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Abstract 
 A Hilbert basis is a set of vectors with the property that every integer vector in the
cone generated by this set is also a nonnegative integer combination of its elements� Hilbert bases
were de�ned by Giles and Pulleyblank ������ to study total dual integrality� They come up in a
natural way in di	erent combinatorial optimization problems from matroid bases through totally dual
integral inequality systems to matchings
 arborescences or multicommodity �ows
 and formulate the
pure algebraic essence of certain properties of these�

In this paper we are studying some structural properties of Hilbert bases� The main goal is to
prove a Caratheodory type statement
 a problem raised by a celebrated work of Cook
 Fonlupt and
Schrijver ������� Proving it in some special cases we would like to show a new kind of approach to this
problem� These special cases include combinatorial examples for which the 
integral Caratheodory
theorem� may be of interest for its own sake�

We would also like to show that the e	ect of this problem is beyond the integral Caratheo�
dory problem� the main conjecture contains other results about totally dual integral systems
 and
more generally would become a basic structural property of combinatorial objects for which integer
minimax theorems hold�

�� Introduction

The origins of the problem we are going to study lie in a seemingly innocent

question of Cunningham ����
� related to testing membership in matroid polyhedra
 if

a vector can be written as a non�negative integer combination of �characteristic vectors

of� matroid bases� can it also be expressed as a non�negative integer combination of

a small number of matroid bases� Cunningham gave a �rst answer to this question

that was satisfactory for his goals
 if the ground�set of the matroid has n elements� a

polynomial number O�n�� of matroid bases are always enough�

It is an easy consequence of Edmonds� ���
�� matroid partition theorem that

matroid bases have the property that any vector that can be written both as their

non�negative and their integer combination can also be written as their non�negative

integer combination� This property turned out to be the only interesting one from the

point of view of Cunningham�s above mentioned question �see Cook� Fonlupt� Schrijver

�������� It is actually the algebraic essence of di�erent combinatorial objects as it was

shown by the papers referred to above� and as we would like to point out later�

The set of non�negative �real� combinations of the vectors a�� ���� ak is called the
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cone generated by these vectors and will be denoted by cone�a�� ���� ak�� �cone� will

always mean polyhedral �that is �nitely generated� cone� A cone is called pointed� if

it does not contain any linear subspace besides the ��space� or equivalently� if there

exists a hyperplane such that the only element of the cone on the hyperplane is the ��

or equivalently� if the � vector cannot be written as a non�negative combination of the

coe�cient vectors of the linear inequalities describing the cone�

The lattice generated by the vectors a�� ���� ak � ZZn is the set of their integer

combinations� and will be denoted by lat�a�� ���� ak�� The basis of a lattice is a set of

linearly independent vectors which generate the lattice� It is well�known that every

lattice has a basis �cf� eg� Schrijver�������� det�a�� ���� an� will denote the determinant

of the matrix whose columns are a�� a��� � �� an�

The parallelepiped de�ned by the integer vectors a�� � � � � ak � ZZn will be the fol�

lowing set par�a�� � � � � ak� of integer vectors


par�a�� � � � � ak� 
� fw �
kX

i��

�iai 
 � � �i � � �i � �� � � � � k�� w integer g�

Motivated by total dual integral systems� Giles and Pulleyblank ���
�� de�ned

Hilbert bases� they and Schrijver ������ proved some basic properties of them� and

showed their relation to total dual integrality� Later works such as Cunningham ����
��

Cook� Fonlupt and Schrijver ������� or Lov�asz ����
� show that the signi�cance of

Hilbert bases is beyond totally dual integral systems� They play an important role

in integer programming in general� for example in the Chv�atal closing procedure �cf�

Schrijver ��������

The �nite set H will be called Hilbert�generating�system� if every vector in

cone�a�� ���� ak��lat�a�� ���� ak� can also be written as a non�negative integer combination

of a�� ���� ak� A Hilbert basis is a minimal Hilbert�generating�system of a given cone and

lattice� that isH is a Hilbert basis if and only if it is a Hilbert generating system� and the

cone generated by any proper subset of it is either not a Hilbert�generating�system or

generates a smaller lattice or a smaller cone� The above mentioned property of matroid

bases means exactly that they form a Hilbert generating system� Furthermore� since no

matroid basis can be a non�negative combination of others� they form a Hilbert basis�

�We do not distinguish subsets of a set from their characteristic �incidence� vectors��

Remark
 This terminology slightly di�ers from that used in some other papers� but

re�ects somewhat the present folklore


�� The term �Hilbert basis� was used earlier for Hilbert generating systems� Since

bases in algebra are minimal generating systems� and since Schrijver ������ has shown

that pointed cones have a unique �minimal Hilbert basis� �see below�� it was more and
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more used for minimal systems as well� which causes some confusion�

�� In some papers Hilbert bases are restricted to satisfy lat�H� � ZZn� though not all

the examples satisfy this restriction �for example matroid bases or matchings do not��

This is not bad
 if lat�H� �� ZZn� use the linear transformation which brings a basis of

lat�H� into the unit vectors� This linear transformation brings H to a Hilbert basis

H � �isomorphic� to the original one� and lat�H �� � ZZn� From now on we shall also

suppose that a Hilbert basis H satis�es lat�H� � ZZn� and if we want to emphasize that

an example does not satisfy this additional restriction we shall signal it�

Les Trotter ����
� has put the question of �nding examples of �general TDI�

systems� related to Hilbert bases without the assumption lat�H� � ZZn in exactly the

same way as TDI systems to Hilbert bases with this assumption �see Section 	�� He

has also found a nice example of �general TDI systems� which are not TDI in the usual

sense� shown in Section 	�

We �nish this introduction by three simple results and a series of conjectures about

Hilbert bases that will play an important role in the sequel�

The Hilbert generating system or Hilbert basis of a cone C is a Hilbert generating

system� or Hilbert basis of H with C � cone�H� and lat�H� � ZZn� In other words

a Hilbert generating system of C is a �nite set H � C with the property that every

integer vector in C is can be expressed as a non�negative integer combination of H� a

Hilbert basis of C is an �inclusionwise� minimal Hilbert generating system of C� �An

arbitrary Hilbert basis H �with lat�H� � ZZn� is the Hilbert basis of cone�H��� The

following result is due to Giles and Pulleyblank ���
�� 


Theorem ��� Every cone has a �nite Hilbert generating system�

Proof� Let C � cone�a�� � � � � ak�� par�a�� � � � � ak� is clearly a �nite set� because it is

bounded and it contains only integer vectors� But fa�� � � � � akg � par�a�� � � � � ak� is a

Hilbert generating system of the cone C� because if w � C� w �
Pk

i�� �iai� then

w �
kX

i��

b�icai �
kX

i��

f�igai � par�a�� � � � � ak�

where bxc denotes the integer part of the number x� and fxg denotes its fractional part�

