we state a
variant of Karzanov’s theorem (1990), which will be explicitly needed: .

A symmetric function (this means m(u,v) = m(v,u)) m: VXV — {9,1,2} is ca,lled‘a,
cut-metric if there exists a partition of V into 2 parts so that m(u,v) = 1 .1f. u :?,nd v are in
different parts, otherwise it is 0; it is called a 2,3-metric, if V has a partition mtc3 5 pa.rtsr
{A1, Az, A3, By, By}, so that m(u,v) = 1if u € 4;U A3 U A3, v.e By UB‘Z; m(u, v)=2if u'E flll,-,
v € Ajoru € B;, v € Bj (i # 7); and m(u,v) = 0 otherwise, that is if w and v are in t e
same class of the partition. Given a graph G two metrics m; and my will be called disjoint, if
ma(e) + ma(e) < 1 for every e € E(G).

1((iis)t_£(u,21§) )denotes the distance of u,v € V(G), that is the cardinality of a shortest path
between u and v.

Karzanov’s theorem Let H,, H; and H3 be the vertez sets of three faces of a planar graph
G. Then there exists a family of pair wise disjoint cut metrics and 2,3-metrics my,...,mg so

that for every u,v € H; (1 =1,2,3),

distg(u,v) = my(u,v) + ...+ mi(u,v).

It is easy to see that the condition of this theorem is necessary. .The proof of the sufficiency
is difficult, it generalizes the proof of Schrijver (1989a) in an essential way. . .

We will also suppose familiarity with basic graph theory, and clutters, their blocker, b.l(.)ckmg
polyhedra, binary clutter, etc., and basic statements about' these. We use the fieﬁmtlon of
Lovasz (1979) for paths, circuits, and (closed) walks; they W11'1 so.metlmes be c0n.51dered to be
edge-sets, where the edges of walks also have a multiplicity indlca.tmg I}OW many tlm.es .tl‘le Wa:lk
“goes through” the given edge. (For the walks we will be wogkmg with, this multiplicity will
be 0, 1 or 2.) If G is a graph, P is a walk in G, and z € IRF(G) then z(P) denotes the scalar
product of z with the vector of multiplicities of P.

The results concerning one or two holes have been generalized to sur.fa,ces: O?(amur'a, a,?ld
Seymour’s theorem on planar multiflows and Lins’ (1981) theorem.on p'ack,mg one-sided c1rcu1.ts
on the projective plane are trivially equivalent; in order to generalize Lins’theorem to th‘e‘a Kleu,:
bottle Schrijver (1989b) worked out a proof technique which reduces the problem to the “polar
of Okamura’s theorem, to the “metric packing theorem” of Schrijver (1989a).

The present paper adapts Schrijver’s framework of a proof to ¥. However, this is not auto—k

matic:

Imagine ¥ arising by the identification of the opposite vertices of each of three holes.on ‘t‘he
sphere: besides the closed curves that “go through one cross cap”, the (flosed curves which 80
through all the three of them” will also be one-sided. If we have in mind the goal of p,rovmg
multifiow theorems, we have to exclude this latter type of closed curves. But then we don’t have
a binary clutter any more.

So one of the essential differences of the three cross-caps case comparing to the Klein bot-
tle is that we have to understand how to state this exclusion in surface terms, then we h?.ve
to study precisely the specific subclass of the remaining one-sided walks, and their blocking
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polyhedron. These objects do not form binary clutters. Another difference is that we have to
permit arbitrary closed walks instead of circuits, (although the multiplicity of an edge in the
walks we are considering cannot exceed 2, and also, in the most interesting special cases only
circuits occur). Furthermore, to deal with the blocking polyhedron of the walks we are studying
we cannot restrict ourselves to purely combinatorial arguments: it is necessary to study some
simple facts about how curves cross each other on 3.

An edge-weighting of a graph is called Eulerian, if every weight is integer, and the sum of
the weights is even on every cut. It is called even on faces, if every weight is integer, and the
cycles bounding the faces have even weight. G'is said to be Eulerian or even on faces, if the
identically 1 function on the edges is so. Clearly, “Eulerian” is the “surface dual” notion of
“even on faces”, the former is a usual condition in multiflow theorems, whereas the latter is used
for metric packings. ,

A first fact that will be useful to know about ¥ is that it is homeomorphic to the torus
with one cross-cap. So we shall feel free to switch between three cross-caps and one handle one
cross-cap, considering them to be the same. The latter reflects better the homology group H (%)
of .

H(X) is isomorphic to Z2 x Z,. This will not be explicitly used in this. paper, therefore we do
not define it. Some related remarks below may give some insight but can also be easily skipped.

To cut open along simple closed curves means to delete them from the surface. When we cut
open along a walk of G homotopic to a simple closed curve, we mean cutting open along a simple
closed curve of  which is “very near” to the given walk. (This means that when we go through
an edge for the second times we “go” at some small distance; if we do not make this precision,
a walk can contain several (two) circuits (see below), and the surface we get after cutting open
can vary.)

