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Abstract : A Hilbert basis is a set of vectors with the property that every integer vector in the
cone generated by this set is also a nonnegative integer combination of its elements. Hilbert bases
were defined by Giles and Pulleyblank (1979) to study total dual integrality. They come up in a
natural way in different combinatorial optimization problems from matroid bases through totally dual
integral inequality systems to matchings, arborescences or multicommodity flows, and formulate the
pure algebraic essence of certain properties of these.

In this paper we are studying some structural properties of Hilbert bases. The main goal is to
prove a Caratheodory type statement, a problem raised by a celebrated work of Cook, Fonlupt and
Schrijver (1987). Proving it in some special cases we would like to show a new kind of approach to this
problem. These special cases include combinatorial examples for which the “integral Caratheodory
theorem” may be of interest for its own sake.

We would also like to show that the effect of this problem is beyond the integral Caratheo-
dory problem: the main conjecture contains other results about totally dual integral systems, and
more generally would become a basic structural property of combinatorial objects for which integer
minimax theorems hold.

1. Introduction

The origins of the problem we are going to study lie in a seemingly innocent
question of Cunningham (1987) related to testing membership in matroid polyhedra: if
a vector can be written as a non-negative integer combination of (characteristic vectors
of ) matroid bases, can it also be expressed as a non-negative integer combination of
a small number of matroid bases. Cunningham gave a first answer to this question
that was satisfactory for his goals: if the ground-set of the matroid has n elements, a

polynomial number O(n*) of matroid bases are always enough.

It is an easy consequence of Edmonds’ (1970) matroid partition theorem that
matroid bases have the property that any vector that can be written both as their
non-negative and their integer combination can also be written as their non-negative
integer combination. This property turned out to be the only interesting one from the
point of view of Cunningham’s above mentioned question (see Cook, Fonlupt, Schrijver
(1986)). It is actually the algebraic essence of different combinatorial objects as it was

shown by the papers referred to above, and as we would like to point out later.

The set of non-negative (real) combinations of the vectors ay, ..., ay is called the



cone generated by these vectors and will be denoted by cone(ay,...,ar). “cone” will
always mean polyhedral (that is finitely generated) cone. A cone is called pointed, if
it does not contain any linear subspace besides the 0-space, or equivalently, if there
exists a hyperplane such that the only element of the cone on the hyperplane is the 0,
or equivalently, if the 0 vector cannot be written as a non-negative combination of the

coefficient vectors of the linear inequalities describing the cone.

The lattice generated by the vectors ay,...,ar € Z" is the set of their integer
combinations, and will be denoted by lat(ay,...,ax). The basis of a lattice is a set of
linearly independent vectors which generate the lattice. It is well-known that every
lattice has a basis (cf. eg. Schrijver(1986)). det(ay, ..., a,) will denote the determinant

of the matrix whose columns are ay, as,. .., a,.

The parallelepiped defined by the integer vectors aq,...,ar € Z" will be the fol-

lowing set par(aq,...,ak) of integer vectors:

k
par(ay,...,ax) := {w:Z/\iai:OS A<l (1=1,...,k), w integer }.

=1

Motivated by total dual integral systems, Giles and Pulleyblank (1979) defined
Hilbert bases, they and Schrijver (1981) proved some basic properties of them, and
showed their relation to total dual integrality. Later works such as Cunningham (1987),
Cook, Fonlupt and Schrijver (1986), or Lovész (1987) show that the significance of
Hilbert bases is beyond totally dual integral systems. They play an important role

in integer programming in general, for example in the Chvatal closing procedure (cf.

Schrijver (1986)).

The finite set H will be called Hilbert-generating-system, if every vector in
cone(ay, ..., ax)Nlat(ay, ..., ax) can also be written as a non-negative integer combination
of ay,...,ar. A Hilbert basis is a minimal Hilbert-generating-system of a given cone and
lattice, that is H is a Hilbert basis if and only if it is a Hilbert generating system, and the
cone generated by any proper subset of it is either not a Hilbert-generating-system or
generates a smaller lattice or a smaller cone. The above mentioned property of matroid
bases means exactly that they form a Hilbert generating system. Furthermore, since no
matroid basis can be a non-negative combination of others, they form a Hilbert basis.

(We do not distinguish subsets of a set from their characteristic (incidence) vectors).

Remark: This terminology slightly differs from that used in some other papers, but
reflects somewhat the present folklore:

1. The term "Hilbert basis” was used earlier for Hilbert generating systems. Since
bases in algebra are minimal generating systems, and since Schrijver (1981) has shown

that pointed cones have a unique "minimal Hilbert basis” (see below), it was more and
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more used for minimal systems as well, which causes some confusion.

2. In some papers Hilbert bases are restricted to satisfy lat(H) = Z", though not all
the examples satisfy this restriction (for example matroid bases or matchings do not).
This is not bad: if lat(H) # Z", use the linear transformation which brings a basis of
lat(H) into the unit vectors. This linear transformation brings H to a Hilbert basis
H' 7isomorphic” to the original one, and lat(H') = Z". From now on we shall also
suppose that a Hilbert basis H satisfies lat(H) = Z", and if we want to emphasize that

an example does not satisfy this additional restriction we shall signal it.

Les Trotter (1987) has put the question of finding examples of ”general TDI-
systems” related to Hilbert bases without the assumption lat(H) = Z" in exactly the
same way as TDI systems to Hilbert bases with this assumption (see Section 4). He
has also found a nice example of ”general TDI systems” which are not TDI in the usual

sense, shown in Section 4.

We finish this introduction by three simple results and a series of conjectures about

Hilbert bases that will play an important role in the sequel.

The Hilbert generating system or Hilbert basis of a cone C' is a Hilbert generating
system, or Hilbert basis of H with C' = cone(H) and lat(H) = Z". In other words
a Hilbert generating system of C' is a finite set H C C' with the property that every
integer vector in C' is can be expressed as a non-negative integer combination of H; a
Hilbert basis of C is an (inclusionwise) minimal Hilbert generating system of C'. (An
arbitrary Hilbert basis H (with lat(H) = Z") is the Hilbert basis of cone(H).) The
following result is due to Giles and Pulleyblank (1979) :

Theorem 1.1  Every cone has a finite Hilbert generating system.

Proof. Let C = cone(ay,...,ax). par(ay,...,a) is clearly a finite set, because it is
bounded and it contains only integer vectors. But {ai,...,axr} Upar(as,...,ax) is a

Hilbert generating system of the cone €', because if w € C, w = Ele Aia;, then

k k

w—Y |NiJai =Y {Ni}a; € par(as, ... ax)

where || denotes the integer part of the number @, and {«} denotes its fractional part.

Q.E.D.

Schrijver (1981) proved the following theorem:

Theorem 1.2  Every pointed cone has a unique Hilbert basis.