Q�E�D�

Schrijver ������ proved the following theorem


Theorem ��� Every pointed cone has a unique Hilbert basis�

The existence of a Hilbert basis follows from the previous theorem� The following

proof of the unicity was pointed out to me by Brahim Chaourar� �I learnt from Les

Trotter that Jiyong Liu proved it in a similar way��
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Proof� Suppose the rows of the k � n matrice P and the l � n matrix Q both form

Hilbert�bases of one and the same pointed cone C
 P � AQ and Q � BP � where A

and B are non�negative integer matrices of size k � l and l � k respectively� We can

deduce P � ABP �

We �rst show that AB is the identity matrix� Denoting the j�th element of its

i�th row by �ij � our matrix equation is equivalent to the equations pi �
Pk

j�� �ijpj �

where pi is the i�th row of P and �ij 	 � is integer �i � �� � � � � k� j � �� � � � � k�� For

every i � �� � � � � k� �ii � �� for say ��� � � would contradict the fact that the pi�s form

a minimal Hilbert generating system �we can delete p��� ��� � � would contradict the

pointedness of C� Substituting this into our equation we get � �
P

j ��i �ijpj for every

i� and since C is pointed� and the coe�cients are non�negative� we can deduce �ij � �

if i �� j�

We conclude that A� B are non�negative integer matrices� and AB is the k � k

identity matrix� Since the rows of P and Q form a minimal Hilbert generating system�

A and B have no zero columns and rows� It follows immediately that both A and B

are permutation matrices�

Q�E�D�

From now on we shall suppose that Hilbert generating systems and Hilbert bases

generate pointed cones� except if we emphasize the countrary� A cone will also auto�

matically mean pointed cone� All the examples we shall mention treat only pointed

cones as well�

Theorem ��� immediately implies the following observation of Schrijver �������

�This played an important role in his original proof��

Corollary The Hilbert basis of the cone C � cone�a�� � � � � ak� is the set

H � fh � C � ZZn n f�g 
 h is not the sum of two non�zero integer vectors of Cg�

Clearly� H � par�a�� � � � � ak� � fa�� � � � � akg�

Thus the formula in the above corollary is an equivalent de�nition of the Hilbert

basis of a cone C� and it will be used as such� without any more reference to it�

Cook� Fonlupt and Schrijver ������ have proved the following Caratheodory type

theorem for Hilbert bases �


Theorem ��	 Let C be a pointed cone� and let H � ZZn be its Hilbert basis� If

w � cone�H� � ZZn then w is the positive integer linear combination of at most �n � �

� Recall Caratheodory�s theorem for cones� every element of a cone can be written as the non�

negative linear combination of at most n generating vectors of the cone�
 see Schrijver ������
Corollary ���i�

	



elements of H� If H consists only of ��� vectors� then this bound can be improved to

�n� ��

We have to put the proof here because the proof of Theorem ��� will refer to its

details�

Proof� Let H � fa�� � � � � akg� w �
Pk

i�� �iai� and suppose
Pk

i�� �i is maximum

among all possible choices� �This maximum is �nite because C is pointed�� We know

from linear programming that the set fai 
 �i � �g can be chosen to be linearly

independent �a version of Caratheodory�s theorem ��� We can thus suppose without

loss of generality that �i � � if i � n� that is w �
Pn

i�� �iai�

Let

����� w� � w �
nX

i��

b�icai �
nX

i��

f�igai � par�a�� � � � � an�

w� � C� and w� is an integer vector� whence there exist �i 	 � integers such that

w� �
Pk

i�� �iai� Clearly�

����� w �

kX

i��

�iai �

nX

i��

b�icai

Pk
i�� �i � n � �� for if not�

Pk
i�� �i 	 n �

Pk
i��f�ig� and thus the sum of the

coe�cients in ����� is greater than
Pn

i�� �i� a contradiction�

Since the �i�s are integers jfi 
 �i � �gj � n � � follows� proving that the number

of positive coe�cients in ����� is at most �n� ��

Q�E�D�

Cook Fonlupt and Schrijver ������ add the remark that in � dimensions � elements

are enough� and they do not have any example where n elements would not be enough

in general instead of the �n� � above�

Conjecture A Let H � ZZn be a Hilbert basis� and w � cone�H� � ZZn� Then w is

the positive integer linear combination of at most n elements of H� and these can be

determined in polynomial time�

In a lecture� Bill Cook communicated an additional fact which was very important

from the point of view of the present work
 in the plane� the determinant of neighbour�

ing Hilbert basis elements is 
�� �equivalently� they generate the lattice of all integers�

or just the same lattice as H�� for a proof see the end of this introduction� In sections

� In the language of linear programming� there exists an optimal basic solution�
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� and � we are going to prove generalizations of this fact� in Sections 	 and � we shall

deduce some consequences for combinatorial problems� These results� many examples

and the strong belief in the beauty of nature makes us think that the same is true in

general� In other words� if the following conjecture is true� it should be due to Cook

Fonlupt and Schrijver ������� if it is not� the responsibility is the author�s�

CONJECTURE B If H � ZZn is a full dimensional pointed Hilbert basis� then

cone�H� is covered by cones cone�a�� � � � � an�� where fa�� � � � � ang � H� and

det�a�� ���� an� � 
�� a�� � � � � an such that cone�a�� � � � � an� contains a given element of

cone�H� � ZZn� and det�a�� ���� an� � 
� can be computed in polynomial time�

It is easy to see that Conjecture B implies Conjecture A� For general Hilbert�bases�

instead of �det�a�� ���� an� � 
�� we have to write simply that ��a�� ���� an� is a basis of

lat�a�� ���� an���

Note that vectors a�� � � � � an with det�a�� ���� an� � � are the minimum cardinality

full dimensional Hilbert bases and they are the only linearly independent Hilbert bases�

For a not necessarily full dimensional set of linearly independent vectors fa�� � � � � akg

the equivalence of the following statements can be shown easily


�i� fa�� � � � � akg is linearly independent and is a Hilbert basis�

�ii� par�a�� ���� ak� � f�g

�iii� The g�c�d� of the k�k subdeterminants of the matrix whose columns are a��� � �� ak

is 	� �The equivalence of �ii� with the rest relies however on some knowledge on lattices�

see Schrijver ������� Actually� �iii� will be used only for k � n� when it is evident��

For simplicity� we shall often suppose that our Hilbert basis is of full rank� This

is not a restriction of the generality
 if the Hilbert basis is in a subspace of rank r�

choose a basis of this subspace� and represent the vectors of the subspace in with the

coe�cient vectors of linear combinations of this basis� This gives a full dimensional

representation of the same Hilbert basis in IRr�

This argument permits to extend statements from the full dimensional case to

arbitrary Hilbert bases� For example� using that full dimensional linearly independent