Let us call a simple closed curve 7 orienting, if cutting open along v we get an oriented
surface. It follows from the results of Section 2 that on ¥ an orienting curve 7 is also one sided.
What follows exactly is in fact that & \ 7 is a torus with a hole, in other words ~ “goes once
through the crosscap” but “is 0-homotopic on the torus”. (It is easy to see that this definition
depends only on the homology class of ~: exactly the simple closed curves homologic to (0,0, 1)
have this property.)

A simple closed curve is called separating, if cutting open along it, we get a disconnected
topological space. It is easy to see that a closed walk of a graph embedded on a surface is
separating, if and only if it is the symmetric difference of faces. We extend all the definitions
to not necessarily simple curves or walks: they will be said to have some property (for example
one-sided, or orienting, etc), if they are homotopic to a simple closed curve having the same
property. Note that a non-orienting one-sided walk, if it is not simple, can contain an orienting
circuit. (Walks consisting of an orienting one-sided circuit and a two-sided circuit going around
the thickness of the torus are non-orienting !)

We can also think of orienting one-sided curves as “going through” all the three “cross-caps”
once, (no matter in what order), and of the other one-sided curves as “going through one cross-
cap”. In Section 2 we shall prove statements which confirm this intuition, see (2). (Since the
homology group arises by “making the homotopy group commutative”, and every permutation
of three elements is cyclic, there is only one free homotopy class of orienting curves.)

Let now G be a graph embedded on . Clearly, (closed) walks of G can be considered to be
(closed) curves of X.

We will study non-orienting one-sided (closed) walks.

Let us call an edge-set of G which has a non-empty intersection with every such walk a 1-
blocker. A 0-1-2 vector, whose scalar product with every such walk is at least 2 will be called a
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2-blocker. A 1-2-blocker is either a 1-blocker or a 2-blocker.
In Section 3 it will turn out that all 1-blockers and 2-blockers arise in a natural way from the
geometry of X. N
Let P be the set of all non-orienting one-sided walks of G. Let B; be the set o.f minimal
1-blockers, and let Bz be the set of minimal 2-blockers which do not contain the union of two
disjoint 1-blockers.

P(G,%):={z e R¥D : 2 >0,2(By) > 1 for all By € By, x(B2) > 2 for all B; € B}
Q(G,%):={e e RE(® .z >0, 2(P)>1forall PeP}.

Our main result is the following;:

Theorem 1. P(G,X) and Q(G,X) are a blocking pair of polyhedra. Moreover, f?r every ol?jec-
tive function ¢ even on faces, the linear program min{c’z : ¢ € P(G,X)} has an integer optimal
dual solution.

In the definition of the linear program we mean the system of linear inequalities to be the
system used for defining P(G,X). In this paper objective functions are always meant to be
non-negative.

It is easy to embed a K5 on ¥ in such a way that the edges of a triang]e “go thro.ugh.three
different cross-caps” and from among the other edges, only the edge disjoint fr(?m this triangle
“goes through” a cross-cap. This is an example where the inequalitie.s defining Q(G, %) do
not form a totally dual integral system: there is no integer dual solutlon.for the everywhgre
1 objective function, even if G is Eulerian. (There exists a fractional packing of non-orienting
one-sided circuits of size 3, but there do not exist 3 edge-disjoint such walks.)

However, an interesting phenomenon occurs: in some vertices of Q(G,E) there exis‘Fs an
integer dual solution for every Eulerian objective function for which the given vertex is an
optimal solution. We state a general conjecture characterizing these vertices (Section 5).

The relatively richer structure of our surface makes necessary to check some simple top'olc.)gical
statements which will determine the combinatorial structure of the problem. This preliminary
knowledge will be provided in Sections 2 and 3. In Section 4 we sketch the proof of Theorem 1.
In Section 5 we show some connections with metric packings and multiflows.

Finally, let us state a corollary of Theorem 1 (proved in Section 5). It is a ‘gene.ra,]jzation
of a result of Schrijver (1989b) for two faces, and through the Farkas Lemma.lmphes a new
(fractional) planar multiflow theorem, which may have integer solutions for Eulerian graphs (see
Section 5).

Theorem 2. Let Hy, H, and Hs be the vertez sets of three distinct faces of a graph G em-
bedded to the surface of the sphere so that it is even on faces. Suppose {s1,...,8.} C Hy,

{t1,...,t,} C Hs, where the indices are given according to the clockwise order of the vertices
on the corresponding faces. Then there ezists a family of pair wise disjoint cut-metrics and
2,3-metrics my,...,m so that for u=s;,v=1 (i=1,...,7), or u,v € Hs,

distg(u,v) = my(u,v)+ ... + mg(u,v).
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2. Orienting and non-orienting walks

In order to have under control the specific kinds of walks we are considering, and mainly because
non-orienting one-sided walks do not form a binary clutter, we have to understand some basic
properties of orienting curves.