The existence of a Hilbert basis follows from the previous theorem. The following
proof of the unicity was pointed out to me by Brahim Chaourar. (I learnt from Les

Trotter that Jiyong Liu proved it in a similar way.)
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Proof. Suppose the rows of the k X n matrice P and the [ X n matrix ¢ both form
Hilbert-bases of one and the same pointed cone C: P = AQ and ) = BP, where A
and B are non-negative integer matrices of size k x [ and [ x k respectively. We can

deduce P = ABP.

We first show that AB is the identity matrix. Denoting the j-th element of its
i-th row by A;;, our matrix equation is equivalent to the equations p; = Ele Aijpj,
where p; is the i-th row of P and A;; > 0 is integer (¢ = 1,...,k, y = 1,...,k). For
every 1 = 1,...,k, A\;; = 1, for say A\1; = 0 would contradict the fact that the p;-s form
a minimal Hilbert generating system (we can delete p1); A1 > 1 would contradict the
pointedness of C'. Substituting this into our equation we get 0 = Zj;éi Aijp; for every
1, and since (' is pointed, and the coefficients are non-negative, we can deduce A;; =0
if v # 7.

We conclude that A, B are non-negative integer matrices, and AB is the k x k
identity matrix. Since the rows of P and ) form a minimal Hilbert generating system,
A and B have no zero columns and rows. It follows immediately that both A and B

are permutation matrices.

Q.E.D.

From now on we shall suppose that Hilbert generating systems and Hilbert bases
generate pointed cones, except if we emphasize the countrary. A cone will also auto-
matically mean pointed cone. All the examples we shall mention treat only pointed

cones as well.
Theorem 1.2 immediately implies the following observation of Schrijver (1981).

(This played an important role in his original proof.)

Corollary  The Hilbert basis of the cone C' = cone(ay,...,ay) is the set
H={heCnZ"\{0}:h is not the sum of two non-zero integer vectors of C'}.

Clearly, H C par(ay,...,ax) U{ay,...,ax}.

Thus the formula in the above corollary is an equivalent definition of the Hilbert

basis of a cone C, and it will be used as such, without any more reference to it.

Cook, Fonlupt and Schrijver (1986) have proved the following Caratheodory type

theorem for Hilbert bases *:

Theorem 1.3 Let C' be a pointed cone, and let H C Z" be its Hilbert basis. If

w € cone(H) N Z" then w is the positive integer linear combination of at most 2n — 1

* Recall Caratheodory’s theorem for cones: every element of a cone can be written as the non-
negative linear combination of at most 11 generating vectors of the cone., see Schrijver (1986)
Corollary 7.11.



elements of H. If H consists only of 0-1 vectors, then this bound can be improved to
2n — 2.

We have to put the proof here because the proof of Theorem 2.1 will refer to its
details.

Proof. Let H = {ay,...,a1}, w = Ele A;a;, and suppose Ele A; 1s maximum
among all possible choices. (This maximum is finite because C' is pointed.) We know
from linear programming that the set {a; : A\; > 0} can be chosen to be linearly
independent (a version of Caratheodory’s theorem )*. We can thus suppose without
loss of generality that A\; =0 if ¢ > n, that is w = E?:l A;a;.

Let
(1.1) wo :w—Zwai :Z{/\i}ai € par(ay, ..., ay)

wg € C, and wq is an integer vector, whence there exist a; > 0 integers such that

wo = Ele aja;. Clearly,
k n

(1.2) w = Zaiai + ZL/\ZJCLZ
i=1 i=1

Ele a; < n—1, for if not, Ele a; > n > Ele{/\i}, and thus the sum of the

coefficients in (1.2) is greater than ., A;, a contradiction.

Since the a;-s are integers |{¢ : a; > 0}| < n — 1 follows, proving that the number

of positive coefficients in (1.2) is at most 2n — 1.

Q.E.D.

Cook Fonlupt and Schrijver (1986) add the remark that in 2 dimensions 2 elements
are enough, and they do not have any example where n elements would not be enough

in general instead of the 2n — 1 above.

Conjecture A Let H C Z" be a Hilbert basis, and w € cone(H) N Z". Then w is
the positive integer linear combination of at most n elements of H, and these can be

determined in polynomial time.

In a lecture, Bill Cook communicated an additional fact which was very important
from the point of view of the present work: in the plane, the determinant of neighbour-
ing Hilbert basis elements is +1, (equivalently, they generate the lattice of all integers,

or just the same lattice as H), for a proof see the end of this introduction. In sections

* In the language of linear programming: there exists an optimal basic solution.
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2 and 3 we are going to prove generalizations of this fact, in Sections 4 and 5 we shall
deduce some consequences for combinatorial problems. These results, many examples
and the strong belief in the beauty of nature makes us think that the same is true in
general. In other words, if the following conjecture is true, it should be due to Cook

Fonlupt and Schrijver (1986), if it is not, the responsibility is the author’s.

CONJECTURE B IfH C Z" is a full dimensional pointed Hilbert basis, then
cone(H) is covered by cones cone(ay,...,ay), where {ay,...,a,} € H, and
det(ay,...,an) = +1; ay,...,a, such that cone(ay,...,a,) contains a given element of

cone(H)NZ", and det(ay,...,a,) = +1 can be computed in polynomial time.

It is easy to see that Conjecture B implies Conjecture A. For general Hilbert-bases,

instead of "det(ay,...,ay) = 17 we have to write simply that ”(aq,...,a,) is a basis of
lat(aq,...,ay).”
Note that vectors aq,...,a, with det(as,...,a,) = 1 are the minimum cardinality

full dimensional Hilbert bases and they are the only linearly independent Hilbert bases.
For a not necessarily full dimensional set of linearly independent vectors {ay,...,a}

the equivalence of the following statements can be shown easily:

(i) {a1,...,ar} is linearly independent and is a Hilbert basis.

(ii) par(ay,...,ar) = {0}
(iii) The g.c.d. of the k x k subdeterminants of the matrix whose columns are ay,. . ., a

is 1. (The equivalence of (ii) with the rest relies however on some knowledge on lattices,

see Schrijver (1986). Actually, (iii) will be used only for k = n, when it is evident.)

For simplicity, we shall often suppose that our Hilbert basis is of full rank. This
is not a restriction of the generality: if the Hilbert basis is in a subspace of rank r,
choose a basis of this subspace, and represent the vectors of the subspace in with the
coefficient vectors of linear combinations of this basis. This gives a full dimensional

representation of the same Hilbert basis in IR".