Hilbert bases are exactly the sets of vectors with determinant 
�� we get the following

obviously equivalent version of Conjecture B� which does not need the assumption about

the full rank� and does not speak about determinants


CONJECTURE C Let H � ZZn be a Hilbert�basis where cone�H� is pointed� If H

is linearly dependent� and w � cone�H��ZZn� then there exists a Hilbert�basis H � � H�

�H � �� H�� w � cone�H��� and H � can be computed in polynomial time�

�



The reader may �nd it useful to study numerical examples of Hilbert bases �rst

in � dimensions� Taking two linearly independent relatively prime vectors with non�
�

determinant� clearly� not every integer vector of the pointed cone C generated by these

two vectors is an integer combination of the generating vectors� You can easily �nd

the �uniquely determined� elements of the Hilbert basis of C� The experience aquired

through such examples will probably help to follow the proof below� and arguments all

along the paper�

Let us �nish this introduction by proving these conjectures for n � �� This case is

easy� but it isn�t a completely banal exercise�

However� short proofs can be given in various ways� Several proofs can be extracted

from more general arguments� for example Lemma � of Theorem ��� below gives a

proof� The particularity of this case� exploited by the proofs is that neighboring Hilbert

basis elements have determinant �� or equivalently� if we delete either of the extreme

rays� the remaining vectors form a Hilbert basis again� It is not di�cult to prove

that the Hilbert basis H of the cone generated by the integer vectors a�� a� lies in

conv�a�� a�� ��� �This fact implies immediatly Conjecture C
 H n fa�g is a Hilbert

basis� for if v � conv�H n fa�g�� and v � v� � v�� v�� v� � cone�a�� a��� then clearly�

v�� v� � conv�H n fa�g��� Our purpose with giving a separate proof here is that some

aspects of Hilbert bases might be easier to understand on this simple example� The

following version� simpli�ed down to the bare essentials� was exhibited by P�eter E�

Solt�esz


Proof of Conjecture C for n � �� If jHj � �� the statement is trivial� Let a�� a� � H be

the extreme rays of cone�H�� By our assumptions a� and a� are linearly independent

and H n fa�� a�g �� �� It is enough to prove that H n fa�g is a Hilbert basis� for then

by symmetry H n fa�g is also a Hilbert basis� and arbitrary w � cone�H� is contained

in the cone generated by one of these�

One of the extreme rays of cone�H n fa�g� is a�� let the other be a��� Of course

a�� � H� All we have to prove is that every w � par�a��� a�� is the non�negative integer

combination of vectors in H n fa�g� We shall actually prove even more� Let w �

par�a��� a��� We know that w can be written as the non�negative integer combination of

vectors in H
 w �
P

h�H ��h�h� where ��h� 	 � integer for all h � H� We shall prove

that in every combination of this form ��a�� � �� Suppose indirectly that ��a�� 	 ��

and substitute every h � H by their expression as a nonnegative linear combination of

a� and a�
 we get that

����� w � ��a� � ��a�� where �� 	 �� �� 	 ��

On the other hand w � ���a
�
� � ���a� �� � ���� �

�
� � ��� where a�� � ��a� � ��a�






�� � ��� �� � ��� whence

���	� w � �����a� � ������ � ����a��

In ����� the coe�cient of a� is at least �� whereas in ���	� it is smaller than �� This

is a contradiction� because there is a unique way to express w in the basis a�� a��

Q�E�D�

The reader could visualize this proof �nding the clear geometric meaning of each

step�

�� Improving by �

In this section we improve only by � three known bounds� The proofs seem to

require new methods though� and may give more general indications for attacking the

conjectures A� B� C� Their proofs are strictly related to Conjectures B and C� The main

support for the conjectures is just the following fact valid for the whole paper
 in all

cases when Conjecture A is true� the stronger Conjectures B and C also hold� the same

proofs work for them� furthermore� in most cases� the only way of proving Conjecture

A is to prove Conjectures B or C�

Theorem ��� LetH � ZZn be the Hilbert basis of a pointed cone� and w � cone�H��

ZZn� Then w is the positive integer linear combination of at most �n�� elements of H�

The proof� in addition to the proof of Theorem ���� exploits the symmetry of

parallelepipeds


Proof� Let H � fa�� � � � � akg� w �
Pk

i�� �iai�
Pk

i�� �i is maximum� a�� � � � � an are

linearly independent� fai 
 �i � �g � fa�� � � � � ang� �If jfi 
 �i � �gj � n� then the

statement follows already from the proof of Theorem ����� Assume in addition that

conv�a�� � � � � an��H � fa�� � � � � ang� We can assume this without loss of generality� for

����� w � 	h�

nX

i��

��i � 	
i�ai�

and if h �
Pn

i�� 
iai with
Pn

i�� 
i � �� �� � 
i � �� i � �� � � � � n�� then the sum of the

coe�cients in such a combination remains equal to
Pn

i�� �i� The choice 	 
� minf�i

�i



i � �� � � � � ng �
 �j

�j
makes clear that cone�a�� � � � � aj��� h� aj��� � � � � an� contains w� and

combines it with the same some of coe�cients��

� This is just a 
pivot� bringingh into the 
basis�
 without changing the 
objective value�
 because
the 
relative cost� of h was ��

�



Let w� be de�ned by ������ We have now

�����

nX

i��

f�ig � n� ��

Indeed� suppose indirectly that
Pn

i��f�ig 	 n� �� that is� where 
i 
� � � f�ig � ��

�i � �� � � � � n�

�����
nX

i��


i � ��

Let now

h 
�
nX

i��


iai � a� � � � �� an � w� � cone�a�� � � � � an� � ZZn�

furthermore� if h �� H substitute h in ����� by a non�negative integer combination of

Hilbert basis elements� We must have equality in ������ because otherwise the sum of

the coe�cients in ����� is bigger than
Pn

i�� �i for any positive 	� h � H for the same

reason� Thus h � conv�a�� � � � � an� n fa�� � � � � ang� contradicting the assumption made

in the beginning of the proof� and proving ������

After these remarks we proceed in exactly the same way as in the proof of Theorem

���� However� because of ������ we have now the following tighter bound in the last

paragraph of the proof of Theorem ���

Pk

i�� �i � n� �� for if not�
Pk

i�� �i 	 n� � �Pn
i��f�ig� and thus the sum of the coe�cients in ����� is greater than

Pn
i�� �i� a

contradiction�

Since the �i�s are integers jfi 
 �i � �gj � n � � follows� proving that the number

of positive coe�cients in ����� is at most �n� ��

Q�E�D�

Remark


��Instead of requiring conv�a�� � � � � an� �H � fa�� � � � � ang in the proof� we could have

assumed that det�a�� � � � � an� is minimal


det�a�� � � � � aj��� h� aj��� � � � � an� � det�a�� � � � � aj���
nX

i��


iai� aj��� � � � � an� � 
j det�a�� � � � � an� � det�a�

Thus �pivoting� decreases the determinant� if we �bring� an element of the paral�

lelepiped into the basis�

This trick� although it is more technical than the one we used in the above version

of the proof� can also be used to prove other statements� For instance it implies im�

mediately the existence of a Hilbert generating system for which Conjecture B holds