(1) Orienting curves cross every one-sided curve of X.

Indeed, suppose X \ v an orientable surface, that is it does not contain one-sided curves. A
curve which does not cross v is in & \ 7, so it cannot be one-sided, as claimed.

(2) Neither of two non-crossing one-sided curves is orienting.

Indeed, if any of them was orienting, then, according to (1) it would cross the other.

Imagine now ¥ as arising by identifying opposite vertices on each of three holes of the sphere.
Then the holes become one-sided curves on %, and according to (2) none of them is orienting,.
Thus curves “going once through one of the cross-caps” are not orienting. On the other hand
let v be a curve “going through each of the three arising cross-caps exactly once”. This curve
is obviously one-sided, and cutting ¥ open along v, it is easy to see that we get an orientable
surface (the torus with a hole). Somewhat more generally:

(3) Lety bea sepqrating simple curve on X, and suppose that one of the connected components
of ¥\ v is homeomorphic to the Mébius strip, the other to the torus with a hole. Then the one-
sided curves of this Mébius strip are orienting.

Indeed, cutting open along a one-sided simple curve of the Mé&bius strip, we get a surface
which arises by the identification (along 7) of the hole of a hollow torus, and of a hole of the
annulus arising by cutting open the Mobius strip along our one-sided simple circuit. The result
of this identification is the torus with a hole as claimed.

This statement characterizes orienting one sided simple curves: a neighborhood of such a
curve is a Mobius strip containing the curve, and its border divides ¥ to this Mobius strip and
to a hollow torus. (We will see below, that if a simple curve is orienting, then it is one-sided, so
the use of both adjectives was redundant.)

The following easy statements show the place of the orienting curves of %, and we will need
the picture they provide:

(4) Let v be a two-sided simple curve on . Then ezactly one of the following statements is
true for X' = £\ v :

(i) ¥’ is not connected, and one connected component is homeomorphic to the Mébius strip, the
other to the torus with one hole.

(ii) X' is not connected, and one connected component is homeomorphic to the Klein bottle with
one hole, the other to the Mébius strip.

(iii) ¥’ is not connected, and one component is homeomorphic to the disc, the other is & with
a hole.

(iv) ¥’ s connected, and it is homeomorphic to the projective plane with two holes.

Indeed, we know that %’ either has two components with one hole each, or is connected,
and has two holes. Consider now every surface with one or two holes, from which ¥ arises by
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identifying opposite vertices of the two holes. (4) is a complete enumeration of all possible cases.

It is case (i) which is very interesting for us: according to (3) the one-sided ClI‘Cll.ltS on this
Mobius strip are orienting. Hence non-orienting one-sided curves cross v at least twice (see (2)
Section 3).

(8) Let vy be a one-sided simple curve on ¥. Then ezactly one of the following statements is
true for &' = X\ v :

(i) ¥’ is homeomorphic to the Klein bottle with one hole.
(it) ¥’ is homeomorphic to the torus with one hole.

Indeed, we know that ¥’ has one hole. Consider all the surfaces with one hole from which &
can arise by “putting in a cross cap”. o . ) .

We see from (4) and (5) that a simple curve 7 is orienting if and only if (5) (ii) holds, in
particular, we see from (4) that a separating curve cannot be orienting.

3. Geometric 1-2-blockers

The goal of this section is to raise 1-2-blockers in a geometric way. .

Let G be a graph embedded on X. The 1-2 blockers we show below will all be edge-sets
B = B(v) crossed by a curve ¥ of £ or two curves 7;, 2 or three curves 71, 72, v3 so that the
curves do not go through vertices.

Geometric 1-blockers

Let us call an edge-set binary if it has a non-empty intersection with every o'ne-ﬁided wa.l'k of
G. Every binary set has a non-empty intersection in particular with all non-orienting one-sided
walks, so they are 1-blockers. However, we shall see examples of non-binary 1-blockers. .

In other words, minimal binary 1-blockers constitute the blocker-set of one-sided walks. Since
one-sided walks form a binary clutter, their blocker also.

(1) If G is Eulerian, then every minimal binary 1-blocker has the same parity.

Indeed, let By and B; be two minimal binary 1-blockers. They both intersect every one-sided
walk in an odd number of edges and every two-sided walk in an even number of edges. Thl}s
the symmetric difference By AB; intersects every walk in an even number of edges, whence it is
a cocycle. Thus |B;ABs| is even, and the statement follows.

We exhibit now all the three examples of binary 1-blockers.

Single 1-blockers
Let v be an orienting simple curve of ¥. Then, according to (1) (Section 2) v intersects every
one-sided curve of X, and so it is binary. B will then be called single 1-blocker.