This argument permits to extend statements from the full dimensional case to
arbitrary Hilbert bases. For example, using that full dimensional linearly independent
Hilbert bases are exactly the sets of vectors with determinant +1, we get the following
obviously equivalent version of Conjecture B, which does not need the assumption about

the full rank, and does not speak about determinants:

CONJECTURE C Let H C Z" be a Hilbert-basis where cone(H) is pointed. If H
is linearly dependent, and w € cone(H)NZ", then there exists a Hilbert-basis H' C H,
(H' # H), w € cone(H"), and H' can be computed in polynomial time.
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The reader may find it useful to study numerical examples of Hilbert bases first
in 2 dimensions. Taking two linearly independent relatively prime vectors with non-+1
determinant, clearly, not every integer vector of the pointed cone C' generated by these
two vectors is an integer combination of the generating vectors. You can easily find
the (uniquely determined) elements of the Hilbert basis of C'. The experience aquired
through such examples will probably help to follow the proof below, and arguments all
along the paper.

Let us finish this introduction by proving these conjectures for n = 2. This case is

easy, but it isn’t a completely banal exercise.

However, short proofs can be given in various ways. Several proofs can be extracted
from more general arguments, for example Lemma 1 of Theorem 2.2 below gives a
proof. The particularity of this case, exploited by the proofs is that neighboring Hilbert
basis elements have determinant 1, or equivalently, if we delete either of the extreme
rays, the remaining vectors form a Hilbert basis again. It is not difficult to prove
that the Hilbert basis H of the cone generated by the integer vectors a;, as lies in
conv(ay,az,0). (This fact implies immediatly Conjecture C: H \ {a1} is a Hilbert
basis, for if v € conv(H \ {a1}), and v = vy + vy, v1,v3 € cone(a,az), then clearly,
v1,v2 € conv(H \ {a1}).) Our purpose with giving a separate proof here is that some
aspects of Hilbert bases might be easier to understand on this simple example. The
following version, simplified down to the bare essentials, was exhibited by Péter E.

Soltész:

Proof of Conjecture C for n = 2. If |H| < 2, the statement is trivial. Let ay,a2 € H be
the extreme rays of cone(H). By our assumptions a; and ag are linearly independent
and H \ {a1,a2} # 0. It is enough to prove that H \ {a;} is a Hilbert basis, for then
by symmetry H \ {as} is also a Hilbert basis, and arbitrary w € cone(H) is contained

in the cone generated by one of these.

One of the extreme rays of cone(H \ {a;}) is ag, let the other be a}. Of course
ay € H. All we have to prove is that every w € par(a},as) is the non-negative integer
combination of vectors in H \ {a1}. We shall actually prove even more. Let w €
par(ai,az). We know that w can be written as the non-negative integer combination of
vectors in H: w = Y, . a(h)h, where a(h) > 0 integer for all ~ € H. We shall prove
that in every combination of this form a(a;) = 0. Suppose indirectly that o(aq) > 1,
and substitute every h € H by their expression as a nonnegative linear combination of

a1 and az: we get that

(1.3) w = Brar + Braz, where 31 > 1,5, > 0.

On the other hand w = N a] + Maz (0 < A, A, < 1), where a] = Aar + Azaq
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(0 < A\, A2 < 1), whence

(14) w = /\’1/\1a1 + (/\/1/\2 + /\/2)612.

In (1.3) the coefficient of a; is at least 1, whereas in (1.4) it is smaller than 1. This
is a contradiction, because there is a unique way to express w in the basis ay, as.

Q.E.D.

The reader could visualize this proof finding the clear geometric meaning of each

step.

2. Improving by 1

In this section we improve only by 1 three known bounds. The proofs seem to
require new methods though, and may give more general indications for attacking the
conjectures A, B, C. Their proofs are strictly related to Conjectures B and C. The main
support for the conjectures is just the following fact valid for the whole paper: in all
cases when Conjecture A is true, the stronger Conjectures B and C also hold; the same
proofs work for them; furthermore, in most cases, the only way of proving Conjecture

A 1s to prove Conjectures B or C.

Theorem 2.1 Let H C Z" be the Hilbert basis of a pointed cone, and w € cone(H )N

Z". Then w is the positive integer linear combination of at most 2n — 2 elements of H.

The proof, in addition to the proof of Theorem 1.3, exploits the symmetry of
parallelepipeds:

Proof. Let H = {ay,...,ar}, w = Ele Aiai; Ele A; 1s maximum; aq,...,d, are
linearly independent, {a; : A; > 0} = {a1,...,a,}. (If {¢:X; >0} < n, then the

statement follows already from the proof of Theorem 1.3.) Assume in addition that

conv(ay,...,an)NVH ={a1,...,a,}. We can assume this without loss of generality, for
(2.1) w :efh—l-Z(/\i — evi)ai,
=1

and if h =" via; with > v =1, (0<4; <1,:=1,...,n), then the sum of the
coefficients in such a combination remains equal to Y ., ;. The choice ¢ := min{% :

i=1,....,n} = = makes clear that cone(ay,...,a;-1,h,aj41,...,a,) contains w, and

combines it with the same some of coefficients*.

* This is just a “pivot” bringing h into the “basis”, without changing the “objective value”, because
the “relative cost” of h was 0.



Let wq be defined by (1.1). We have now
(2.2) d {Aiy<n-—1.
=1

Indeed, suppose indirectly that > 7" {\;} > n — 1, that is, where v; := 1 — {\;} > 0,
(t=1,...,n)

2.3 REE!
=1

Let now

"
hi:Z%‘Gi =ay+...+a, —wo € cone(ay,...,an) NZ",
=1

furthermore, if b ¢ H substitute h in (2.1) by a non-negative integer combination of
Hilbert basis elements. We must have equality in (2.3), because otherwise the sum of
the coefficients in (2.1) is bigger than Y., \; for any positive ¢; h € H for the same
reason. Thus h € conv(ay,...,an) \ {a1,...,a,}, contradicting the assumption made

in the beginning of the proof, and proving (2.2).

After these remarks we proceed in exactly the same way as in the proof of Theorem
1.3. However, because of (2.2), we have now the following tighter bound in the last
paragraph of the proof of Theorem 1.3: Ele a; < n—2, for if not, Ele a;>n—1>
Yo {\i}, and thus the sum of the coefficients in (1.2) is greater than > ., \;, a

contradiction.

Since the a;-s are integers |{i : a; > 0}| < n — 2 follows, proving that the number

of positive coefficients in (1.2) is at most 2n — 2.

Q.E.D.
Remark:
1.Instead of requiring conv(ay,...,a,) N H ={a1,...,a,} in the proof, we could have
assumed that det(aq,...,ay) is minimal:

n
det(ay,...,aj—1,h,aj41,....a,) = det(al,...,aj_l,Z’yiai,aj+1,...,an) = ~; det(ay,.
=1

Thus "pivoting” decreases the determinant, if we "bring” an element of the paral-

lelepiped into the basis.