�



by Caratheodory�s theorem cone�H� is covered by cones of the type cone�H �� �where

H � � H is linearly independent�� If for each of these H � we take h � par�H �� and

replace H � by the n cones that have h and n � ��elements of H � as extreme rays �we

suppose H is full dimensional�� we get a new covering by cones� and by the above

remark the maximum determinant has decreased� Repeating this a �nite number of

times� we get the appropriate Hilbert generating system�

�� A third possibility� which is better from the algorithmic point of view
 let ci 
�

�� 	 k ai k� where 	 is �su�ciently small�� it is easy to see that a basis with maximal

objective value with respect to this objective function satis�es conv�a�� � � � � an� �H �

fa�� � � � � ang� It follows that the positive linear combination with at most �n�� Hilbert

basis elements can be determined in polynomial time�

The following theorem will of course not contain many combinatorial examples� �It

could be interesting in itself though from the viewpoint of three dimensional geometry��

However� its proof is probably the one which goes the deepest into the structure of

Hilbert bases in general


Theorem ��� Conjectures A� B� and C are true for n � ��

To prepare the proof we state two lemmata valid in arbitrary dimension


Lemma � Let H � ZZn be the Hilbert basis of a pointed cone� H � a�� � � � � ak and

w � cone�H� � ZZn� Then there exist coe
cients �i such that w �
Pk

i�� �iai� and

�i�
Pk

i�� �i is maximum under this constraint�

�ii� fai 
 �i � �g is linearly independent� say fai 
 �i � �g � fa�� � � � � asg� s � n�

�iii� If h � par�fa�� � � � � asg n f�g� h �
Pk

i�� 
iai� then

���	� � �
kX

i��


i � s � � � n� ��

Less formally� there exists an �optimal basis� for which �iii� holds� Note that

Conjecture B for n � � follows immediately�

Proof� Let H � fa�� � � � � akg� w �
Pk

i�� �iai�
Pk

i�� �i is maximum� fai 
 �i � �g �

fa�� � � � � asg� and this set is linearly independent �see the proof of Theorem ���� Assume

in addition that conv�a�� � � � � as� �H � fa�� � � � � asg like in the proof of Theorem ����

Thus �i� and �ii� hold by the above choice� Let h � par�a�� � � � � as�� h �
Ps

i�� 
iai�

We have to prove ���	�� Like in the proof of Theorem ���� ����� cannot hold� whencePs
i�� 
i � �� Applying the same to the symmetric �h � a��� � ��as�h �

Ps
i�����
i�ai

we get that
Ps

i�� �� 
i � � and ���	� is proved�

Q�E�D�

��



The following Lemma is well�known from the geometry of numbers� For the sake

of completeness we sketch a proof using the Hermite normal form


Lemma � Let a�� � � � � an � ZZn be a basis of IRn� Then

jpar�a�� � � � � an�j � jdet�a�� � � � � an�j �For a general set a�� � � � � ak we simply replace the

determinant by the greatest common divisor of the r � r determinants where r is their

rank��

Proof� Let A be the matrix whose columns are a�� � � � � an� Let ri denote the i�th

row of A� Clearly� if we replace a row ri by ri 
 rj �i �� j�� then the set of vectors

� � ���� � � � � �n� � IRn for which A� is integer remains the same� In particular� the

number of elements in the parallelepiped de�ned by the new column vectors remains

the same� the determinant does not change either� With such operations one can

arrive to the �Hermite normal form� �see Schrijver ������ p�	�� of the rows� We can

thus suppose that A is lower triangular� Let the elements in its main diagonal be

d�� � � � dn� Clearly� for A� to be in par�a�� � � � � an� we have d� di�erent choices for

��

t
d�

�t � �� � � � � d� � ��� Similarly� if ��� � � �� �i�� have already been chosen� and

the i�th component of
Pi��

j�� �jaj is x� then the possible choices for �i are dxe�x�t
di

�t � �� � � � � di� ��
 for all possible choices of ��� � � �� �i�� we have di choices for �i� We

conclude that par�a�� � � � � an� has d� � � � dn � det�A� elements�

Q�E�D�

Proof of Theorem ���� Suppose n � �� and let us prove Conjecture C�

Claim � If H � ZZ� is a Hilbert�basis� and w � cone�H� � ZZ�� then there exist vectors

a�� a�� a� � H such that par�a�� a�� a�� n f�g � H� and w � cone�a�� a�� a���

Indeed� let fa�� a�� a�g and f��� ��� ��g be the basis and coe�cients provided by

Lemma � �s���� and h � par�a�� a�� a��� h � 
�a� � 
�a� � 
�a�� By Lemma � ���	��


��
��
� � �� If h �� H� then substituting h with a non�negative integer combination

of H� the sum of the coe�cients in ����� is again bigger than �������� contradicting

Lemma � �i��

Claim � If Claim 	 does not hold for any proper subset of H �it must hold then for

H� that is par�a�� a�� a�� n f�g � H�� then it has an element h � 
�a� � 
�a� � 
�a�

that satis�es the equation

��
� � 
� � 
�� � �� ��

where � 
� det�a�� a�� a���

Before proving Claim �� let us summarize our knowledge about the parallelepiped

par�a�� a�� a��
 it has � � � di�erent non�zero elements �see Lemma �� of the form

��



h � 
�a� � 
�a� � 
�a�� where the coe�cients are rational numbers all with � as

denominator �Cramer�s rule�� denoting the sum of the numerators of the coe�cients by

s�h��

����� s�h� � ��
� � 
� � 
���

On the other hand� ���	� for n � � gives � � s�h� � ��� in other words�

����� s�h� is always one of the values �� �� � � � � �� � �� that is one of � � � di�erent

values�

We shall prove that

���
� for h� �� h� � par�a�� a�� a��� s�h�� �� s�h���

It follows then by ����� that for each i � f�� �� � � � � ��� �g� s�h� � i is satis�ed

for exactly one h � H� and in particular s�h� � ��� for some h � H� Because of �����

this is just the statement of Claim ��

Let h�� h� � par�a�� a�� a��� s�h�� � s�h�� �
 s� All we have to prove� is h� � h��

For h � par�a�� a�� a�� let �h 
� a� � a� � a� � h� Clearly� �h � par�a�� a�� a��� The

identity

h� � �h� � a� � a� � a�

is obviously equivalent to h� � h�� s�h�� � s��h�� � s � �� � s � ��� Thus� in the

combination h� � �h� � ��a� � ��a� � ��a�� �� � �� � �� � ��
� � �� and

����� � � �i � �� �i � �� �� ���

Since by ���
� for every vector in the parallelepiped� the sum of the coe
cients

is non�integer� the fact that �� � �� � �� is integer implies that ��� �� and �� are all

integers� and using ����� we have �� � �� � �� � �� Claim � is proved�

We show now how Conjecture C follows from the claims� If H is not of the

form par�a�� a�� a�� n f�g then we are done by Claim �� Thus we can suppose H �

par�a�� a�� a�� n f�g� and that the condition of Claim � holds� Clearly� for every h �

par�a�� a�� a��


par�a�� a�� h� � par�a�� h� a�� � par�h� a�� a�� 
 H n fhg�

and at least the origin is contained in the intersection of the three parallelepipeds on

the left hand side� whence


det�a�� a��h� � det�a��h� a�� � det�h� a�� a�� � � 	 det�a�� a�� a�� � ��

��



If h is now the element guaranteed by Claim �� we have equality here �the members of

the sum at the left hand side are the same as those in Claim �� through elementary op�

erations on determinants�� Consequently we have equality in the above set�containment

as well� It follows that par�a�� a�� h� n f�g� par�a��h� a�� n f�g and par�h� a�� a�� n f�g

partition H� and are Hilbert bases� The theorem is proved� �The statement about the

complexity is clear
 the solution of a linear programming problem allows to decrease

the size of the problem by ���

Q�E�D�

Conjecture A in the following special case has been proved earlier by A� Gerards�

The following proof is based on arguments similar to the other two proofs of this section�

some elements of which will be useful later


Theorem ��	 Conjectures A� B and C are true for Hilbert bases whose linear rank

is one less than their cardinality�

Proof� We shall prove Conjecture B for the set of vectors H � fa�� � � � � an��g of full

rank� forming a Hilbert basis� Clearly� up to a scalar multiple� there exists one unique

non�zero linear relation

�����
n��X

i��

�iai � ��

For later convenience we state the following Lemma in a somewhat more general form

that we need it here


Lemma � If H � fa�� � � � � akg is an arbitrary Hilbert�basis� and the linearly indepen�

dent vectors a�� � � � � as � H do not form a Hilbert basis� then

a� There exists an equation of the form

������
X

i�I

ai �
X

i��I

�iai

where I � f�� � � � � sg� and �i 	 � integers �i �� I��

b� There exists an equation of the form
P

i�I �iai �
P

i��I �iai where I � f�� � � � � sg�

�i 	 � integers �i � �� � � � � k�� and maxf�i 
 i � �� � � � � sg � maxf�i 
 i � s � �� � � � � kg�

Indeed� a� � � � � � as � h � �h� where � �� h � par�a�� � � � � as�� Since both h

and �h are in cone�H�� they can be expressed as a non�negative integer combination

of H� Substitute these expressions for h and �h into the above equation� In the linear

expression we have for h we are sure to have an element di�erent from a�� � � � � as� After

eventual simpli�cations because of elements that occur on both sides we get ������ and

a� is proved�

��



To prove Lemma b� take simply h � par�a�� � � � � as�� Clearly� h � �
q �p�a� � � � � �

psas�� � � pi � q �i � �� � � � � s�� Expressing h as a non�negative integer combination

of H� we get that p�a� � � � � � psas � q
Pk

i�� riai� where ri is non�negative integer�

and there exists j � s with rj 	 �� Thus� after simplifying because of elements that

occur on both sides we get an equation with all coe�cients smaller than q on the left

hand side� aj is on the right hand side� and its coe�cient is at least q � The Lemma is

proved�

The Lemma tells us a lot about the coe�cients in ������ Suppose a�� � � � � as be

independent� but not a Hilbert basis� �Otherwise we are done�� By Lemma a� ������

holds� and must coincide with ����� up to a scalar multiple� Because of the uniqueness

of ������ Lemma b� applies to ����� as well
 ����� can be supposed to be identical to

������ with the additional property� that there exists j with �j 	 �� Furthermore�

������ if faj 
 j � Jg� J � f�� � � � � n� �g is linearly independent and not a Hilbert basis�

then J 
 I�

�Because J satis�es the same assumption as f�� � � � � sg and consequently ������

holds if we replace I by I � � J � By the uniqueness of ������� using �j 	 � as well� we

get I � � I��

Let now w � cone�H� be arbitrary� By Caratheodory�s theorem� w �
Ps

i�� �iai�

�i 	 �� and we can suppose that a�� � � � � as are those in the Lemma� Let � 
� minf�i 


i � Ig� By ������ we have

������ w �
X

i�I

��i � ��ai �
X

i��I

��i � ��i�ai

�de�ne �i � � for i � s�� Since �i � � � � for some i � I� in ������ the indices of the

positive coe�cients do not contain I� Thus fai 
 ai has positive coe�cient in ������g

is linearly independent �because ������ is the unique linear relation�� and according to

������� it is a Hilbert basis�

Q�E�D�

A proof of this theorem also follows from our study of �uncrossable Hilbert bases�

�Section ��� and another one from the structure of ��dimensional Hilbert kernels �see a

remark in Section � after Conjecture E��

�� Strong and uncrossable Hilbert�bases

An equivalent de�nition of Hilbert generating systems could be the following
 H

is a Hilbert generating system if and only if for every w � cone�H�� lat�H� there exists

�	



a h � H such that w � h � cone�H��

Chandrasekaran and Tamir ����	� studied a property which can be reformulated

as follows
 for every w � cone�H� � lat�H� and h � H� w � 
h � cone�H� with 
 � �

implies w � h � cone�H�� The origin of this property lies in Fulkerson�s proof ���
��

of the Pluperfect Graph Theorem� The same property permitted to Cook� Fonlupt�

Schrijver ������ to prove Conjecture A for the cliques lying on a face of the clique

polytope of a perfect graph�

We �rst suggest a property which will permit to include further combinatorial

examples� and is� on the other hand special enough
 we will prove Conjectures A�

B� C if this property holds� H will be called a strong Hilbert�basis� if for every face

F of C 
� cone�H� there exists an element hF � F with the following property
 if

w � C � ZZn� and F is the minimal face of C containing w� then w � hF � C� �

hF with this property will be called a strong element of F � �For basic de�nitions

and statements about the structure of polyhedra cf� Schrijver �������� The main result

of this section is the following theorem


Theorem 	�� If H � ZZn is a strong Hilbert basis� then Conjecture A� B� C hold for

it�

Proof� Let w � C � ZZn� and suppose F� is the minimal face of C containing w�

and h� 
� hF� � Let �� 
� maxf� 
 w � �h� � Cg� The dimension of the minimal

face F� cotaining w � ��h� is less than that of F�� Apply now the same procedure to

w��h� � C� and so on� Clearly� we arrive in this way at a series of faces F�� � � � � Fs and

linearly independent vectors h�� � � � � hs �hi � hFi
� i � �� � � � � s�� w � cone�h�� � � � � hs��

We prove now by induction on dim�F�� that h�� � � � � hs is a Hilbert basis� If

dim�F�� � � the statement is obvious� If h�� � � � � hs is not a Hilbert basis� there

exists a � �� h � par�h�� � � � � hs�� h �
Ps

i�� 
ihi �� � 
i � ��� By the induction

hypothesis h�� � � � � hs is a Hilbert basis� whence 
� �� �� The minimal face contain�

ing h is F�� and because of
Ps

i�� 
ihi � F� where dim�F�� � dim�F�� we see that


� � maxf� 
 h � �h� � Cg� But � � 
� � � contradicts the property of hF� � h� in

the strong Hilbert basis H�

� Using Chandrasekaran and Tamir�s terminology
 strong Hilbert bases are exactly those Hilbert
basesH 
 whose elements have an order such that the lexicographically maximal linear expression
of every h � cone�H� is integer� �Easy to see�� Chandrasekaran and Tamir investigated
problems where the same holds for every order�

��



The claim about the complexity is an immediate consequence of the ellipsoid

method� see Gr otschel� Lov�asz� Schrijver ����
�
 maxf� 
 h � �h� � Cg can be

computed in polynomial time� Another way of applying the ellipsoid method will

also be useful
 maximize �F c�hF � under the constraint h �
P
f�FhF 
 F face of Cg

c�hF � 
� �dim	F 
� where � is the biggest determinant of a square submatrix of H� �

Q�E�D�

A second property that will imply the conjectures
 uncrossability� Recall the

following from the Lemma a� of Theorem ���
 If H is a Hilbert basis� and the linearly

independent vectors a�� � � � � as � H do not form a Hilbert�basis� then their sum can

also be written in another way as a non�negative integer combination of Hilbert�basis

elements� We shall say that H is uncrossable� if for some objective function c 
 H �� IR

and for every independent subset fa�� � � � � asg � H� among the combinations

�����
X

h�H

��h�h � a� � � � �� as�

���h� integer for every h � H�� there is one with

�����
X

h�H

��h�c�h� � c�a�� � � � �� c�as��

�This is a generalization of the properties used in �uncrossing procedures� for many

combinatorial problems� Eg� the square of the cardinality of a set is often used as

objective function��

CONJECTURE D Every Hilbert basis is uncrossable� and the objective function

c in the de�nition of uncrossability is computable in polynomial time�

The reader can check that in all the special cases for which we proved the conjec�

tures� Conjecture D also holds� Check it for instance for the example of Theorem ���


any function c such that the objective value of the left hand side of ������ is smaller than

that of the right hand side will obviously do� Thus the proof of Theorem ��� below will

provide a new proof for Theorem ��� � An other example
 the choice of the objective

function at the end of the proof of Theorem ��� prove that strong Hilbert bases are

uncrossable �Proofs in this paper can be considered to exhibit an appropriate objective

function to show uncrossability� and Theorem ��� below proves again the conjectures

for every case�� Conjecture D is important from the algorithmic point of view�

Theorem 	�� Conjectures A� B� C hold for uncrossable Hilbert bases

� It is easy to see that the c�maximum solutions are exactly the lexicographically maximal ones
 if
we order the variables in the decreasing order of c� In Chandrasekaran and Tamir�s terminology
our proof means that strong Hilbert bases are exactly those in which lexicographically maximal
solutions with respect to a speci�c order are Hilbert bases�

��



Proof� Let H be an uncrossable Hilbert basis� c 
 H �� IR the function that ensures

uncrossability� and b � cone�H� arbitrary� Let B 
� fa�� � � � � asg � H be the vectors

which belong to a positive variable �i in an optimal basic solution for the linear programP
h�H x�h�h � b� x 	 �� max

P
h�H x�h�c�h�� �The maximum exists because of the

pointedness of cone�H���

B must be a Hilbert basis� because if it were not� then ����� holds� that is

����� b � 	
X

h�H

��h�h�

sX

i��

��i � 	�ai�

Because of uncrossability� ����� also holds� If 	 is su�ciently small� ����� also ex�

presses b as a nonnegative combination� and by ������ has bigger objective value thanPs
i�� �ic�ai�� a contradiction with the choice of B�

Q�E�D�

The above proof implies that cone�H�� where H is an uncrossable Hilbert basis�

has a �triangulation� with cones generated by independent Hilbert bases B � H� A

triangulation of the cone C is a set of cones with linearly independent extreme rays

whose union is C� and the intersection of any two of which is a smaller dimensional

cone�

�� Combinatorial examples

We have now �nished the study of Hilbert bases in general� In this section we

sketch some applications� in the following section we make some algorithmic and other

remarks� In these two sections the reader will have to be satis�ed with a short summary�

and sketched proofs because of the lack of place �and time�� I hope to write more details

in a forthcoming paper�

Hilbert basis constitute an equivalent algebraic language to study TDI systems� A

system of inequalities is called totally dual integral �or TDI�� if any inequality which

is their consequence and has an integer coe�cient vector� arises as their non�negative

integer combination� The �rst� basic results about TDI systems were proved by Giles

and Pulleyblank���
��� Edmonds and Giles ����	�� and Schrijver ������� The transla�

tion between TDI systems and Hilbert bases is provided by the following observation

of Giles and Pulleyblank ���
�� see also Schrijver ������


Theorem 
�� a� The system of inequalities Ax � b �A and b are integral� is TDI if

and only if for each face F of the polyhedron fx 
 Ax � bg� the rows of A which are

�




active in F form a Hilbert basis�

b� The rows of the integer matrix A form a Hilbert basis if and only if Ax � � is TDI�

A row of a is called active in a face �or for an objective function�� if it is satis�ed

with equality by every vector in the face �which is the set of optimal solutions for the

given objective function��

Many combinatorial applications of Hilbert bases arise from well�known TDI sys�

tems of Combinatorial Optimization� �and as we shall see below� many others arise in

a di�erent way�� It is an immediate conequence of Theorem ��� �through Theorem

	��� that for n�dimensional TDI systems there always exists an integer optimal dual

solution with at most �n� � nonzero variables� We list now some Hilbert bases� where

we know something better than the bound �n� ��

I� Totally unimodular and uncrossable systems

For the Hilbert bases corresponding to many TDI systems all the conjectures we

presented hold trivially� Two big classes of them whill let us avoid listing them one

by one
 integer linear programs with totally unimodular constraint matrices� problems

where for example uncrossing procedures lead to a �triangular basic� dual solution� An

example to the latter
 matroid polyhedra�

II� Perfect Graphs and Matchings

The following Lemma extracts the essence of Fulkerson�s proof ���
�� of the Plu�

perfect Graph Theorem


Lemma Let P 
� fx 
 Ax � bg be full dimensional �for simplicity�� and let ax � �

be an inequality in the system Ax � b� Suppose furthermore� that ax 	 � � � is valid