As we have already mentioned, in the representation of ¥ as a sphere with three “cross-caps”,
7 corresponds to a curve “going through” all the three cross-caps.

Double 1-blockers

Let 7, and 72 be two disjoint simple curves of ¥ with the property that cutting open along them
we get an orientable surface, but this is not true for either of them alone. B is then called a
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double 1-blocker. Clearly, every one-sided curve of ¥ is crossed by at least one of v, and v,.
Consequently, B has then non-empty intersection with every one-sided walk of G.

Imagine ¥ to be a torus with one cross cap. 71, 72 correspond then to two simple curves
“homologic” on the torus (both go around the “thickness” say) and one of them is one-sided
(goes through the cross-cap). :

In the representation of & as a sphere with three identified holes these correspond to simple
curves one of which goes through one of the holes, and the other goes through the other two
holes.

Triple 1-blockers

Let v1, 72 and 3 be three disjoint simple curves of ¥ with the property that cutting open
along them we get an orientable surface, but the same is not true for any two of them. Like
before every one-sided curve of ¥ is crossed by at least one of them. In particular, B has then
non-empty intersection with every one-sided walk of G.

In the representation of ¥ as a sphere with three identified holes these three curves go through
one hole each. .

The only fact that we will need about these examples is the trivial statement that the ob jects
in the spheric representation with three holes are binary 1-blockers.

These were the binary 1-blockers. The following 1-blockers are not binary.
Toroidal 1-blockers

Let 71 and 1y, be two simple curves of ¥ which have one common point and cutting open along
both of them we get the Mdbius strip. B will then be called a toroidal 1-blocker.

In the same way as (3) we can prove that the one-sided curves of this Méobius strip are
orienting curves of . Toroidal 1-blockers intersect all one-sided non-orienting curves, but they
are not binary!

Let 1 and v, be two simple curves of a torus which intersect each other in a point, and so
that cutting open along them we get a surface homeomorphic to the disc. (71 and 73 constitute a
“unimodular basis” of the torus, say one of them goes “around the thickness” the other “around
the ring”.) Cut a hole with a 0-homotopic curve disjoint from 71 and 73 on the torus, and
identify its opposite points. We get X. v; and v, become the pair of curves in the definition of
toroidal 1-blockers.

In the representation of X as a sphere with three identified holes both ¥; and 7, go through
two of the three holes, and the two pairs of holes are different.

Geometric 2-blockers

Single 2-blockers

Let a graph G be embedded on 3, and let 7 be a (separating) curve, for which (i) holds in (4)
of Section 2, and which does not go through vertices of G. The edges crossed by v (together
with the number of times they are crossed) will be called a single 2-blocker. (It is easy to check
directly (and it follows from Theorem 1), that every edge is crossed at most twice.) These are
the only facets of P(G,Z) defined by curves which are not simple.

In a planar (spheric) drawing with 3 holes whose opposite points have been identified, a single
2-blocker corresponds to a two-sided curve which goes through each cross-cap exactly twice.

(2) Every single 2-blocker intersects every non-orienting one-sided walk in a nonzero even
number of edges.

Proof. Since v is a separating curve, it crosses every curve in an even number of edges. But one
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of the two regions into which +y, (more precisely the simple curve arising by a slight perturba'tion
from 7) separates is orientable, and in the other, according to (3) of Section 2, all one-sided

O

curves are orienting.
Note that this immediately implies

(3) If G is a graph Eulerian, then single 2-blockers have even size.

Indeed, subdivide every edge of G into two edges with a new vertex. The cuts are still eve1.1.
Single 2-blockers correspond to cuts (edges intersected by specific separating curves of X)) of this
gra)ph' M 13 A ” 3 K y

We can feel already that single 2-blockers correspond indeed to the “(2,3)-cuts” in Karzanov’s
theorem: in the plane drawing with three holes a 2-blocker “goes through” all the three cross-
caps twice: one of the two regions it bounds is divided to three parts by the holes, and the other
into two parts.

Triple 2-blockers '
Let 71, v2, 73 have the property that each two of them forms a double 1-blocker. Then B will
be called a triple 2-blocker. (Every edge has multiplicity at most 2, (2) and (3) are also true for
triple 2-blockers.)

4. Proof of Theorem 1

Let G be a connected graph embedded on ¥. Through arguments typical in polyhedral combi-
natorics, Theorem 1 is equivalent to the following claim:

For arbitrary ¢ : E(G) — Z even on faces, the minimum weight T of @ non-
orienting one-sided walk is equal to the mazimum v of p + 2q when.e p is the
number of 1-blockers, and ¢ is the number of 2-blockers in a c-packing of 1-2
blockers.

A c-packing is a family of edges-sets (with multiplicities), where for every e € F(G) the sum
of the multiplicities of sets containing e is at most c(e). .