This trick, although it is more technical than the one we used in the above version
of the proof, can also be used to prove other statements. For instance it implies im-

mediately the existence of a Hilbert generating system for which Conjecture B holds:

9
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by Caratheodory’s theorem cone(H) is covered by cones of the type cone(H') (where
H' C H is linearly independent). If for each of these H' we take h € par(H') and
replace H' by the n cones that have h and n — 1l-elements of H' as extreme rays (we
suppose H is full dimensional), we get a new covering by cones, and by the above
remark the maximum determinant has decreased. Repeating this a finite number of
times, we get the appropriate Hilbert generating system.

2. A third possibility, which is better from the algorithmic point of view: let ¢; :=
1 —¢e || a; ||, where ¢ is “sufficiently small”; it is easy to see that a basis with maximal
objective value with respect to this objective function satisfies conv(ay,...,a,) N H =
{ay,...,a,}. It follows that the positive linear combination with at most 2n — 2 Hilbert

basis elements can be determined in polynomial time.

The following theorem will of course not contain many combinatorial examples. (It
could be interesting in itself though from the viewpoint of three dimensional geometry.)
However, its proof is probably the one which goes the deepest into the structure of

Hilbert bases in general:

Theorem 2.2  Conjectures A, B, and C are true for n < 3.

To prepare the proof we state two lemmata valid in arbitrary dimension:

Lemma 1 Let H C Z" be the Hilbert basis of a pointed cone, H = ay,...,a; and
w € cone(H) NZ". Then there exist coefficients \; such that w = Ele \;a;, and

(i) Ele \; is maximum under this constraint.
(ii) {a; : \; > 0} is linearly independent, say {a; : \; > 0} = {a1,...,as}, s < n.
(iii) If h € par({a1,...,as} \ {0}, h = Ele ~iai, then

k
(2.4) 1<) 7i<s—1<n-1

=1

Less formally, there exists an “optimal basis” for which (iii) holds. Note that

Conjecture B for n = 2 follows immediately.

Proof. Let H = {ay,...,ar}, w = Ele Aiai; Ele A; 1s maximum; {a; : \; > 0} =
{ay,...,as}, and this set is linearly independent (see the proof of Theorem 1.3. Assume
in addition that conv(ay,...,as) N H = {ay,...,as} like in the proof of Theorem 2.1.

Thus (i) and (i1) hold by the above choice. Let h € par(ai,...,as), h = i_, Yit;.

We have to prove (2.4). Like in the proof of Theorem 2.1, (2.3) cannot hold, whence

i v > 1. Applying the same to the symmetric h = ay+...+as—h =Y ;_ (1—7;)a;
we get that >.0_, 1 —~; > 1 and (2.4) is proved.

Q.ED.
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The following Lemma is well-known from the geometry of numbers. For the sake

of completeness we sketch a proof using the Hermite normal form:

Lemma 2 Let ay,...,a, € Z" be a basis of R". Then
lpar(ai,...,an)| = |det(ay,...,a,)| (For a general set ay,...,ar we simply replace the
determinant by the greatest common divisor of the r x r determinants where r is their

rank.)

Proof. Let A be the matrix whose columns are ay,...,a,. Let r; denote the i-th
row of A. Clearly, if we replace a row r; by r; £ r; (i # j), then the set of vectors
A= (M,..., \n) € R" for which A\ is integer remains the same. In particular, the
number of elements in the parallelepiped defined by the new column vectors remains
the same; the determinant does not change either. With such operations one can
arrive to the "Hermite normal form” (see Schrijver (1986) p.45) of the rows. We can
thus suppose that A is lower triangular. Let the elements in its main diagonal be
dy, ... dn. Clearly, for A\ to be in par(ay,...,a,) we have dy different choices for
Ay é (t =0,...,dy —1). Similarly, if Ay, ..., A\;_; have already been chosen, and

the i-th component of E;;ll Aja; is x, then the possible choices for A; are w

(t=0,...,d; —1): for all possible choices of Ay, ..., \;_1 we have d; choices for \;. We
conclude that par(ay,...,a,) has dy ...d, = det(A) elements.
Q.E.D.

Proof of Theorem 2.2. Suppose n = 3, and let us prove Conjecture C.

Claim 1 If H C Z° is a Hilbert-basis, and w € cone(H) N 7?, then there exist vectors
ay,az,a3 € H such that par(a;,ag,as) \ {0} C H, and w € cone(aq, az, as).

Indeed, let {ay,az,a3} and {\1, A3, A3} be the basis and coefficients provided by
Lemma 1 (s=3), and h € par(ay,az,as), h = y1a1 + Y202 + v3a3. By Lemma 1 (2.4),
Y1+v2+73 < 2. If h ¢ H, then substituting 7 with a non-negative integer combination
of H, the sum of the coefficients in (2.1) is again bigger than A\; + A2 + A3 contradicting

Lemma 1 (i).

Claim 2 If Claim 1 does not hold for any proper subset of H (it must hold then for
H, that is par(ay,az,a3) \ {0} = H), then it has an element h = y1a1 + v2a2 + vsas

that satisfies the equation
Al +72+73)=A+1,

where A := det(ay,as,as).

Before proving Claim 2, let us summarize our knowledge about the parallelepiped

par(aj,az,as): it has A — 1 different non-zero elements (see Lemma 2) of the form
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h = ~v1a1 + y2a2 + 7y3az, where the coefficients are rational numbers all with A as

denominator (Cramer’s rule); denoting the sum of the numerators of the coefficients by

s(h),
(2.5) s(h) = Al + 72 +173)-

On the other hand, (2.4) for n = 3 gives A < s(h) < 2A, in other words,
(2.6) s(h) is always one of the values A + 1,...,2A — 1, that is one of A — 1 different

values.
We shall prove that
(2.7) for hy # hy € par(ay,az,as), s(h1) # s(ha).

It follows then by (2.6) that for each 1 € {A+1,...,2A — 1}, s(h) =1 is satisfied
for exactly one h € H, and in particular s(h) = A+ 1 for some h € H. Because of (2.5)
this is just the statement of Claim 2.

Let hy, hy € par(ay,as,az), s(hy) = s(he) =: s. All we have to prove, is h; = hs.

For h € par(ay,az,as) let h := ay + ay + ag — h. Clearly, h € par(ay,az,as). The
identity
hi + hy = a1 + az + as
is obviously equivalent to hy = hy. s(hy) + s(hy) = s +3A —s = 3A. Thus, in the

combination hy + hy = &1a1 + daas + dzas, 8 + 82 + 53 = % =3, and

(2.8) 0<6 <2, (i=123).

Since by (2.6) for every vector in the parallelepiped, the sum of the coefficients
is non-integer, the fact that 6, + 02 + 03 is integer implies that dy, 2 and d3 are all

integers, and using (2.8) we have §; = §» = d3 = 1. Claim 2 is proved.