for every x � P � If for an objective function c ax � � is active� then there exists a dual

solution to the linear program Ax � b� max cx where the dual variable corresponding

to the row a is at least �� �

Theorem 
�� The �active rows� �for an arbitrary objective function� of clique poly�

hedra of perfect graphs and matching polyhedra form a strong Hilbert basis�

Proof� �Sketch� All the inequalities describing the clique polyhedron of perfect graphs

are of the form ax � �� and ax 	 � is valid for them� The Lemma states that such

inequalities are �strong� elements of the cone of active rows
 it follows that the active

rows form a strong Hilbert basis�

For matching polyhedra� inequalities of the type xi 	 � and x���v�� � � satisfy

the conditions of the Lemma� So whenever such an inequality is active� it is a strong

element� If there are no such inequalities� then it can be shown that one of the �odd

set inequalities� is strong� Q�E�D�

��



For the case of perfect graphs� the above proof is just an equivalent way of pre�

senting Cook� Fonlupt and Schrijver�s ������ proof of Conjecture A�

Corollary Conjectures A� B� C� D hold for the Hilbert bases in the above theorem

III� MATROID BASES

It follows from the matroid partition theorem that the �incidence vectors of the�

bases of an arbitrary matroid form a Hilbert basis �whose lattice is not ZZn�� A� Frank

����	� has proved that bases of uniform matroids �the set of all k�tuples of an arbitrary

set� form a Hilbert basis for which Conjecture A holds� �E Tardos ����	� gave a simple

proof that reduced the problem in one step to a smaller dimensional one� actually with

a natural choice of a �strong element�� This leads to the following


Theorem 
�	 The set of all k�tuples of an arbitrary set forms a strong Hilbert basis�

where every element is strong �in every face containing it��

Corollary Conjectures A� B� C� D hold for the set of all k�tuples of an arbitrary set�

This is the only result I know about the conjectures on matroid bases�

IV� ARBORESCENCES

It follows from Edmonds� ����
� rooted arborescence theorem that arborescences

�as edge�sets� constitute a Hilbert basis�

From Pevsner�s ����!� algorithmic considerations one can extract the following

theorem


Theorem 
�
 � Let G be a directed graph with a root r � V �G�� and w be a vector

in the cone C generated by the arborescences of G rooted in r�

a� If w� a �� C for some arborescence a� then there exists an arborescence b such that

w � b � C and the dimension of the minimal face containing w � b is less than that of

w�

b� There exist two arborescences a and b rooted in r and a non�negative integer � such

that w� 
� w � ��a � b� � C� and the dimension of the minimal face containing w� is

less than that of w�

It is easy to prove Theorem 	�	a using Lov�asz�s proof of Edmonds� theorem� and

b is an easy corollary of a�

Theorem 	�	b implies a better bound than the bounds known in general
 using two

vectors� the dimension can be decreased by one� if Conjecture A is proved for graphs

where the linear rank of the arborescences is c� we get that for every w there exists a

solution with at most ��r � c� � c � �r � c positive coe�cients� where r is the rank of

the arborescences� we get immediately the bound �r�� �because of Theorem ����� that

��



can probably be considerably improved with an analysis of small graphs� We would

�nd it more interesting however� and we hope too� that the strong property exhibited

in Theorem 	�	 brings us nearer to the conjectures in this case�

The Conjectures for the �polar� problem �minimum weight rooted arborescence

maximum cut packing� are trivial� belong to I�

V� ODD CUTS

The following example was suggested by Les Trotter ����
�
 For every objective

function� the active rows of T �join polyhedra form a Hilbert basis� if the non�negativity

constraints are written in the form �xi 	 �� This follows from Seymour�s integer

minimax theorem �����a� about minimum T �joins and maximum T �cut packings in

graphs with �bipartite� weightings� The lattice generated by the odd cuts and the

doubles of the unit vectors is clearly the set of bipartite weightings� and not the set of

all integer vectors
 this case does not �t into the usual de�nition of TDI�ness� which

supposes that the considered lattice is the set of all integers�

Some special cases such as planar graphs are strong Hilbert bases� and thus the

conjectures hold for them�

VI� MULTICOMMODITY FLOWS

It is a basic question about graphs whether the existence of a fractional multicom�

modity �ow implies the existence of an integer one for arbitrary demands and capacities�

see Seymour �����b�� Karzanov ����
�� Seb"o ������� Such graphs are called routing�

Given a graph G let the multicommodity cone of G be the cone generated by the

vectors vC�f and �ei� where C � E�G� is a cycle� f � C� and vC�f �e� is equal to �� if

e � f � to � if e � Cnffg� and � otherwise� the ei�s are the unit vectors on the edges� The

extreme rays de�ned here will be denoted by MH�G�� The above mentioned question�

and the papers refered to investigate the problem of characterizing when MH�G� or

some subcone of it is a Hilbert basis�

It is easy to see that a graph is routing if and only if MH�G� is a Hilbert basis�

Routing graphs include Seymour�s �����b� class of �cycling� graphs� More generally�

all this can be de�ned in terms of binary matroids� The characterization of routing

matroids is open�

We do not require that the generated lattice is the set of all integer vectors
 if we

require that� it follows from Seymour �����b� that MH�G� is a Hilbert basis if and only

if G is series�parallel� MH�G� generates the lattice of Eulerian weightings� The MH�G�

of certain graphs �or matroids�� among them that of planar graphs� turns out to be a

strong Hilbert basis� Consequently Conjectures A� B� C� D hold for these cases�

The list of the examples seems to be unbounded� actually every TDI system gives

��



an example� On the other hand the list of the solved cases of the conjectures is for the

moment poor�

�� Other remarks

I� Testing membership

We �rst prove that it is coNP�complete to decide whether a given vector is in the

Hilbert basis of a cone given by de�ning inequalities� a fact proved �rst by �E� Tardos

����
� with a reduction to the maximum stable set problem of a graph�

Theorem ��� Given two vectors a� h � ZZn� it is coNP�complete to decide whether

h is in the Hilbert basis of the cone fx 
 ax � �� x 	 �g

Proof� Let a�� � � � � an�� be an instance of PARTITION �see Garey�Johnson ���
���

and an�� 
� an 
� �����a�� � � �� an���� a 
� �a�� � � � � an�� let h be the n�dimensional

all � vector� Clearly� C 
� fx 
 ax � �� x 	 �g is a pointed cone� h � C� and h is in

the Hilbert basis of C if and only if the answer to the given instance of PARTITION

is no�

Q�E�D�

II� Testing TDI�ness� and integral dual solutions

Next we show that Conjecture B contains Cook� Lov�asz and Schrijver�s result

�	���� on testing TDI�ness in �x dimension� We do not have to use Lenstra�s integer

programming algorithm �in the test� The key�observation is the following


Theorem ��� Suppose Conjecture B is true� and H � ZZn is full dimensional �and

generates a pointed cone�� Let H�� � � � �Hp � H be the list of those n�element inde�

pendent subsets of H whose determinant is �� Then H is a Hilbert basis if and only if

cone�H� �
Sp

i�� cone�Hi��

Proof� The only if part is just Conjecture B� The if part is trivial� since by the con�

straint w � cone�H� is in some of the cone�Hi��s� and those are Hilbert bases�

Q�E�D�

Let H be like in the theorem� and let n be �xed� �It is easy to see from Theorem

	�� that in order to check TDI�ness it is enough to test whether a given set of vectors is

a Hilbert basis� the assumptions of Theorem ��� on H do not restrict the generality� see