We proceed similarly to Schrijver (1989b): we cut open three times consecutively, always alon’g
a one-sided walk, in order to get a planar graph with three holes, and then apply Karzanov’s
theorem. There is one essential difference in the case of three cross-caps: we have to be car:eful to
choose the first of these walks to be non-orienting, otherwise, after cutting open along this first
curve all one-sided curves are already destroyed (see (1) in Section 2). On the other hand, after
this first right choice, the second and third choices are automatic. Choose always the shortest
curve among all possible choices. .

We can suppose that every face of G is homeomorphic to the disc, othefw1se we add new edges
with big enough weight “through cross-caps”, so that the minimum weight of a non-or{ent?ng
one-sided walk does not change. (If the minimum is infinite, that is there is no non-orienting
one-sided path, then choose the weight of the new edges to be very large, the sum of the .ot.her
edge-weights say. It follows from the proof below that v = 7 is then‘large, an(% in the original
graph there is an empty geometric 1-2 blocker. It can also be easﬂ)_/ seen directly thaft the
non-existence of non-orienting one-sided walks is equivalent to the existence of geometric 1-2

blockers.)
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We can also suppose that ¢ is identically 1, and G is even on faces, otherwise we subdivide
the edges. Then a 2, 3-metric can only take the values 1 or 0 on each edge.

Let @1 be a minimum length non-orienting one-sided walk. (Since every face of G is homeo-
morphic to the disc there exists such a walk: for every curve there exists a walk homotopic to
it, because we can shift it to follow the boundary of the face it crosses. )

Let ¢; := |@1] = 7. Cut open & along Q;. What we get is a Klein bottle with one hole,
with a graph G’ embedded on it. (See (5) in Section 2 and the definition of cutting open in the
Introduction.) The boundary of the hole is a circuit C1 of G |C1| = 2t1. (Edges of G are twice
as much in C; as their multiplicity in Q1.)

Take a minimum size one-sided walk Q2 on this new surface. (This will actually be a circuit
of G/, but the corresponding walk of G may not be simple.) This will not be orienting according
to (2).

Cutting open along Q; we get the projective plane with two holes, and a graph G” embedded
in it. The boundary of the second hole is a circuit Cs of G”, |Cy| = 2t,. Similarly, take a third
times a minimum weight one-sided walk @3 of G”, cut open along it, the boundary of the new
hole will be a circuit Cj of the arising graph G". |C3| = 2t3.

In the same way as before, @3 will not cross @, and Q,, and it will not be orienting.

Claim 1: A subpath of C; Jjoining opposite points of C; is a shortest p;zth of G (i=1,2,3).

Indeed, to see this we only have to note that a path of G" between opposite vertices of the
hole C; corresponds to a walk of G homotopic to Q; (i = 1,2, 3).

We apply now Karzanov’s metric packing theorem (1990): let £ and M be the edges-sets
representing the cut-metrics and the 2,3-metrics respectively in a packing provided by this
theorem, where a metric is represented by its edges of weight 1. (If the number of cuts in the
packing is maximum, then deleting the edges of weight 1 we must have one connected component
if m is a cut metric, and 2 components on one side, 3 on the other for 2, 3-metrics. In this case
the representation of a metric uniquely determines the metric.)

Because of Claim 1, according to any metric occurring in this packing, the distance between
all pairs of opposite points on C; must be the same: the only possibility for a metric to have
this property is that the intersection of the representing edge-set with C; consists exactly of two
opposite edges of C;.

With the help of this remark, we will prove now that the objects occurring in the metric
packing can be “put together” to form the geometric objects described in Section 3, to provide
altogether p 1-blockers and q 2-blockers, where all of these 1-2 blockers are pair wise disjoint,
and p+ 29 = ¢,.

From M € M there is nothing to put together: M intersects every subpath of C; of length t;
in 2 edges, because it is easy to see that it must intersect C; in 4 edges, and if the distribution
of these 4 edges between the two parts of an arbitrary partition into two paths of length t; were
“unequal”, then the distance between the end-points of these paths would decrease more than
the metric value, in contradiction with the fact that K is in the packing. It follows that the
intersection of K with each of the C;, is two pairs of opposite edges of C;. Moreover, the edges
of weight 1 in K form a cut, that is a closed walk of the dual: K is the set of edges intersected
by a circuit which goes through all the three cross-caps exactly twice, which means exactly that
it is a single 2-blocker.

The elements of K have to be “pasted” together now to form 1 blockers or triple 2-blockers.

As opposed to the Klein bottle, this construction cannot be done here in a greedy way, but with
some care, it works:
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Let K123 denote the set of cuts in this packing which have a non:empty i{Lterse.ction with all
of Cy, C2 and C3, let K;; be the set of those which have non-empty mterse:ct.lon with exactly C;
and C; and let K; be the set of those which intersect K; and not others (3, j = 1,2,3). o

Let us denote the elements of K which have a non-empty intersection with C; by K/, (i =
1,2,3), for example K] = K3 U K12 U K13 U Kq23.