We show now how Conjecture C follows from the claims. If H is not of the
form par(aj,az,as) \ {0} then we are done by Claim 1. Thus we can suppose H =
par(ai,as,as) \ {0}, and that the condition of Claim 2 holds. Clearly, for every h €

par(ay, az,as):
par(a17a27 h) U par(al,h, CL3) U par(h, az, CL3) > H \ {h}v

and at least the origin is contained in the intersection of the three parallelepipeds on
the left hand side, whence:

det(ay,az,h) + det(ag, h,az) + det(h,az,a3) —2 > det(ay, az,as) — 1.
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If i is now the element guaranteed by Claim 2, we have equality here (the members of
the sum at the left hand side are the same as those in Claim 2, through elementary op-
erations on determinants). Consequently we have equality in the above set-containment
as well. It follows that par(ay,as,h)\ {0}, par(as,h,as) \ {0} and par(h,az,as) \ {0}
partition H, and are Hilbert bases. The theorem is proved. (The statement about the
complexity is clear: the solution of a linear programming problem allows to decrease
the size of the problem by 2.)

Q.E.D.

Conjecture A in the following special case has been proved earlier by A. Gerards.
The following proof is based on arguments similar to the other two proofs of this section,

some elements of which will be useful later:

Theorem 2.3 Conjectures A, B and C are true for Hilbert bases whose linear rank

is one less than their cardinality.

Proof. We shall prove Conjecture B for the set of vectors H = {ay,...,a,41} of full
rank, forming a Hilbert basis. Clearly, up to a scalar multiple, there exists one unique

non-zero linear relation

n+1

(2.9) > aia; =0.
=1

For later convenience we state the following Lemma in a somewhat more general form

that we need it here:

Lemma : IfH = {ay,...,a} is an arbitrary Hilbert-basis, and the linearly indepen-
dent vectors ay,...,as € H do not form a Hilbert basis, then

a. There exists an equation of the form

(210) Zai = Zaiai

el il

where [ C{1,...,s}, and a; > 0 integers (1 ¢ I).
b. There exists an equation of the form ), ; aa; = Ei¢[ a;a; where I C{1,... s},
a; > 0 integers (1 = 1,...,k), and max{a; : 1 =1,...,s} <max{o; :i =s+1,...,k}.

Indeed, a; + ...+ a; = h + h, where 0 # h € par(ay,...,as). Since both h
and h are in cone(H), they can be expressed as a non-negative integer combination
of H. Substitute these expressions for h and h into the above equation. In the linear
expression we have for h we are sure to have an element different from aq,...,as. After
eventual simplifications because of elements that occur on both sides we get (2.10) and

a. is proved.

13



To prove Lemma b. take simply h € par(aq,...,as). Clearly, h = %(plal +... 4+
psas), 0 < p; < q (1 =1,...,s). Expressing h as a non-negative integer combination
of H, we get that pja; + ... + psas = quzl r;a;, where r; is non-negative integer,
and there exists 7 > s with r; > 1. Thus, after simplifying because of elements that
occur on both sides we get an equation with all coefficients smaller than ¢ on the left
hand side; a; is on the right hand side, and its coefficient is at least ¢ . The Lemma is

proved.

The Lemma tells us a lot about the coeflicients in (2.9). Suppose aq,...,as be
independent, but not a Hilbert basis. (Otherwise we are done.) By Lemma a. (2.10)
holds, and must coincide with (2.9) up to a scalar multiple. Because of the uniqueness
of (2.9), Lemma b. applies to (2.9) as well: (2.9) can be supposed to be identical to
(2.10) with the additional property, that there exists j with o; > 2. Furthermore,

(2.11) if{a; : 7€ J}, J CA{Ll,...,n+ 1} is linearly independent and not a Hilbert basis,
then J D I.

(Because J satisfies the same assumption as {1,...,s} and consequently (2.10)
holds if we replace I by I’ C J. By the uniqueness of (2.10), using a; > 2 as well, we
get I' =1.)

Let now w € cone(H) be arbitrary. By Caratheodory’s theorem, w = Y ;_, \ia;,

A; > 0, and we can suppose that ay,...,as are those in the Lemma. Let A := min{); :

i € I'}. By (2.10) we have

(2.12) w=> (A= Nai+ > (A + Aay)a;

i€l il
(define \; = 0 for ¢ > s). Since \; — A = 0 for some ¢ € I, in (2.12) the indices of the
positive coefficients do not contain I. Thus {a; : a; has positive coefficient in (2.12)}

is linearly independent (because (2.10) is the unique linear relation), and according to
(2.11), it is a Hilbert basis.
Q.ED.

A proof of this theorem also follows from our study of “uncrossable Hilbert bases”
(Section 3), and another one from the structure of 1-dimensional Hilbert kernels (see a

remark in Section 5 after Conjecture E).

3. Strong and uncrossable Hilbert-bases

An equivalent definition of Hilbert generating systems could be the following: H
is a Hilbert generating system if and only if for every w € cone(H)Nlat(H) there exists
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a h € H such that w — h € cone(H).

Chandrasekaran and Tamir (1984) studied a property which can be reformulated
as follows: for every w € cone(H) Nlat(H) and h € H, w — eh € cone(H) with ¢ > 0
implies w — h € cone(H). The origin of this property lies in Fulkerson’s proof (1972)
of the Pluperfect Graph Theorem. The same property permitted to Cook, Fonlupt,
Schrijver (1986) to prove Conjecture A for the cliques lying on a face of the clique
polytope of a perfect graph.

We first suggest a property which will permit to include further combinatorial
examples, and is, on the other hand special enough: we will prove Conjectures A,
B, C if this property holds. H will be called a strong Hilbert-basuis, if for every face
F of C := cone(H) there exists an element hp € F with the following property: if
we CNZA", and F is the minimal face of C' containing w, then w —hp € C. *

hp with this property will be called a strong element of F. (For basic definitions
and statements about the structure of polyhedra cf. Schrijver (1986).) The main result

of this section is the following theorem:

Theorem 3.1 If H C Z" is a strong Hilbert basis, then Conjecture A, B, C hold for
it.

Proof. Let w € C NZ", and suppose F; is the minimal face of C containing w,
and hy := hp,. Let Ay := max{\ : w — My € C}. The dimension of the minimal
face F, cotaining w — Ajhy is less than that of Fy. Apply now the same procedure to
w—Ahy € C, and so on. Clearly, we arrive in this way at a series of faces Fy, ..., Fs and

linearly independent vectors hq,...,hs (hi = hp,,i=1,...,s), w € cone(hy,..., hs).