Schrijver �������� Since n is �xed� the facets of C� 
� cone�H� can be determined in

polynomial time� Let now H�� � � � �Hp � H be the list of those n�element independent

��



subsets of H whose determinant is �� Since n is �xed� this list� and the facets of Ci 
�

cone�Hi� �i � �� � � � � p� can be determined in polynomial time� Let b�� � � � � bq � cone�H�

be the list of all vectors that generate a one�dimensional cone �half line� which is the

intersection of n linearly independent facets from among the facets of C�� � � � � Cp� Since

n is �xed� q is still a polynomial of jHj� and can be computed in polynomial time�

Now clearly� cone�H� ��
Sp

i�� cone�Hi� if and only if there exists a linearly in�

dependent subset fc�� � � � � cng � fb�� � � � � bqg such that no inner �non�facet� point of

cone�c�� � � � � cn� lies in
Sp

i�� cone�Hi�� Thus we �only� have to test for all fc�� � � � � cng �

fb�� � � � � bqg whether c��� � ��cn �this is an inner point� is contained in at least one of the

cones Ci �i � �� � � � � p�� If yes� then we can conclude cone�H� �
Sp

i�� cone�Hi�� andH is

a Hilbert basis by Theorem ���� If c��� � ��cn is contained in none of the Ci �i � �� � � � � p�

for some fc�� � � � � cng � fb�� � � � � bqg� then clearly cone�H� ��
Sp

i�� cone�Hi�� and ac�

cording to Theorem ��� H is not a Hilbert basis� Q�E�D�

For TDI systems� we are also interested in �nding an integer dual solution� and if

the conjectures hold� a dual solution whose positive variables belong to linearly inde�

pendent constraints forming a Hilbert basis� If our TDI system is given explicitly by a

system of linear inequalities and Conjecture D holds� even the latter task can be solved

easily with the help of Theorem 	���

For linear programming problems given by a separation oracle �for the de�nition

see Gr otschel Lov�asz� Schrijver ����
� � we must suppose that the minimal system

describing the corresponding polyhedron is TDI� and that for a cone given by a sep�

aration oracle� and whose extreme rays constitute a Hilbert basis� c�h� in Conjecture

D can be determined in polynomial time� �For most of the TDI systems for which the

Conjectures are known� these conditions are satis�ed�� With the proof technique used

by Gr otschel� Lov�asz and Schrijver ����
� ������	�� our problem is reduced to writing

a vector w of a cone given by a separation oracle as a non�negative c�maximum linear

combination of the extreme rays� �By the proof of Theorem ��� every independent

subset of a c�optimal solution is a Hilbert basis��

Compared to ������	� here we have the additional task of optimizing the function

c� However� given a separation oracle for the cone fyA 
 y 	 �g� a separation oracle

for the polyhedron fyA � w 
 y 	 �g can be determined in polynomial time� whence

the function c can be optimized in polynomial time� �We used the equivalence of

optimization and separation several times� see Gr otschel� Lov�asz and Schrijver� book��

III� Structure

We prove here some weakenings and of Conjecture B� and state a reformulation�

Note �rst that there exists at least one basis with the property claimed in Conjec�

ture B �Gerards and Seb"o ����
� �� implying �local strong unimodularity� for totally

��



dual integral systems� that is the existence of active rows whose determinant is ��

Next we note that every cone has a �nite Hilbert generating system for which

Conjectures A� B� C are true� see Remark � after Theorem ���� but the number of

redundant elements in this construction might be huge� Of course� if we start with a

covering of cone�H� by the cones of Conjecture B� then there there is no redundant

element� It would be interesting to prove the existence of a Hilbert generating system

for which the conjectures hold and does not have many redundant elements�

par�H� is a Hilbert generating system which has many redundant elements� but

the conjectures are still interesting and open for it� Liu and Trotter ������ have put

the interesting question of giving a proof at least if ��� is replaced by some bigger�

but not very big number in the de�nition of �par�� and they have some results in this

direction�

Finally� we sketch our results on Hilbert kernels
 they are based on the recognition

that for any property of Hilbert bases� only the linear dependencies between Hilbert�

basis elements play a role� A linear subspace S � IRk is called Hilbert kernel � if there

exists an n� k matrix H whose columns constitute a Hilbert basis �of a pointed cone��

and S 
� fx 
 Hx � �g� A great advantage of Hilbert kernels is that they neglect

non�essential properties of Hilbert bases� for example their de�nition does not depend

on whether we suppose lat�H� � ZZn or not� We present the following characterization

of Hilbert kernels without proof� noting that the proof is not di�cult�

Theorem ��	 Let S � IRk be a linear subspace� The following statements are

equivalent�

�i� S is a Hilbert kernel

�ii� For every x � S there exists y � S so that y � x and y � �

�iii� For every x � S there exists y � S� y integer and y � dxe

�iv� H�S� � fe�� � � � � ekg is a Hilbert basis� where H�S� is a Hilbert basis of S� and ei

�i � �� � � � � k� is the vector whose i�th coordinate is �� and the others are ��

Let us reformulate Conjecture B in terms of Hilbert kernels �Conjectures A� C� D

can be reformulated similarly�� The proof of the equivalence is easy�

CONJECTURE E If S is a Hilbert�kernel� then for every x � IRn� x 	 � there

exists y � S� such that z � S� zi integer for values i with xi � yi� implies z � ZZn�

The coe�cients of the linear equations satis�ed by an n�dimensional Hilbert basis

of cardinality k form a k�n dimensional subspace of IRk� It is convenient to represent

Hilbert�kernels with a basis of S�ZZk� k�n linearly independent k�dimensional vectors�

The case k � n�� corresponds to ��dimensional Hilbert�kernels� FromTheorem ��� it is

��



easy to see that ��dimensional Hilbert kernels are exactly the lines generated by vectors

all positive components of which are �� Conjecture E is an immidiate consequence�

providing a new proof of Theorem ����

At this point� the relation of the di�erent conjectures may appear chaotic� Let us

�nally summarize the easy implications by the following scheme


CONJECTURE D �� CONJECTURE B�� CONJECTURE C�� CONJEC�

TURE E �� CONJECTURE A�

We do not know anything about the other implications�
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