Claim 2: There ezists a list of triples, pairs or single elements of K, where every element of

K occurs at most once, every element of K occurs, and each element of the list has one of the
following forms:

i K , where K193 € K123

8) {{Iéfﬁ(g,lfg}, or {Ki, K3}, or {K12, K3}, or {K13, Ko}, where K; € K;, and K;; € K;5,
(l,] = 1,2,3).

(iii) {KIZ, K23} or {1(13, 1(23}, where I(,‘j € ’C”

(iV) {Klg,lfg;g, 1(13}, where I(ij € IC”

The claim implies Theorem 1, because it is easy to see that the cuts' in (1) ;ind the unior.l of
the pairs or triples in (ii) form binary 1-blockers, the union of the pairs in (ii) form torox(_ia.l
1-blockers, and the union of a triple of the form (iv) forms a triple 2-blocker. Together with
single 2-blockers all these form a packing of value t;. , , ‘

To prove the claim note that ¢; < ?, < t3, which implies [K{| < ||, K| < |K4]. We do not
assume ¢y < t3 in order to have symmetry between the indices 2 and 3.

Although the following argument is straightforward, it takes some space: '

These inequalities remain true if we delete triples, pairs, or single elements which hfwe 1Ehe
form (i), (ii) or (iv). Let us delete such elements until we can, and suppose we remain with
KY, K3, K3. So, [KY| < |K3], 1KY| < K5

If KY = @ we are done. If not, then K4 # 0 and KY # 0.

It is not possible that K contains an element of Ky, because then all elements of K23 must
already have been deleted, and also either all elements of Ky, or those of K, ”by sym,IInetry,
we can suppose that those of K. But then Kj C K3, and it follows that |[KY| = |K4] + 1,
contradicting our inequalities. .

It is also impossible that both £i N K13 # @, and K N K13 # 0, because either one more pair
of type (ii) or one more triple of type (iv) could be chosen then. o

So, K{ € K12 say. But then K N K3 = 0, implying KJ C K23. But then IKY S |K¥| implies
that pairing all elements of Kf with elements of K in an arbitrary way we get pairs of the type
{K12, K33}, that is of type (iii).

The claim, and hence Theorem 1 are proved. O

Note that as a consequence we know: P(G,Y) has integer 0 — 1 — 2 vertices, which are the
minimal non-orienting one-sided walks; the vertices of Q(G,X) are half-integer, and consist of
the minimal 1-blockers and the halves of minimal 2-blockers.

We also remark that a free choice in the above proof can be exploited: it is possible to fiz in
advance the homotopy classes of the walks Qq, Q2 and Qs, among an arbitrary choice of. three
disjoint simple non-orienting one-sided curves, and the theorem can be sharpened accordingly.

A different proof of Theorem 1, which does not rely on Karzanov’s theorem—but uses a
recent result of de Graaf and Schrijver (1992) —can be based on this sharper theorem, as well
as an integer metric packing and fractional multiflow theorem for graphs embedded on the Klein
bottle with all terminals on one hole in a special order (Seb8 (1993)).
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5. Connections with multifiows

Y can be "cut open” in several ways. Using this liberty, Schrijver (1989b) has deduced a new
multiflow theorem from his Klein bottle result.

We must be more careful when we cut open: the blocking polyhedron of our walks contains
2-blockers, which do not lead us to any result. The new multifiow and metric packing theorems
arise by cutting open along binary 1-blockers, or their dual on % respectively. Karzanov’s The-
orem follows by cutting open along triple 1-blockers, and we will also study here the two other
special cases: cutting open along double and single 1-blockers.

Karzanov’s integer multiflow theorem for Eulerian graphs cannot be generalized to X: in the
introduction we saw an example of an Eulerian graph where no optimal integer path packing
exists. For this, the blame is the non-binary 1-blockers’ and the 2-blockers’: Theorem 3 below
states that for some binary 1-blocker vertices of ®(G,X) there exists an integer path packing,
and we think (Conjecture 1 below) that it holds for every such vertex. Luckily, this set of
vertices, (binary 1-blockers), coincide with those which yield multiflow theorems: if Conjecture
1 below is true, it implies integer multiflow theorems.

We will not have to worry of getting walks instead of circuits in the multifiow applications
below: if for some weight-function ¢ the minimum weight 1 — 2 blocker is a binary 1-blocker,
then in a maximum c-packing of paths we have only circuits.

5.1. Triple 1-blockers

The example of the introduction with no integer flow also shows that the multiflow problem for
planar graphs with three holes is a proper special case of the surface problem, and we would
like to understand in what consists this specialty: we will see that it corresponds to the special
case when the optimal vertex of Q(G,X) is a triple 1-blocker.