We prove now by induction on dim(Fy) that hy,...,hs is a Hilbert basis. If
dim(Fy) = 1 the statement is obvious. If hy,...,hs is not a Hilbert basis, there
exists a 0 # h € par(hi,...,hs), h = > .i_ vihi (0 < v < 1). By the induction
hypothesis hg,...,hs is a Hilbert basis, whence v; # 0. The minimal face contain-
ing h is Fy, and because of >.°_, vih; € F» where dim(F,) < dim(F}) we see that
v1 = max{\: h — Ahy € C}. But 0 < vy < 1 contradicts the property of hp, = hy in
the strong Hilbert basis H.

* Using Chandrasekaran and Tamir’s terminology, strong Hilbert bases are exactly those Hilbert
bases H , whose elements have an order such that the lexicographically maximal linear expression
of every h € COHG(H) is integer. (Fasy to see.) Chandrasekaran and Tamir investigated
problems where the same holds for every order.

15



The claim about the complexity is an immediate consequence of the ellipsoid
method, see Grotschel, Lovéasz, Schrijver (1987): max{\ : h — Ahy € C} can be
computed in polynomial time. Another way of applying the ellipsoid method will
also be useful: maximize Apc(hp) under the constraint h = Y {Aphp : F face of C'}
c(hp) = AYUE) where A is the biggest determinant of a square submatrix of H. *

Q.E.D.

A second property that will imply the conjectures: uncrossability. Recall the
following from the Lemma a. of Theorem 2.3: If H is a Hilbert basis, and the linearly
independent vectors ay,...,as € H do not form a Hilbert-basis, then their sum can
also be written in another way as a non-negative integer combination of Hilbert-basis

elements. We shall say that H is uncrossable, if for some objective function ¢ : H — R

and for every independent subset {ay,...,as} C H, among the combinations
(3.1) Y ahh=ar+...+as
heH

(a(h) integer for every h € H), there is one with

(3.2) > alh)e(h) > e(ar) + ...+ clas).

heH

(This is a generalization of the properties used in "uncrossing procedures” for many
combinatorial problems. Eg. the square of the cardinality of a set is often used as

objective function.)

CONJECTURE D  Every Hilbert basis is uncrossable, and the objective function

¢ in the definition of uncrossability is computable in polynomial time.

The reader can check that in all the special cases for which we proved the conjec-
tures, Conjecture D also holds. Check it for instance for the example of Theorem 2.3:
any function ¢ such that the objective value of the left hand side of (2.10) is smaller than
that of the right hand side will obviously do. Thus the proof of Theorem 3.2 below will
provide a new proof for Theorem 2.3 . An other example: the choice of the objective
function at the end of the proof of Theorem 3.1 prove that strong Hilbert bases are
uncrossable (Proofs in this paper can be considered to exhibit an appropriate objective
function to show uncrossability, and Theorem 3.2 below proves again the conjectures

for every case.) Conjecture D is important from the algorithmic point of view.

Theorem 3.2  Conjectures A, B, C hold for uncrossable Hilbert bases

* Tt is easy to see that the c-maximum solutions are exactly the lexicographically maximal ones, if
we order the variables in the decreasing order of ¢. In Chandrasekaran and Tamir’s terminology
our proof means that strong Hilbert bases are exactly those in which lexicographically maximal
solutions with respect to a specific order are Hilbert bases.
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Proof. Let H be an uncrossable Hilbert basis, ¢ : H — R the function that ensures
uncrossability, and b € cone(H) arbitrary. Let B := {ay,...,as} € H be the vectors
which belong to a positive variable 3; in an optimal basic solution for the linear program
Yoneut(h)h =0, x>0, max) , yx(h)c(h). (The maximum exists because of the
pointedness of cone(H).)

B must be a Hilbert basis, because if it were not, then (3.1) holds, that is

(3.3) b=cY a(h)h+ Z(ﬁi — £)a;.

heH

Because of uncrossability, (3.2) also holds. If ¢ is sufficiently small, (3.3) also ex-
presses b as a nonnegative combination, and by (3.2), has bigger objective value than
>oi_, Bic(ai), a contradiction with the choice of B.

Q.E.D.

The above proof implies that cone(H ), where H is an uncrossable Hilbert basis,
has a “triangulation” with cones generated by independent Hilbert bases B C H. A
triangulation of the cone C' is a set of cones with linearly independent extreme rays
whose union is C', and the intersection of any two of which is a smaller dimensional

cone.

4. Combinatorial examples

We have now finished the study of Hilbert bases in general. In this section we
sketch some applications, in the following section we make some algorithmic and other
remarks. In these two sections the reader will have to be satisfied with a short summary,
and sketched proofs because of the lack of place (and time). I hope to write more details

in a forthcoming paper.

Hilbert basis constitute an equivalent algebraic language to study TDI systems. A
system of inequalities is called totally dual integral (or TDI), if any inequality which
is their consequence and has an integer coefficient vector, arises as their non-negative
integer combination. The first, basic results about TDI systems were proved by Giles
and Pulleyblank(1979), Edmonds and Giles (1984), and Schrijver (1981). The transla-
tion between TDI systems and Hilbert bases is provided by the following observation
of Giles and Pulleyblank (1979) see also Schrijver (1986):

Theorem 4.1 a. The system of inequalities Ax < b (A and b are integral) is TDI if
and only if for each face F of the polyhedron {x : Az < b}, the rows of A which are
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active in F' form a Hilbert basis.
b. The rows of the integer matrix A form a Hilbert basis if and only if Ax <0 is TDIL

A row of a is called active in a face (or for an objective function), if it is satisfied
with equality by every vector in the face (which is the set of optimal solutions for the

given objective function).

Many combinatorial applications of Hilbert bases arise from well-known TDI sys-
tems of Combinatorial Optimization, (and as we shall see below, many others arise in
a different way). It is an immediate conequence of Theorem 2.1 (through Theorem
4.1) that for n-dimensional TDI systems there always exists an integer optimal dual
solution with at most 2n — 2 nonzero variables. We list now some Hilbert bases, where

we know something better than the bound 2n — 2.

I. Totally unimodular and uncrossable systems

For the Hilbert bases corresponding to many TDI systems all the conjectures we
presented hold trivially. Two big classes of them whill let us avoid listing them one
by one: integer linear programs with totally unimodular constraint matrices; problems
where for example uncrossing procedures lead to a ”triangular basic” dual solution. An

example to the latter: matroid polyhedra.

II. Perfect Graphs and Matchings

The following Lemma extracts the essence of Fulkerson’s proof (1972) of the Plu-
perfect Graph Theorem:

Lemma Let P := {x: Az < b} be full dimensional (for simplicity), and let ax < 3
be an inequality in the system Ax < b. Suppose furthermore, that ax > 8 — 1 is valid
tor every x € P. If for an objective function ¢ ax < 3 is active, then there exists a dual
solution to the linear program Az < b, maxcx where the dual variable corresponding

to the row a is at least 1. .