Q(G, X) has various kinds of vertices, we classified them in Section 3, one of the classes is the
set of characteristic vectors of triple 1-blockers.

Theorem 3. For every triple 1-blocker vertez 2o of Q(G,X) and every Eulerian objective func-
tion c for which cTzq =min{cTz : z ¢ Q(G,X)}, this linear program (substituting in it the linear
inequalities defining Q(G,X)), has an integer dual solution.

The equivalence of Theorem 3 to Karzanov’s integer flow theorem in planar graphs with three
holes (Karzanov (1990 II)) is straightforward.
Note that Karzanov’s theorem (about metric packings), used in the proof of Theorem 1, is

in fact equivalent to Theorem 1. The proof of the opposite implication is similar to the proof of
Theorem 2 below.

5.2. Double 1-blockers

We state now the multifiow theorem which corresponds to dual solutions in case the optimal
vertex of (G, X) is a double 1-blocker.

Let Hy, H, and Hj be the vertex sets of three distinct faces of a graph G embedded to the
surface of the sphere, and suppose {si1,...,s,} C Hy, {t1,...,t.} C H,, where the indices are
given according to the clockwise order of the vertices on the corresponding faces, and some
additional set of terminal pairs is given on Hs in an arbitrary order. Define the edge-set of the
fraph H be the set of all terminal pairs. V(H)=HyUH,UH;. G+ H denotes the graph on
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V(G) whose edge-set is E(G)U E(H). Let ¢ : E(G + H) — IR*. A family of paths where each
path has a (maybe fractional) multiplicity and for every e € E(G) the sum of multiplicities of
paths containing e is at most ¢(e), moreover every st € H is contained in exactly c(st) paths, is
called a multiflow.

Theorem 4. Under the above defined constraints there ezists a multiflow if and only if for every
cut-metric and 2, 3-metric m Y,y m(st)c(st) < 2 ecE () M(€e)c(e) holds.

Proof. The necessity of this condition is trivial.

The sufficiency follows from Theorem 1 like for the multiflow theorems corresponding to the
special cases (see Schrijver (1989b)). Let us sketch the details.

First, by a standard trick, we can reduce the theorem to the case when every pair of terminals
on Hj is crossing.

Second, for every st € E(H) add a “half-edge” to both s and ¢ in a planar way, and draw a
simple closed curve which contains all the “free” endpoints in their cyclical order, and otherwise
does not intersect G; then identify opposite points of this curve so that the “free-end” of the
half-edge at s is identified with the free-end of the one at ¢ (for every pair of terminals).

What we get is X, with G + H embedded on it.

It is easy to see that H is a double 1-blocker, and (by complementary slackness)

1. The multiflow problem has a solution if and only if ¢(H) < cz for every z € Q(G,%).
Substituting here that by Theorem 1 we know the vertices of Q(G,X), we get that the
condition of (1) is necessary and sufficient.

2. For every 1-blocker By, c(By) > ¢(H), and for every 2-blocker By, 2¢(B;) > ¢(H).

But it is straightforward to check, one by one, for each kind of 1 — 2 blocker, (see the
list of all of them in Section 3) that

3. the edges crossed by one of the defining curves v of a 1-blocker or triple 2-blocker con-
stitute a cut in the planar graph G'; those crossed by the defining curve of a single
2-blocker (with multiplicity) constitute a 2,3-cut. Moreover, if the condition of Theorem
4 1s satisfied for these, then (2) holds.

(1), (2) and (3) imply Theorem 4. O

Let us sketch the proof of Theorem 2 now.

First, suppose that distg(u, v) is the same number d for all s;, t; pairs, and opposite vertices
of H3. This situation can be reached by adding paths with new vertices and edges, to complete
the distance of the mentioned pairs to the maximum. Applying Theorem 2 to this graph, and
dropping the cuts which contain new edges (these contain only new edges) we get Theorem 2
for the original graph.

Third, identify s; and ¢;, and the opposite vertices of H3. We get a graph embedded to %. It
is not completely evident, that

Claim: The minimum cardinality of a non-orienting one-sided circuit of ¥ s d,

but it is true. The difficulty is that non-orienting one-sided paths may correspond to paths
which go several (an odd number of) times through edges st € E(H). To prove this statement,
either one has to solve an elementary problem in the planar graph G, or, and this is what we
do, use the fractional weakening of Theorem 2: we get this fractional version from Theorem 4,
by the Farkas Lemma. Now, like in the proof of Theorem 1, from a fractional packing of cuts,
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a fractional packing of 1 — 2-blockers of size d can be constructed, proving the Claim.
Finally, apply Theorem 1: there exists an integer packing of p 1-blockers and ¢ 2-blockers
so that p + 2¢ = d. But in the proof of Theorem 4 we have checked already that the parts

of 1-blockers and triple 2-blockers correspond to cuts, and those of single 2-blockers to 2. 3-
metrics. ,D

5.3. Single 1-blockers

We deduce now the multiflow special case corresponding to those vertices of Q(G, L) which are
single 1-blockers. We do not state the (integer) metric packing polar of this theorem, it is very
close to Theorem 1.