Theorem 4.2  The "active rows” (for an arbitrary objective function) of clique poly-

hedra of perfect graphs and matching polyhedra form a strong Hilbert basis.

Proof. (Sketch) All the inequalities describing the clique polyhedron of perfect graphs
are of the form axr < 1, and ax > 0 is valid for them. The Lemma states that such
inequalities are “strong” elements of the cone of active rows: it follows that the active

rows form a strong Hilbert basis.

For matching polyhedra, inequalities of the type x; > 0 and x(d(v)) < 1 satisfy
the conditions of the Lemma. So whenever such an inequality is active, it is a strong
element. If there are no such inequalities, then it can be shown that one of the "odd

set inequalities” is strong. Q.E.D.
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For the case of perfect graphs, the above proof is just an equivalent way of pre-

senting Cook, Fonlupt and Schrijver’s (1986) proof of Conjecture A.

Corollary  Conjectures A, B, C, D hold for the Hilbert bases in the above theorem

IIT. MATROID BASES

It follows from the matroid partition theorem that the (incidence vectors of the)
bases of an arbitrary matroid form a Hilbert basis (whose lattice is not Z"). A. Frank
(1984) has proved that bases of uniform matroids (the set of all k-tuples of an arbitrary
set) form a Hilbert basis for which Conjecture A holds. E Tardos (1984) gave a simple
proof that reduced the problem in one step to a smaller dimensional one, actually with

a natural choice of a “strong element”. This leads to the following:

Theorem 4.3  The set of all k-tuples of an arbitrary set forms a strong Hilbert basis,

where every element is strong (in every face containing it).

Corollary  Conjectures A, B, C, D hold for the set of all k-tuples of an arbitrary set.

This is the only result I know about the conjectures on matroid bases.

IV. ARBORESCENCES

It follows from Edmonds’ (1967) rooted arborescence theorem that arborescences

(as edge-sets) constitute a Hilbert basis.

From Pevsner’s (1987) algorithmic considerations one can extract the following

theorem:

Theorem 4.4 : Let G be a directed graph with a root r € V(G), and w be a vector
in the cone C generated by the arborescences of G rooted in r.

a. If w—a ¢ C for some arborescence a, then there exists an arborescence b such that
w — b € C and the dimension of the minimal face containing w — b is less than that of
w.

b. There exist two arborescences a and b rooted in r and a non-negative integer a such

that w' := w — (aa + b) € C, and the dimension of the minimal face containing w' is
less than that of w.

It is easy to prove Theorem 4.4a using Lovasz’s proof of Edmonds’ theorem, and

b is an easy corollary of a.

Theorem 4.4b implies a better bound than the bounds known in general: using two
vectors, the dimension can be decreased by one; if Conjecture A is proved for graphs
where the linear rank of the arborescences is ¢, we get that for every w there exists a
solution with at most 2(r — ¢) + ¢ = 2r — ¢ positive coefficients, where r is the rank of

the arborescences; we get immediately the bound 2r — 3 (because of Theorem 2.2), that
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can probably be considerably improved with an analysis of small graphs. We would
find it more interesting however, and we hope too, that the strong property exhibited

in Theorem 4.4 brings us nearer to the conjectures in this case.

The Conjectures for the "polar” problem (minimum weight rooted arborescence

maximum cut packing) are trivial, belong to I

V. ODD CUTS

The following example was suggested by Les Trotter (1987): For every objective
function, the active rows of T-join polyhedra form a Hilbert basis, if the non-negativity
constraints are written in the form 2x; > 0. This follows from Seymour’s integer
minimax theorem (1981a) about minimum T-joins and maximum 7-cut packings in
graphs with “bipartite” weightings. The lattice generated by the odd cuts and the
doubles of the unit vectors is clearly the set of bipartite weightings, and not the set of
all integer vectors: this case does not fit into the usual definition of TDI-ness, which

supposes that the considered lattice is the set of all integers.

Some special cases such as planar graphs are strong Hilbert bases, and thus the

conjectures hold for them.

VI. MULTICOMMODITY FLOWS

It is a basic question about graphs whether the existence of a fractional multicom-

modity flow implies the existence of an integer one for arbitrary demands and capacities,

see Seymour (1981b), Karzanov (1987), Seb6 (1990). Such graphs are called routing.

Given a graph G let the multicommodity cone of G be the cone generated by the
vectors ve, ¢ and 2¢;, where C' C E(G) is a cycle, f € C, and v¢ f(e) is equal to —1 if
e= f,tolife e C\{f}, and 0 otherwise; the ¢;-s are the unit vectors on the edges. The
extreme rays defined here will be denoted by MH(G). The above mentioned question,
and the papers refered to investigate the problem of characterizing when MH(G) or

some subcone of it is a Hilbert basis.

It is easy to see that a graph is routing if and only if MH(G) is a Hilbert basis.
Routing graphs include Seymour’s (1981b) class of “cycling” graphs. More generally,
all this can be defined in terms of binary matroids. The characterization of routing

matroids is open.

We do not require that the generated lattice is the set of all integer vectors: if we
require that, it follows from Seymour (1981b) that MH(G) is a Hilbert basis if and only
if G is series-parallel. MH(G) generates the lattice of Eulerian weightings. The MH(G)
of certain graphs (or matroids), among them that of planar graphs, turns out to be a

strong Hilbert basis. Consequently Conjectures A, B, C, D hold for these cases.

The list of the examples seems to be unbounded, actually every TDI system gives
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an example. On the other hand the list of the solved cases of the conjectures is for the

moment poor.

5. Other remarks

I. Testing membership

We first prove that it is coNP-complete to decide whether a given vector is in the
Hilbert basis of a cone given by defining inequalities, a fact proved first by E. Tardos

(1987) with a reduction to the maximum stable set problem of a graph.

Theorem 5.1  Given two vectors a,h € Z", it is coNP-complete to decide whether
h is in the Hilbert basis of the cone {x : ax = 0,2 > 0}

Proof. Let ay,...,a,—2 be an instance of PARTITION (see Garey-Johnson (1979),
and ap—1 :=an = —1/2(a1 + ...+ an—2), a:=(a1,...,ay,); let h be the n-dimensional
all 1 vector. Clearly, C := {z : ax = 0,2 > 0} is a pointed cone, h € C, and h is in
the Hilbert basis of C' if and only if the answer to the given instance of PARTITION

1s no.

Q.E.D.

IT. Testing TDI-ness, and integral dual solutions

Next we show that Conjecture B contains Cook, Lovasz and Schrijver’s result
(1984) on testing TDI-ness in fix dimension. We do not have to use Lenstra’s integer

programming algorithm (in the test. The key-observation is the following:

Theorem 5.2  Suppose Conjecture B is true, and H C Z" is full dimensional (and
generates a pointed cone). Let Hy,...,H, C H be the list of those n-element inde-
pendent subsets of H whose determinant is 1. Then H is a Hilbert basis if and only if
cone(H) = [Jb_, cone(H;).