Let G be a graph embedded on the torus, let V(H) be the vertex set of one particular face
of G, and E(H) := {(si,t;) 14 =1, ..., k}, where S1,-+ 458k, 1, ..., g is the clockwise order of
these vertices on the particular face, and ¢ : E(G+ H) — R*. An (siyt) path (i =1,..., k)
is 0-homotopic, if contracting H to one point on the torus (in the face it bounds), it becomes
a 0-homotopic circuit. 1- and 2-cuts are defined as edge-sets which become 1- or 2-blockers
after the identification of opposite vertices of the particular face so that s; is identified with ¢,
(i=1,...,k). For example, if a curve intersects only edges and it is O-hoinotopic on the torusl
moreover the disc it bounds contains the particular face, the edges crossed by this curve form’
a 2-cut. We can see directly that every non-0-homotopic path has at least two common edges

with such a 2-cut, and similarly, with every 2-cut, and at least one common edge with every
1-cut.

Theorem 5. Under the above defined constraints there erists q multiflow consisting only of
non-0-homotopic paths, if and only if

Z m(st)c(st) < Z m(e)c(e)

steH e€E(G)

if m is a 1-cut, and

2 msthe(st) < 3 ‘m(e)e(e)

steH e€E(G)

if m is a 2-cut.

. ’]'."he necessity of this condition is trivial, and the sufficiency follows from Theorem 1,in a
similar way as Theorem 4. For Eulerian ¢ there may always be an integer solution:

Conj'ecturg 1. Q(G,X) has an integer optimal dual solution for the (fized) Eulerian objective
Junction ¢ if and only if it has a binary-1-blocker-vertex zo for which ¢Tzq <y for all z €

Q(G,X).

This conjecture is the special case of a general conjecture I stated on the relation of integer
metric packings in bipartite graphs, integer path packings in Eulerian graphs, and the bipartite-
ness of the “essential” metrics. (See the problems of the “Graph Minors” meeting (Seattle), to
appear in the Journal of Graph T heory.) We state now a special case of that conjecture, which

is closer to Conjecture 1, and also contains all integer multiflow theorems for Eulerian graphs 1
know about;:
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Conjecture 2. Let G and H be two graphs on the same vertez set, the edges of H are terminal
pairs to be joined by paths. If the validity of

Z m(st)c(st) < Z m(e)c(e)

steH e€E(G)

for every cut-metric and 2,3-metric m is sufficient for the ezistence of a multiflow for 'all c:
E(G+ H) — IR*, then for every Eulerian ¢ : E(G + H) — RR* it also implies the existence
of an integer flow.
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In this paper we study the following problem, which we call the weighted routing problem. Let be given a graph
G = (V, E) with non-negative edge weights we € IRy and integer edge capacities c, € IN and let N={n,...,Tn},
N > 1, be a list of node sets. The weighted routing problem consists in finding edge sets Si,..., Sy such that,
for each k € {1,..., N}, the subgraph (V(Sk), Sk) contains an [s, #]-path for all 8,t € Tk, at most c. of these edge
sets use edge e for each e € E, and such that the sum of the weights of the edge sets is minimal. Our motivation
for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be
connected by wires. We consider the weighted routing problem from a polyhedral point of view. We define an
appropriate polyhedron and try to (partially) describe this polyhedron by means of inequalities. We briefly sketch
our separation algorithms for some of the presented classes of inequalities. Based on these separation routines we
have implemented a branch and cut algorithm. Our algorithm is applicable to an important subclass of routing
problems arising in VLSI-design, namely to problems where the underlying graph is a grid graph and the list of

node sets is located on the outer face of the grid. We report on our computational experience with this class of
problem instances.

Key words: Routing in VLSI-design, Steiner tree, Steiner tree packing, cutting plane algorithm.

1. Introduction

One of the main topics in VLSI-design is the routing problem. Roughly described, the task is
to connect so-called terminal sets via wires on a predefined area. In addition, certain design
rules are to be taken into account and an objective function like the wiring length must be
minimized. The routing problem in general is too complex to be solved in one step. Depending
on the user’s choice of decomposing the chip design problem into a hierarchy of stages, on the
underlying technology, and on the given design rules, various subproblems arise. Many of the
routing problems that come up this way can be formulated in graphtheoretical terms as follows:

Problem 1.1. (The Weighted Routing Problem)

Instance:

A graph G = (V, E) with positive, integer edge capacities ¢, € IN and non-
negative edge weights w, € R,, ecE.
A list of node sets N = {Ty,...,Tn}, N > 1, with T}, CVforallk=1,... N.

Problem:

Find edge sets Sy,..., Sy C F such that