Proof. The only if part is just Conjecture B. The if part is trivial, since by the con-
straint w € cone(H) is in some of the cone(H;)-s, and those are Hilbert bases.

Q.E.D.

Let H be like in the theorem, and let n be fixed. (It is easy to see from Theorem
4.1 that in order to check TDI-ness it is enough to test whether a given set of vectors is
a Hilbert basis; the assumptions of Theorem 5.2 on H do not restrict the generality, see
Schrijver (1986)). Since n is fixed, the facets of Cy := cone(H) can be determined in
polynomial time. Let now Hy,...,H, C H be the list of those n-element independent
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subsets of H whose determinant is 1. Since n is fixed, this list, and the facets of C; :=
cone(H;) (i =1,...,p) can be determined in polynomial time. Let by,...,b, € cone(H )
be the list of all vectors that generate a one-dimensional cone (half line) which is the
intersection of n linearly independent facets from among the facets of C,...,C). Since

n is fixed, ¢ is still a polynomial of |H|, and can be computed in polynomial time.

Now clearly, cone(H) # |J'_, cone(H;) if and only if there exists a linearly in-
dependent subset {ci,...,c,} C {b1,...,b,} such that no inner (non-facet) point of
cone(cy, ..., cn) liesin | J_ | cone(H;). Thus we “only” have to test for all {c1,...,c,} C
{b1,... ,bq} whether ¢; +. . .+¢, (this is an inner point) is contained in at least one of the
cones C; (i = 1,...,p). If yes, then we can conclude cone(H) = |J'_, cone(H;), and H is
a Hilbert basis by Theorem 5.3. If ¢1+. . .4+¢;, is contained in none ofthe Ci(i=1,....p)
for some {cy,...,cn} C {b1,...,b,}, then clearly cone(H) # |J_, cone(H;), and ac-
cording to Theorem 5.2 H is not a Hilbert basis. Q.E.D.

For TDI systems, we are also interested in finding an integer dual solution, and if
the conjectures hold, a dual solution whose positive variables belong to linearly inde-
pendent constraints forming a Hilbert basis. If our TDI system is given explicitly by a
system of linear inequalities and Conjecture D holds, even the latter task can be solved
easily with the help of Theorem 4.1.

For linear programming problems given by a separation oracle (for the definition
see Grotschel Lovész, Schrijver (1987) ) we must suppose that the minimal system
describing the corresponding polyhedron is TDI, and that for a cone given by a sep-
aration oracle, and whose extreme rays constitute a Hilbert basis, ¢(h) in Conjecture
D can be determined in polynomial time. (For most of the TDI systems for which the
Conjectures are known, these conditions are satisfied.) With the proof technique used
by Grotschel, Lovasz and Schrijver (1987) (6.5.14), our problem is reduced to writing
a vector w of a cone given by a separation oracle as a non-negative c-maximum linear
combination of the extreme rays. (By the proof of Theorem 3.2 every independent

subset of a c-optimal solution is a Hilbert basis.)

Compared to (6.5.14) here we have the additional task of optimizing the function
c. However, given a separation oracle for the cone {yA : y > 0}, a separation oracle
for the polyhedron {yA = w : y > 0} can be determined in polynomial time, whence
the function ¢ can be optimized in polynomial time. (We used the equivalence of

optimization and separation several times, see Grotschel, Lovasz and Schrijver’ book.)

ITI. Structure
We prove here some weakenings and of Conjecture B, and state a reformulation.

Note first that there exists at least one basis with the property claimed in Conjec-

ture B (Gerards and Seb6 (1987) ), implying “local strong unimodularity” for totally
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dual integral systems, that is the existence of active rows whose determinant is 1.

Next we note that every cone has a finite Hilbert generating system for which
Conjectures A, B, C are true, see Remark 1 after Theorem 2.1, but the number of
redundant elements in this construction might be huge. Of course, if we start with a
covering of cone(H) by the cones of Conjecture B, then there there is no redundant
element. It would be interesting to prove the existence of a Hilbert generating system

for which the conjectures hold and does not have many redundant elements.

par(H) is a Hilbert generating system which has many redundant elements, but
the conjectures are still interesting and open for it. Liu and Trotter (1990) have put
the interesting question of giving a proof at least if “1” is replaced by some bigger,
but not very big number in the definition of “par”, and they have some results in this

direction.

Finally, we sketch our results on Hilbert kernels: they are based on the recognition
that for any property of Hilbert bases, only the linear dependencies between Hilbert-
basis elements play a role. A linear subspace S C R* is called Hilbert kernel, if there
exists an n X k matrix H whose columns constitute a Hilbert basis (of a pointed cone),
and S := {x : Hx = 0}. A great advantage of Hilbert kernels is that they neglect
non-essential properties of Hilbert bases, for example their definition does not depend
on whether we suppose lat(H) = Z" or not. We present the following characterization

of Hilbert kernels without proof, noting that the proof is not difficult.

Theorem 5.3 Let S C R* be a linear subspace. The following statements are

equivalent:
(i) S is a Hilbert kernel
(ii) For every x € S there exists y € S so that y =« and y < 1
(iii) For every x € S there exists y € S, y integer and y < [z
(iv) H(S)U{e1,...,ex} is a Hilbert basis, where H(S) is a Hilbert basis of S, and e;

(t=1,...,k) is the vector whose i-th coordinate is 1, and the others are 0.

Let us reformulate Conjecture B in terms of Hilbert kernels (Conjectures A, C, D

can be reformulated similarly). The proof of the equivalence is easy.

CONJECTURE E If S is a Hilbert-kernel, then for every x € R",x > 0 there
exists y € S, such that z € S, z; integer for values 1 with x; = y;, implies z € Z".

The coeflicients of the linear equations satisfied by an n-dimensional Hilbert basis
of cardinality k form a k — n dimensional subspace of R*. It is convenient to represent
Hilbert-kernels with a basis of SNZ", k —n linearly independent k-dimensional vectors.

The case k = n+1 corresponds to 1-dimensional Hilbert-kernels. From Theorem 5.3 it is
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easy to see that 1-dimensional Hilbert kernels are exactly the lines generated by vectors
all positive components of which are 1. Conjecture E is an immidiate consequence,

providing a new proof of Theorem 2.3.

At this point, the relation of the different conjectures may appear chaotic. Let us

finally summarize the easy implications by the following scheme:

CONJECTURE D = CONJECTURE B <= CONJECTURE C < CONJEC-
TURE E = CONJECTURE A.

We do not know anything about the other implications.

Acknowledgment: I owe a lot to Bill Cook, Bert Gerards and Eva Tardos: most of
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proved without their permanent interest and encouragement. Many thanks are due to
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